ArticlePDF Available

Figures

Content may be subject to copyright.
Fisheries | www.sheries.org 465
© 2019 American Fisheries Society
DOI: 10.1002/fsh.10273
FEATURE
Recent Ecosystem
Disturbance in the
Northern California
Current
Cheryl A.Morgan  | Cooperative Institute for Marine Resources Studies,Oregon State University, Hateld Marine Science Center,
2030 Southeast Marine Science Drive, Newport, OR 97365. Email: cheryl.morgan@oregonstate.edu
Brian R.Beckman  | National Marine Fisheries Service,Northwest Fisheries Science Center,Environmental and Fisheries Sciences
Division, Seattle, WA
Laurie A.Weitkamp  | National Marine Fisheries Service,Northwest Fisheries Science Center,Conservation Biology Division,
Newport, OR
Kurt L.Fresh  | National Marine Fisheries Service,Northwest Fisheries Science Center,Fish Ecology Division (retired), Seattle, WA
Fisheries | www.sheries.org 465
© 2019 American Fisheries Society
DOI: 10.1002/fsh.10273
Photo credit: NOAA Fisheries/
Oregon State University
466 Fisheries | Vol. 44 • No. 10 • October 2019
An extended marine heat wave occurred across the North Pacic during 2014–2016, including the formation of the warm “Blob”
followed by a strong El Niño in 2016. Coincident with this marine heat wave, we documented unprecedented biological changes
in plankton and nekton in the Northern California Current (NCC) within pelagic surveys conducted over 20years (1998–2017).
The recent warm period was dominated by warmwater gelatinous invertebrates and shes, some of which were previously either
extremely rare or absent. Mixing of organisms originating from more southern or western regions with those previously present
in the NCC may have resulted in novel and unpredictable trophic interactions that produced some of the observed changes in
relative abundance. Continued long- term monitoring is needed to determine whether this is a temporary ecosystem disturbance
or a fundamental change in the very productive NCC upwelling region.
The Northern California Current (NCC) ecosystem (from
the Canadian border to Cape Blanco, Oregon) has undergone
a great deal of oceanic variability over the past 20years, in-
cluding a strong El Niño in 1998, a strong La Niña in 1999, a
Pacic Decadal Oscillation (PDO) regime shift during 1998–
2002 (Peterson and Schwing 2003), and a much- delayed spring/
summer upwelling period in 2005 (Lindley etal. 2009). These
oscillations between warm and cool periods have resulted in
shifts in abundance of many commercially important species,
including squid, hake, rocksh, and juvenile salmonids.
In fall 2014, an extreme warming of coastal waters oc-
curred as a large parcel of anomalously warm water—the so-
called “blob”—moved eastward and caused a sudden increase
in coastal temperatures (Bond etal. 2015). The warm Blob
formed in the Gulf of Alaska during the winter of 2013–2014
and generally persisted in the Northeast Pacic through 2016,
although brief periods of cooling occurred during May–June
2015 following strong equatorward winds and upwelling
(Peterson et al. 2015, 2017). The blob was immediately fol-
lowed by a strong El Niño event in 2015–2016 (Jacox etal.
2016). These oceanographic phenomena resulted in a pro-
longed marine heat wave throughout the NCC during 2014–
2016 (Di Lorenzo and Mantua 2016; Gentemann etal. 2017).
This heat wave resulted in shifts in the occurrence and abun-
dance of a broad range of taxa, including copepods (Peterson
et al. 2017), ichthyoplankton (Auth etal. 2017; Daly et al.
2017), squid (Sakuma et al. 2016), gelatinous invertebrates,
krill and shrimp (Sakuma et al. 2016; Peterson et al. 2017;
Brodeur etal., 2019), and shes (Leising etal. 2015; Sakuma
etal. 2016). Trophic shifts were also evident in juvenile salmon
diets (Daly etal. 2017).
We collected physical and biological data, including plank-
ton and pelagic nekton, on the same coastal grid from central
Oregon to the Washington–British Columbia border over a
20- year period from 1998 to 2017. This allowed us to devel-
op an oceanographic and biological baseline for the pelagic
ecosystem of the NCC. We documented unique abundance
variations within our 20- year time series, with effects at all tro-
phic levels. Unlike other recent publications, our data indicate
that biological disturbances continued through 2017, after
cessation of surface manifestations of the blob. This report
describes effects of the recent marine heat wave on the NCC
pelagic ecosystem and the status of the post- Blob NCC eco-
system. Because of impacts on larval and juvenile shes, we
expect marine heat wave effects to continue for several more
years.
METHODS
We obtained information from surveys conducted over
the continental shelf, 1.9–56.0km (1–30 nautical mi) offshore
of Washington and Oregon, USA, in late June 1998–2017.
During each survey, we sampled ve to seven xed stations
along each of ve to eight transect lines perpendicular to the
shore between the northern tip of Washington (48°13.7’N)
and Newport, Oregon (44°40.0’N; Figure 1). In this paper,
we summarize sampling and analysis methods used for these
surveys, but more detailed descriptions of these methods are
provided by Brodeur etal. (2005), Morgan etal. (2005), and
Peterson etal. (2010).
At each station, we sampled temperature, chlorophyll- a
concentration, zooplankton, and nekton. Temperature was
measured with a conductivity–temperature–depth instru-
ment to within 5m of the bottom or a depth of 200 m, and
chlorophyll- a samples were collected at a depth of 3 m using
a Niskin bottle. Temperatures for each station were aver-
aged over the top 20m of the water column that the trawl
sampled. Zooplankton collections were made with either a
1.0- m- diameter ring net (1999–2000) or a 0.6- m- diameter
bongo net (2001–2016), both of which were tted with 335-
μm mesh and a General Oceanics owmeter to estimate the
water volume ltered. Plankton nets were shed by letting out
60 m of cable and immediately retrieved at 30m/min while
being towed at 3.704km/h (2 knots). The maximum depth
Figure 1. Locations of Oregon–Washington coastal stations
included in the analysis for plankton (white) and pelagic nek-
ton (white and yellow).
Fisheries | www.sheries.org 467
shed was 20–30 m. We did not include plankton samples
from 1998 and 2017 in our results, as samples were taken at
only a few stations in 1998 and those from 2017 have not yet
been analyzed.
Fish and invertebrate nekton were sampled using a Nordic
264 rope trawl (Nor’Eastern Trawl Systems, Bainbridge
Island, Washington) towed to sample the upper 20m of the
water column for 15–30min at approximately 6.5km/h. Only
stations that were sampled during the day, over the continen-
tal shelf (≤200- m water depth), and in at least 10 of the study
years were included in our analyses. We did not include jelly-
sh data from 1998, since jellysh occurrence was not reliably
recorded. We report only on species that exhibited signicant
changes during the blob period compared to previous years.
Our report consists of simple estimates of abundance
for the biological organisms of interest. Our evaluation of
interannual variation in abundance is also simple. We start-
ed by generating an overall mean abundance (grand mean
[GM]) and variance (SD [grand]) based on the average of 20
individual annual means (AMs; 1998–2017; see below). For
each year of sampling, we then determined the number of
SDs (grand)between the AM and the GM. All calculations
were performed using Statgraphics Centurion version 17.1
(StatPoint Technologies, Inc., Warrenton, Virginia). We evalu-
ated the abundance of organisms found in each year in refer-
ence to the number of SDs between the GM and the AM, and
we designated these yearly abundance estimates as follows:
typical (AM<1 SD from the GM), notable (AM>1 SD to 2
SDs from the GM), exceptional (AM>2 SDs to 3 SDs from
the GM), or extreme (AM>3 SDs from the GM).
Abundance was calculated differently for zooplankton
and nekton. Total abundance of each zooplankton species
caught in each haul was calculated using counts and water
volume ltered, converting to biomass by using length- to-
mass regressions and literature values (Morgan etal. 2005),
and then standardizing to units of milligrams of carbon per
cubic meter (mg C/m3). Total abundance of each nekton
species caught in each haul was either (1) determined direct-
ly from a total count of individuals or (2) estimated from
the total weight caught, based on the number of individuals
in a weighed subsample of that haul. Trawl catches of each
species at each station were standardized to linear densi-
ty by dividing station catch by the distance of the tow, as
determined by a Global Positioning System receiver. After
standardizing for distance, densities were log10(x+1) trans-
formed (log10[number/km+ 1]) to make the data easier to
visualize, interpret, and compare.
We used large- scale indices of ocean conditions, including
the PDO and the Oceanic Niño Index (ONI), to place local-
scale phenomena within a larger- scale mechanistic picture
and to provide a framework in which to examine physical phe-
nomena and lagged biological responses (Mantua etal. 1997;
Fisher etal. 2015; Peterson etal. 2017). Positive PDO values
were associated with relatively warm ocean conditions in our
region. Similarly, positive ONI values—indicative of El Niño
events on the equator—were also often associated with warm-
ing of the NCC. For our study, the PDO was reported as an
average of May and June values for each year (data available
from the Joint Institute for the Study of the Atmosphere and
Ocean, University of Washington: http://jisao.washington.
edu/pdo/PDO.latest.txt), and the ONI was reported as an
average of November–January and December–February val-
ues for each year (data available from the National Weather
Service’s Climate Prediction Center: origin.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ONI_v5.php).
RESULTS AND DISCUSSION
Physical Conditions in the Northern California Current
Temperatures in the NCC have been unusually warm since
2014 (Bond etal. 2015; Peterson etal. 2015). This was reect-
ed by the strongly positive PDO during 2014–2016, which
was the longest period of positive PDO in our time series
(48 months; January 2014–December 2017; Figure 2), and
by the highly positive 2016 ONI value, which reected the ex-
tremely strong El Niño at the equator (data from the National
Weather Service’s Climate Prediction Center: http://origin.cpc.
ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_
v5.php). Despite overall warmer temperatures documented in
the NCC due to the warm Blob (Bond etal. 2015; Peterson
etal. 2015), the upper 20- m temperatures in June during our
2014–2016 surveys were not unusually high; this was due to
short periods of upwelling prior to the surveys (data available
from the National Marine Fisheries Service’s Pacic Fisheries
Environmental Laboratory: https://www.pfeg.noaa.gov/prod-
ucts/PFEL/modeled/indices/upwelling/NA/upwell_menu_
NA.html; Figure 2). However, the complete monthly time
series in this region from 2014 to 2016 did show that tempera-
tures in the upper water column were elevated (Leising etal.
2015; McClatchie et al. 2016; Peterson et al. 2017). Finally,
while physical oceanographic indicators suggested a return
to neutral ocean conditions in summer 2017 (PDO; Peterson
etal. 2017), temperatures in our survey area were still high.
Biological Patterns of Change
In 2014, we observed biological changes coinciding with de-
velopment of the offshore blob and a positive PDO (Figure2).
For example, in June 2014, the chlorophyll- a concentration was
rated as exceptional and was one of the three highest values in
the time series. Similarly, Peterson etal. (2017) also observed
high chlorophyll- a concentrations in June 2014 during more
frequent sampling off Newport, Oregon. Among the animals
sampled, both California market squid Doryteuthis opalescens
and furcilia- stage larval North Pacic krill Euphausia pacica
had notable deviations in abundance and were more numerous
than in the previous 15years (Figure2).
In 2015, the abundances of more species deviated mark-
edly from their 20- year mean values (Figure2; Table1). The
deviation in biomass abundance of North Pacic krill furcilia-
stage larvae was exceptional, and for Pacic sand crab Emerita
analoga zoeal- stage larvae, the deviation was notable. Both
species were much more abundant than they had previously
been in the time series. Abundances of all three common jel-
lysh species changed markedly but differed in their direction
of change. The deviation in abundance of the normally scarce
water jellysh Aequorea spp. was exceptional, and it became
the most abundant jellysh in our catches. In contrast, the gen-
erally most common jellysh, the Pacic sea nettle Chrysaora
fuscescens, had notably lower abundances and was nearly ab-
sent from our samples. The deviation in abundance of egg- yolk
jellysh Phacellophora camtschatica was notably high, and this
species became more abundant than in previous years. Finally,
the abundances of three nektonic species increased. Although
only the California market squid was characterized by a no-
table deviation in abundance, Pacic Pompano Peprilus simil-
limus and Jack Mackerel Trachurus symmetricus abundances
were higher than in any of the 8 previous years.
468 Fisheries | Vol. 44 • No. 10 • October 2019
In 2016, 13 species had notable to extreme deviations in
abundance (Figure2; Table1), which occurred during the pe-
riod spanning the blob and following a winter with strongly
positive sea surface height anomalies and strong poleward ow
(Peterson etal. 2017). Two zooplankton species—Pacic sand
crab (zoeae) and North Pacic krill (furciliae)—had exception-
al deviations in abundance. Pacic sand crab zoeal biomass
was higher than in any previous year, while North Pacic krill
furcilia biomass was higher than in all previous years except
2015. Two jellysh species—the water jellysh and Pacic sea
nettle—had exceptional deviations in abundance, whereas the
egg- yolk jellysh had an extreme deviation. Egg- yolk jelly-
sh numbers were higher in 2016 than in any previous year;
water jellysh numbers were higher than in all previous years
except 2015; and Pacic sea nettle numbers were lower than
in all but two previous years (2000 and 2014). Three nektonic
species had notable deviations in abundance: California mar-
ket squid, Pacic Chub Mackerel, and yearling Coho Salmon
Oncorhynchus kisutch. Four nektonic species had extreme de-
viations: juvenile rocksh Sebastes spp., Pacic Pompano,
young- of- the- year (age- 0) Pacic Hake Merluccius productus,
and yearling Chinook Salmon O. tshawytscha. One nektonic
species—the Jack Mackerel—had an exceptional deviation.
California market squid, yearling Coho Salmon, and yearling
Chinook Salmon declined in abundance, whereas the other ve
nektonic species were more abundant than in any previous year.
In 2017, the chlorophyll- a concentration had a notable de-
viation, representing the lowest chlorophyll- a value obtained
during the 20- year time series. Five species had notable to ex-
treme deviations in abundance. The most surprising extreme
Figure2. Variables included in the analysis: large- scale physical indices (teal), average temperature (°C) in the top 20m (red),
chlorophyll- a concentration (μg/L; green), biomass of two plankton species (mg carbon/m3; purple), and surface trawl catches
(log10[number/km+1]) of jellysh (cyan), pyrosomes (pink), squid (orange), and sh (blue). Circles indicate the June average for
each year; bars represent±1 SE. The right y- axis and the corresponding horizontal lines indicate the number of SDs from the
grand mean (dark- red short dash=±1 SD; dark- red long dash=±2 SDs; light- gray long dash=3–6 SDs). The three warm periods
(1998, 2005, and 2014–2016; described in this paper) are shaded in light gray. The plots of Pacic Chub Mackerel and Pacic Hake
are total catch, with the smaller insets showing only young- of- the- year (YOY; i.e., age 0) catches for those species. The age- 0
(YOY) insets follow the same format as other plots, but year shading and SD labels are not shown.
Fisheries | www.sheries.org 469
deviation was the rst- ever occurrence of the colonial gelat-
inous tunicate Pyrosoma atlanticum, which was extremely
abundant throughout our entire survey area. Two other nek-
tonic species, yearling Coho Salmon and yearling Chinook
Salmon, had notable deviations in abundance and declined
to the lowest numbers obtained during the 20- year time se-
ries. Two additional nektonic species—the Pacic Pompano
and Jack Mackerel—had exceptional deviations in abundance,
with Pacic Pompano numbers being the second- highest ob-
served and Jack Mackerel numbers being the highest observed
during the 20- year time series.
Potential Mechanisms Leading to Changed Abundance
Multiple physical and ecological mechanisms are likely re-
sponsible for the variations in abundance documented among
many species (Table2). Although the survey was not designed
to determine the mechanisms that caused these variations, we
can make inferences based on three ecological and organis-
mal traits. First, plankton drift passively; as such, when water
masses are transported from south to north or from west
to east, the distribution of planktonic organisms changes.
Second, nekton can actively swim against currents and can
thus change their distribution in response to local tempera-
tures and seek out thermally preferred water masses. Third,
changes in abundance may be in response to changes in local
processes that regulate population abundances (e.g., repro-
duction and predation). These mechanisms are not mutual-
ly exclusive and probably do not represent a complete list of
possible processes. Moreover, in most cases, more than one
mechanism likely led to the patterns of change we observed
(see below).
Planktonic water jellysh, egg- yolk jellysh, and Pacic
sand crab larvae are normally associated with warmer waters
to the south of our study area and/or offshore (Shenker 1984;
Suchman and Brodeur 2005). High abundances of these spe-
cies in our catches from 2014 to 2016 suggest northward and/
or eastward transport, corresponding with warmer southern
or offshore waters moving onshore (Gentemann etal. 2017).
Other planktonic species, such as copepods, have demonstrat-
ed similar patterns of unusual advection from southern and
offshore waters into the waters off central Oregon during this
same time period (Peterson etal. 2017). Northward shifts in
the distribution of these species have been also reported during
other El Niño events (Pearcy and Schoener 1987; Pearcy 2002;
Brodeur etal. 2005).
Thermal preferences, paired with spatial changes in water
temperature, may result in active migration by some species
from south to north or from west to east. For instance, the
California market squid, Pacic Pompano, Jack Mackerel,
and Pacic Chub Mackerel Scomber japonicus are normally
found in warmer southern waters and were observed in high
abundances during the warm water years since 2014. Other
studies have documented similar changes in the distribution
of these species during previous strong El Niño years (Pearcy
and Schoener 1987; Pearcy 2002; Brodeur etal. 2005).
We sampled only the top 20m of the water column with
the trawl and plankton nets during this survey. Therefore, we
cannot exclude the possibility that changes in abundance of
some organisms captured by our gear were due to changes in
their vertical distribution within our study area rather than
horizontal transport or active migration into the study area
from other locations. For example, some sea nettle species are
known to undergo diel vertical migration, although this be-
havior has not been documented for the species in our region
(Suchman and Brodeur 2005; Suchman etal. 2012), and juve-
nile Chinook Salmon may move deeper in the water column
Table1. Number of standard deviations (SDs) by which the annual mean (AM) was above or below the grand mean (GM) for each variable or spe-
cies examined, 2014–2017 (notable: AM>1 SD to 2 SDs from the GM; exceptional: AM>2 SDs to 3 SDs from the GM; extreme: AM>3 SDs from
the GM). Red indicates positive SDs; blue indicates negative SDs. “NA” indicates that data for the variable were not available in the specied
year.
Variable or species 2014 2015 2016 2017
Oceanic Niño Index +2
Pacic Decadal Oscillation +1 +1 +2
Temperature, top 20m
Chlorophyll a+2 −1
North Pacic krill Euphausia pacica +2 +2 NA
Pacic sand crab Emerita analoga +1 +2 NA
Water jellysh Aequorea sp. +2 +2
Pacic sea nettle Chrysaora fuscescens −1 −1
Egg- yolk jellysh Phacellophora camtschatica +1 +3
Colonial gelatinous tunicate Pyrosoma atlanticum +4
California market squid Doryteuthis opalescens +1 +1
Juvenile rocksh Sebastes spp. +4
Pacic Pompano Peprilus simillimus +3 +2
Yearling Coho Salmon Oncorhynchus kisutch −1
Yearling Chinook Salmon O. tshawytscha −1
Jack Mackerel Trachurus symmetricus +2 +3
Pacic Chub Mackerel Scomber japonicus (age 0) +4
Pacic Chub Mackerel +1
Pacic Hake Merluccius productus (age 0) +4
470 Fisheries | Vol. 44 • No. 10 • October 2019
in response to warmer surface water (Orsi and Wertheimer
1995). However, we currently lack the data to directly test for
changes in depth distribution.
Information from other studies suggests that local pro-
cesses rather than different migration patterns may have been
responsible for the low abundance of juvenile Coho Salmon
and Chinook Salmon in our catches during 2017. Juvenile
Coho Salmon are not known to change depth preference in
response to warm water (Orsi and Wertheimer 1995; Beamish
etal. 2007, 2018), yet abundance trends for this species were
similar to those for juvenile Chinook Salmon in our study.
In contrast to the low catches in our coastal samples, which
mostly consist of Columbia River sh (Van Doornik etal.
2007; Teel etal. 2015), abundances of both juvenile Coho
Salmon and Chinook Salmon in the Columbia River during
2017 were at least average based on Bonneville Dam smolt
counts (the source of most of the juvenile salmon in our
survey; Fish Passage Center 2017) as well as estuary purse
seine smolt catches (L.A.W., unpublished). We also conduct
a separate survey in May, as smolts are entering the ocean
and before any potential changes in northward migratory ten-
dency could change their abundance. Our catches of juvenile
salmon of both species in May 2017 were quite low relative
to previous May survey catches (Morgan etal. 2017), which
have been conducted since 1999 (Jacobson etal. 2012; Teel
etal. 2015).
In contrast to Coho Salmon and Chinook Salmon, the
notable and extreme abundance increases in Pacic sand crab
larvae that were observed in 2015 and 2016, respectively, were
likely due to both local processes and northward transport.
Adult Pacic sand crabs live in the wash zone of sandy beach-
es, spawn in summer and fall, and produce larvae that are
planktonic for approximately 4months (Johnson 1939; Efford
1970, 1976). Larval Pacic sand crabs in our catches had a
bimodal age distribution caused by the presence of both early
(zoeal stage I [ZI]) and late- stage (ZV) larvae, with both stages
sometimes present in the same sample. We never found any
intermediate- stage (ZII–ZIV) larvae. We assume that ZI lar-
vae represented local production of eggs, as these larvae were
too young to have undergone long- range transport. The pres-
ence of older, ZV larvae, coupled with the absence of ZII–ZIV
larvae, indicates that the ZV larvae were transported from the
south, as was suggested to have occurred during other warm
periods, such as the El Niño of 1997–1998 and the warm peri-
od of 2004–2005 (Sorte etal. 2001; Figure2).
The rst observation of age- 0 Pacic Hake in our survey
occurred in June 2016. During February 2016, Auth et al.
(2017) found larval Pacic Hake at every station from 64.82
to 194.46 km (from 35 to 105 nautical mi) off the coast of
Newport, Oregon, 4months prior to and well offshore of our
sampling. This indicates that age- 0 Pacic Hake were relatively
abundant off the Oregon and Washington coasts in 2016. Since
this species usually spawns further south (i.e., off California;
Ressler etal. 2007), the presence of age- 0 Pacic Hake sug-
gests that spawning may have shifted northward. Similarly,
increased abundance of age- 0 Pacic Chub Mackerel in our
June 2016 survey may have been due to a northward shift in
adult distribution and spawning (Auth etal. 2017).
Comparisons with Other Studies
Since different ocean sampling studies may have dissimi-
lar objectives and methods, using results from these studies to
create a coherent picture of the NCC during the recent ma-
rine heat wave is much like the classic parable of blind people
studying an elephant: each person touches a different part of
the animal and thus describes a different creature. We suggest
that common trends across studies may reect large- scale pat-
terns, whereas differences among studies may simply be due to
differences in local distribution, sampling design, or method-
ology; alternatively, they may reect real differences.
Table2. Description of the persistence of a given species within our 20- year survey (continuous, sporadic, or novel during the marine heat wave
of 2014–2017) and change in abundance during the marine heat wave (increase or decrease). Also provided are a description of whether the
organism drifts with currents (plankton) or can swim against currents (nekton), inferred changes in spatial distribution during the marine heat
wave, and whether changes in abundance during the marine heat wave might be attributed to local ecological processes. A question mark indi-
cates that changes in abundance might be due to a change in depth distribution, but we had no data with which to test that possibility.
Species Presence
Recent
abundance
(heat wave)
Plankton
or nekton
Inferred distribution change
Local
processes
South to
north
West to
east
Shallow to
deep
Euphausia pacica (larvae) Continuous Increase Plankton
Pacic sand crab (larvae) Sporadic Increase Plankton ✓ ✓
Water jellysh Continuous Increase Plankton ✓ ✓
Pacic sea nettle Continuous Decrease Plankton ?
Egg- yolk jellysh Continuous Increase Plankton ✓ ✓
Pyrosoma atlanticum Novel Increase Plankton ✓ ✓
California market squid Continuous Increase Nekton
Juvenile rocksh Continuous Increase Nekton
Pacic Pompano Sporadic Increase Nekton
Yearling Coho Salmon Continuous Decrease Nekton ?
Yearling Chinook Salmon Continuous Decrease Nekton ?
Jack Mackerel Continuous Increase Nekton ✓ ✓
Pacic Chub Mackerel (age 0) Sporadic Increase Nekton
Pacic Chub Mackerel Sporadic Increase Nekton ✓ ✓
Pacic Hake (age 0) Novel Increase Nekton ✓ ✓
Fisheries | www.sheries.org 471
Increased abundances of species such as the California
market squid, age- 0 Pacic Hake, age- 0 rocksh, and pyro-
somes were observed off the California coast before similar
changes occurred in our more northern survey region (Sakuma
etal. 2016; Brodeur etal., 2019). Warmwater anomalies rst
occurred in southern California coastal waters during spring
2014 and were subsequently detected farther north later in that
year (Gentemann etal. 2017). Similarly, northerly occurrences
of more southern species were observed rst in California and
then later to the north in our survey area.
Several studies in the NCC have reported very low abun-
dances of adult euphausiids during the past few years (Sakuma
et al. 2016; Peterson et al. 2017; Brodeur et al., 2019). In
strong contrast, we found an anomalously high biomass of
E.pacica furcilia larvae during our study in 2014–2016. In
addition, we counted but do not report on several other lar-
val stages of crustaceans in the same plankton samples. We
found that abundances of an earlier larval stage (calyptopis)
of E.pacica were also the highest ever observed during this
same time period, and larvae of another common euphausi-
id (Thysanoessa spinifera) as well as shrimp (Caridea) larvae
had similarly high abundance patterns during this time peri-
od (C.A.M., unpublished). Given the short larval duration
of E. pacica (20–35 d from hatching to early furcilia stag-
es; Bi etal. 2011), adult euphausiids must have been present
to release eggs in the NCC. Therefore, the presence of larval
euphausiids and the absence of adult euphausiids might have
been the result of adults moving to cooler waters, either deep-
er or farther offshore.
The extraordinary increase in age- 0 rocksh (4 SDs above
the mean) in our 2016 catches was a coastwide event, docu-
mented from California (McClatchie et al. 2016) to Alaskan
waters (Strasburger et al. 2018). This suggests that whatever
factors caused the increase in age- 0 rocksh operated over an
extremely large area. However, the juveniles of the more than
70 species of northeast Pacic rocksh are extremely difcult
to distinguish (Love etal. 2002); therefore, we could not doc-
ument which species were involved, and we did not attempt
to identify the mechanism(s) responsible for the increase.
Continued assessment of older, easier- to- identify rocksh
may provide more focus to our current observation.
Pyrosomes were extremely abundant in our 2017 catches,
while other gelatinous species returned to more typical abun-
dance levels (Figure2). In 2014, other surveys encountered
low numbers of pyrosomes further south of our study area as
well as offshore (Wells etal. 2017; Brodeur etal. 2018, 2019).
By 2015, the surveys captured pyrosomes at least as far north
as Willapa Bay, Washington, but well off the continental shelf.
Pyrosomes were also caught for the rst time, and in high
numbers, within Alaskan waters during the winter of 2016–
2017 and through summer 2017 (NOAA- AFSC 2017; Brodeur
etal. 2018). This dramatic expansion in range and abundance
clearly represents favorable conditions for pyrosomes and sug-
gests that their exceptionally high and widespread abundance
was not solely due to changes in water transport.
Consequences of Species Abundance Changes
Understanding the consequences of extreme changes in
species abundance in the NCC is challenging. Ruzicka et al.
(2012) explored changes in abundances of different trophic
groups in the NCC and used modeling to predict how these
changes would impact energy ows through the food web.
Many of the taxonomic groups they identied as important
nodes of energy ow (Figure3, boxes) are ones we found to
have undergone large increases (e.g., water jellysh, euphau-
siids, California market squid, Pacic Chub Mackerel, Jack
Figure3. Energy ow pathways between major functional groups in the Northern California Current food web (modied by J.
Ruzicka from Figure6a in Ruzicka etal. 2012). Box size is proportional to group production rates (whl=whales; msc=miscella-
neous; plgc=pelagic; mesoplgc=mesopelagic; bnthc=benthic; epibnthc=epibenthic; juv=juvenile; macro- Z=macrozooplank-
ton; micro- Z=microzooplankton; invrt=invertebrate; carn=carnivorous; susp=suspension- feeding; phyto=phytoplankton).
Red shading indicates species identied in this paper that have greatly increased or decreased during the recent marine heat
wave.
472 Fisheries | Vol. 44 • No. 10 • October 2019
Mackerel, and Pacic Hake) or decreases (e.g., Pacic sea net-
tles, juvenile Chinook Salmon, and juvenile Coho Salmon) in
abundance. However, our survey focused on the upper water
column during the day and did not sample all of the species
included in the food web analysis.
Decreased Pacic sea nettle abundance during 2015–2017
coincided with increased abundance of zooplankton prey spe-
cies. Sea nettles are known to feed on early stage euphausiids
(Suchman etal. 2008), so the decline in Pacic sea nettles may
have resulted in the high abundance of larval euphausiids in
2015 and 2016. The high juvenile rocksh abundance in 2016
may have been partly inuenced by the very low numbers of
Pacic sea nettles in 2015 due to both decreased predation on
larval rocksh in 2015 as well as decreased competition for
food between Pacic sea nettles and larval rocksh.
The sudden presence and extremely high abundance of
pyrosomes may be the best example of an ecosystem con-
sequence. Pyrosomes were not a component of the Ruzicka
etal. (2012) ecosystem analysis, as these organisms had never
been observed in the NCC (Welch 2017; Brodeur etal. 2018).
P. atlanticum was found to be an extremely effective grazer,
with clearance rates among the highest recorded for any
pelagic grazer (Perissinotto etal. 2007). The high abundance
of pyrosomes could explain the extremely low chlorophyll- a
concentrations we observed in 2017 and could have caused a
reduction in energy ow to higher trophic levels. If this organ-
ism remains abundant in subsequent years, it could produce
lasting effects upon the NCC ecosystem by outcompeting oth-
er lter feeders, which in turn might reduce the food supply to
organisms higher in the food web.
Finally, changes in abundance of various juvenile sh
species, including Pacic Hake, rocksh, Coho Salmon, and
Chinook Salmon, will affect top predators, such as sharks,
pinnipeds, toothed whales, and humans. We believe that the
increased abundances of age- 0 Pacic Hake and Pacic Chub
Mackerel in our 2016 samples were probably due to shifts in
adult spawning distribution (Auth etal. 2017) and thus may not
be indicative of increased abundances on a broad, regional scale.
If this is true, we do not expect the adult abundances of these
species to greatly increase in the future. In contrast, we think
that the very high abundance of juvenile rocksh in our 2016
samples and the very low abundances of yearling Coho and
Chinook Salmon in our 2017 samples represent real changes in
abundance that will likely affect adult recruitment. Low catches
of juvenile salmon in our June surveys have already been asso-
ciated with poor adult returns (Burke etal. 2013; Peterson etal.
2014), so we anticipate poor returns of Coho Salmon to the
Columbia River in 2018 and poor returns of Chinook Salmon
in 2019. The high abundance of juvenile rocksh in 2016 was
an extraordinary event, spanning at least 2,500km of coastline
along the west coast of North America. Although Ralston etal.
(2013) suggested that pelagic abundance of juvenile rocksh is
a good indicator of adult recruitment in central California, the
actual consequences of high juvenile rocksh abundance in
2016 remain to be seen in future years.
Conclusion
We have documented recent dramatic changes in abun-
dance of sh and invertebrates in the surface waters of the
NCC since 2014. These changes likely reect changes in phys-
ical processes and ecological mechanisms (Table2). Some of
what we observed was due to a shift of organisms from south
to north and from west to east, whereas other changes may be
the result of alterations in biological processes for organisms
that have not changed their distributions. It is notable that
we have not seen a complete changeover of species within the
NCC ecosystem—rather, we have seen the novel occurrence
of some organisms mixed with other species that are normally
present (Table2). Mixing of organisms from different regions
may result in novel trophic interactions with unpredictable re-
sults (Naiman et al. 2012). We are particularly interested in
potential continued ecological effects of the occurrence and
abundance of pyrosomes in the NCC during 2017 and beyond.
The value of this paper lies not only in the specic results
we described, but also in its role as a reminder of the impor-
tance of obtaining and maintaining long- term baselines to
measure biological change (McClatchie etal. 2014). We have
already described clear ecosystem- scale change in response
to large- scale climatic changes (the Blob and El Niño). The
National Marine Fisheries Service’s current emphasis on eco-
system management will only be successful if robust eld sur-
veys of those ecosystems continue (Levin etal. 2009).
ACKNOWLEDGMENTS
We dedicate this paper in memory of Dr. Robert (Bob) L.
Emmett (1955–2015) and Dr. William (Bill) T. Peterson (1942–
2017), who conceived of this work, were amazing mentors and
dear friends, were lled with enthusiasm for life and science,
and inspired us as scientists and as human beings. We greatly
appreciate the many people who contributed to this project
over the years, including the captains and crews who operated
vessels, especially the FV Frosti, and the many scientists who
collected and processed samples. We especially thank Paul
Bentley, Cindy Bucher, Brian Burke, Ed Casillas, Elizabeth
Daly, Joe Fisher, Troy Guy, Susan Hinton, Kym Jacobson, Jesse
Lamb, Jim Ruzicka, and Jen Zamon. Funding for this study
was provided by the Bonneville Power Administration (Project
1998- 014- 00) and the National Oceanic and Atmospheric
Administration Fisheries. Constructive comments from Brian
Burke, Jennifer Fisher, Kym Jacobson, David Teel, and three
anonymous reviewers greatly improved the manuscript. There
is no conict of interest declared in this article.
REFERENCES
Auth, T. D., E. A. Daly, R. D. Brodeur, and J. L. Fisher. 2017. Phenological
and distributional shifts in ichthyoplankton associated with recent
warming in the northeast Pacic Ocean. Global Change Biology
24(1):259–272.
Beamish, R. J., M. Trudel, and R. Sweeting. 2007. Canadian coastal and
high seas juvenile Pacic salmon studies. North Pacic Anadromous
Fish Commission Technical Report 7:1–4.
Beamish, R. J., L. A. Weitkamp, L. D. Shaul, and V. I. Radchenko. 2018.
Ocean ecology of Coho Salmon. Pages 391–554 in R. J. Beamish,
editor. The ocean ecology of Pacic salmon and trout. American
Fisheries Society, Bethesda, Maryland.
Bi, H., L. Feinberg, C. T. Shaw, and W. T. Peterson. 2011. Estimated
development times for stage- structured marine organisms are
biased if based only on survivors. Journal of Plankton Research
33(5):751–762.
Bond, N. A., M. F. Cronin, H. Freeland, and N. Mantua. 2015. Causes and
impacts of the 2014 warm anomaly in the NE Pacic. Geophysical
Research Letters 42(9):3414–3420.
Brodeur, R. D., T. D. Auth, and A. J. Phillips. 2019. Major shifts in pelagic
micronekton and macrozooplankton community structure in an up-
welling ecosystem related to an unprecedented marine heatwave.
Frontiers in Marine Science 6(212).
Brodeur, R. D., J. P. Fisher, R. L. Emmett, C. A. Morgan, and E. Casillas.
2005. Species composition and community structure of pelagic nek-
ton o Oregon and Washington under variable oceanographic con-
ditions. Marine Ecology Progress Series 298:41–57.
Fisheries | www.sheries.org 473
Brodeur, R., I. Perry, J. Boldt, L. Flostrand, M. Galbraith, J. King, J. Murphy,
K. Sakuma, and A. Thompson. 2018. An unusual gelatinous plankton
event in the NE Pacic: the Great Pyrosome Bloom of 2017. PICES
Press 26(1):22–27.
Burke, B. J., B. R. Beckman, W. T. Peterson, C. A. Morgan, E. A. Daly, and M.
Litz. 2013. Multivariate methods to forecast Pacic salmon returns.
PLoS One 8(1):e54134.
Daly, E. A., R. D. Brodeur, and T. D. Auth. 2017. Anomalous ocean condi-
tions in 2015: impacts on spring Chinook Salmon and their prey eld.
Marine Ecology Progress Series 566:169–182.
Di Lorenzo, E., and N. Mantua. 2016. Multi- year persistence of the
2014/15 North Pacic marine heatwave. Nature Climate Change
6:1042–1047.
Eord, I. E. 1970. Recruitment to sedentary marine populations as ex-
emplied by the sand crab Emerita analoga (Decapoda, Hippidae).
Crustaceana 18(3):293–308.
Eord, I. E. 1976. Distribution of the sand crabs in the genus Emerita
(Decapoda, Hippidae). Crustaceana 30(2):169–183.
Fish Passage Center. 2017. Smolt data. Fish Passage Center, Portland,
Oregon. Available: http://www.fpc.org/smolt/smp_queries.php.
(December 2017).
Fisher, J. L., W. T. Peterson, and R. R. Rykaczewski. 2015. The impact of
El Niño events on the pelagic food chain in the Northern California
Current. Global Change Biology 21(12):4401–4414.
Gentemann, C. L., M. R. Fewings, and M. García-Reyes. 2017. Satellite
sea surface temperatures along the West Coast of the United
States during the 2014–2016 northeast Pacic marine heat wave.
Geophysical Research Letters 44(1):312–319.
Jacobson, K. C., W. T. Peterson, M. Trudel, J. Ferguson, C. A. Morgan, D.
W. Welch, A. M. Baptista, B. R. Beckman, R. D. Brodeur, E. Casillas,
R. L. Emmett, J. A. Miller, D. J. Teel, T. C. Wainwright, L. A. Weitkamp,
J. E. Zamon, and K. Fresh. 2012. The marine ecology of juvenile
Columbia River basin salmonids: a synthesis of research 1998–2011.
Northwest Power and Conservation Council, Portland, Oregon.
Jacox, M. G., E. L. Hazen, K. D. Zaba, D. L. Rudnick, C. A. Edwards, A. M.
Moore, and S. J. Bograd. 2016. Impacts of the 2015–2016 El Niño on
the California Current System: early assessment and comparison to
past events. Geophysical Research Letters 43(13):7072–7080.
Johnson, M. W. 1939. The correlation of water movements and dispersal
of pelagic larval stages of certain littoral animals, especially the sand
crab, Emerita. Journal of Marine Research 2:236–245.
Leising, A. W., I. D. Schroeder, S. J. Bograd, J. Abell, R. Durazo, G. Gaxiola-
Castro, E. P. Bjorkstedt, J. Field, K. Sakuma, R. R. Robertson, R.
Goericke, W. T. Peterson, R. Brodeur, C. Barcelo, T. D. Auth, E. A. Daly,
R. M. Suryan, A. J. Gladics, J. M. Porquez, S. McClatchie, E. D. Weber,
W. Watson, J. A. Santora, W. J. Sydeman, S. R. Melin, F. P. Chavez,
R. T. Golightly, S. R. Schneider, J. Fisher, C. Morgan, R. Bradley, and
P. Warybok. 2015. State of the California Current 2014–15: impacts
of the warm- water “Blob”. California Cooperative Oceanic Fisheries
Investigations Reports 56:31–68.
Levin, P. S., M. J. Fogarty, S. A. Murawski, and D. Fluharty. 2009.
Integrated ecosystem assessments: developing the scientic ba-
sis for ecosystem- based management of the ocean. PLoS Biology
7(1):e1000014.
Lindley, S. T., C. B. Grimes, M. S. Mohr, W. T. Peterson, J. Stein, J. T.
Anderson, L. W. Botsford, D. L. Bottom, C. A. Busack, T. K. Collier,
J. Ferguson, J. C. Garza, A. M. Grover, D. G. Hankin, R. G. Kope, P. W.
Lawson, A. Low, R. B. McFarlane, K. Moore, M. Palmer-Zwahlen, F. B.
Schwing, J. Smith, C. Tracy, R. Webb, B. K. Wells, and T. H. Williams.
2009. What caused the Sacramento River fall Chinook stock collapse?
NOAA Technical Memorandum NMFS-SWFSC-447.
Love, M. S., L. Thorsteinson, and M. Yoklavich. 2002. The rockshes of the
northeast Pacic. University of California Press, Berkeley.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis. 1997.
A Pacic interdecadal climate oscillation with impacts on salm-
on production. Bulletin of the American Meteorological Society
78(6):1069–1079.
McClatchie, S., J. Duy-Anderson, J. C. Field, R. Goericke, D. Grith, D.
S. Hanisko, J. A. Hare, J. Lyczkowski-Shultz, W. T. Peterson, and W.
Watson. 2014. Long time series in U.S. sheries oceanography.
Oceanography 27(4):48–67.
McClatchie, S., R. Goericke, A. Leising, T. D. Auth, E. Bjorkstedt, R. R.
Robertson, R. D. Brodeur, X. Du, E. A. Daly, C. A. Morgan, F. P. Chavez,
A. J. Debich, J. Hildebrand, J. Field, K. Sakuma, M. G. Jacox, M. Kahru,
R. Kudela, C. Anderson, B. E. Lavaniegos, J. Gomez-Valdes, S. P. A.
Jiménez-Rosenberg, R. McCabe, S. R. Melin, M. D. Ohman, L. M. Sala,
B. Peterson, J. Fisher, I. D. Schroeder, S. J. Bograd, E. L. Hazen, S. R.
Schneider, R. T. Golightly, R. M. Suryan, A. J. Gladics, S. Loredo, J.
M. Porquez, A. R. Thompson, E. D. Weber, W. Watson, V. Trainer, P.
Warzybok, R. Bradley, and J. Jahncke. 2016. State of the California
Current 2015–16: comparisons with the 1997–98 El Niño. California
Cooperative Oceanic Fisheries Investigations Reports 57:1–57.
Morgan, C. A., A. De Robertis, and R. W. Zabel. 2005. Columbia River
plume fronts I: hydrography, zooplankton distribution, and commu-
nity composition. Marine Ecology Progress Series 299:19–31.
Morgan, C. A., D. M. Van Doornik, and C. A. Bucher. 2017. Cruise report:
NWFSC/NOAA Fisheries FV Frosti, Cruise 17-01, May 22–27, 2017.
Available: https://www.cbsh.org/Document.mvc/Viewer/P158503.
Naiman, R. J., J. R. Alldredge, D. A. Beauchamp, P. A. Bisson, J. Congleton,
C. J. Henny, N. Huntly, R. Lamberson, C. Levings, E. N. Merrill, W. G.
Pearcy, B. E. Rieman, G. T. Ruggerone, D. Scarnecchia, P. E. Smouse,
and C. C. Wood. 2012. Developing a broader scientic foundation
for river restoration: Columbia River food webs. Proceedings of the
National Academy of Sciences 109(52):21201–21207.
NOAA-AFSC (NOAA Alaska Fisheries Science Center). 2017. Researchers
Investigate Explosion in the Number of Pyrosomes o Alaska.
Available: https://www.sheries.noaa.gov/feature-story/research-
ers-investigate-explosion-number-pyrosomes-alaska (May 2019).
Orsi, J. A., and A. C. Wertheimer. 1995. Marine vertical distribution of juve-
nile Chinook and Coho Salmon in southeastern Alaska. Transactions
of the American Fisheries Society 124(2):159–169.
Pearcy, W. G. 2002. Marine nekton o Oregon and the 1997–98 El Niño.
Progress in Oceanography 54(1–4):399–403.
Pearcy, W. G., and A. Schoener. 1987. Changes in the marine biota
coincident with the 1982–1983 El Niño in the northeastern sub-
arctic Pacic Ocean. Journal of Geophysical Research: Oceans
92(13):14417–14428.
Perissinotto, R., P. Mayzaud, P. D. Nichols, and J. P. Labat. 2007. Grazing
by Pyrosoma atlanticum (Tunicata, Thaliacea) in the south Indian
Ocean. Marine Ecology Progress Series 330:1–11.
Peterson, W. T., J. L. Fisher, J. O. Peterson, C. A. Morgan, B. J. Burke, and K.
L. Fresh. 2014. Applied sheries oceanography: ecosystem indicators
of ocean conditions inform sheries management in the California
Current. Oceanography 27(4):80–89.
Peterson, W. T., J. L. Fisher, P. T. Strub, X. Du, C. Risien, J. Peterson, and
C. T. Shaw. 2017. The pelagic ecosystem in the Northern California
Current o Oregon during the 2014–2016 warm anomalies within
the context of the past 20 years. Journal of Geophysical Research:
Oceans 122(9):7267–7290.
Peterson, W. T., C. A. Morgan, J. P. Fisher, and E. Casillas. 2010. Ocean
distribution and habitat associations of yearling Coho Oncorhynchus
kisutch and Chinook O. tshawytscha Salmon in the Northern California
Current. Fisheries Oceanography 19(6):508–525.
Peterson, W. T., M. Robert, and N. Bond. 2015. The warm Blob continues
to dominate the ecosystem of the Northern California Current. PICES
Press 23(2):44–46.
Peterson, W. T., and F. B. Schwing. 2003. A new climate regime in
northeast Pacic ecosystems. Geophysical Research Letters
30(17):1896.
Ralston, S., K. M. Sakuma, and J. C. Field. 2013. Interannual variation in
pelagic juvenile rocksh (Sebastes spp.) abundance—going with the
ow. Fisheries Oceanography 22(4):288–308.
Ressler, P. H., J. A. Holmes, G. W. Fleischer, R. E. Thomas, and K. C. Cooke.
2007. Pacic Hake Merluccius productus autecology: a timely review.
Marine Fisheries Review 69(1–4):1–24.
Ruzicka, J. J., R. D. Brodeur, R. L. Emmett, J. H. Steele, J. E. Zamon, C. A.
Morgan, A. C. Thomas, and T. W. Wainwright. 2012. Interannual vari-
ability in Northern California Current food web structure: changes in
energy ow pathways and the role of forage sh, euphausiids, and
jellysh. Progress in Oceanography 102:19–41.
Sakuma, K. M., J. C. Field, N. J. Mantua, S. Ralston, B. B. Marinovic, and
C. N. Carrion. 2016. Anomalous epipelagic micronekton assemblage
patterns in the neritic waters of the California Current in spring 2015
during a period of extreme ocean conditions. California Cooperative
Oceanic Fisheries Investigations Reports 57:163–183.
Shenker, J. M. 1984. Scyphomedusae in surface waters near the Oregon
coast, May–August 1981. Estuarine, Coastal and Shelf Science
19(6):619–632.
Sorte, C. J., W. T. Peterson, C. A. Morgan, and R. L. Emmett. 2001. Larval
dynamics of the sand crab Emerita analoga o the central Oregon
474 Fisheries | Vol. 44 • No. 10 • October 2019
coast during a strong El Niño period. Journal of Plankton Research
23(9):939–944.
Strasburger, W. W., J. H. Moss, K. A. Siwicke, and E. Yasumiishi. 2018.
Results from the eastern Gulf of Alaska ecosystem assessment,
July through August 2016. NOAA Technical Memorandum NMFS-
AFSC-363. Available: https://www.afsc.noaa.gov/Publications/AFSC-
TM/NOAA-TM-AFSC-363.pdf.
Suchman, C. L., and R. D. Brodeur. 2005. Abundance and distribution
of large medusae in surface waters of the Northern California
Current. Deep Sea Research Part II: Topical Studies in Oceanography
52(1):51–72.
Suchman, C. L., R. D. Brodeur, E. A. Daly, and R. L. Emmett. 2012. Large
medusae in surface waters of the Northern California Current:
variability in relation to environmental conditions. Hydrobiologia
690(1):113–125.
Suchman, C. L., E. A. Daly, J. E. Keister, W. T. Peterson, and R. D. Brodeur.
2008. Feeding patterns and predation potential of scyphomedusae
in a highly productive upwelling region. Marine Ecology Progress
Series 358:161–172.
Teel, D. J., B. J. Burke, D. R. Kuligowski, C. A. Morgan, and D. M. Van
Doornik. 2015. Genetic identication of Chinook Salmon: stock-
specic distributions of juveniles along the Washington and Oregon
coast. Marine and Coastal Fisheries: Dynamics, Management, and
Ecosystem Science 7(1):274–300.
Van Doornik, D. M., D. J. Teel, D. R. Kuligowski, C. A. Morgan, and E.
Casillas. 2007. Genetic analyses provide insight into the early ocean
stock distribution and survival of juvenile Coho Salmon o the coasts
of Washington and Oregon. North American Journal of Fisheries
Management 27:220–237.
Welch, C. 2017. Bizarre, glowing sea creatures bloom in the Pacic.
National Geographic. Available: https://news.nationalgeographic.
com/2017/06/pyrosome-re-body-bloom-eastern-pacic-warm-wa-
ter/. (November 11, 2017).
Wells, B. K., I. D. Schroeder, S. J. Bograd, E. L. Hazen, M. G. Jacox, A.
Leising, N. Mantua, J. A. Santora, J. Fisher, B. Peterson, E. Bjorkstedt,
R. R. Robertson, F. P. Chavez, R. Goericke, R. Kudela, C. Anderson, B.
E. Lavaniegos, J. Gomez-Valdes, R. D. Brodeur, E. A. Daly, C. A.
Morgan, T. D. Auth, J. Field, K. Sakuma, S. McClatchie, A. R. Thompson,
E. D. Weber, W. Watson, R. M. Suryan, J. Parrish, J. Dolliver, S. Loredo,
J. M. Porquez, J. E. Zamon, S. R. Schneider, R. T. Golightly, P. Warzybok,
R. Bradley, J. Jahncke, W. Sydeman, S. R. Melin, J. Hildebrand, A. J.
Debich, and B. Thayre. 2017. State of the California Current 2016–17:
still anything but “normal” in the North. California Cooperative
Oceanic Fisheries Investigations Reports 58:1–55.
... Their primary mandate was "to determine the physical, biological and ecological mechanisms that control survival of salmon during their early marine life". The NWFSC now conducts one or two surveys annually under the name Juvenile Salmon Ocean Ecosystem Survey (JSOES) in the Columbia River plume and coastal pelagic waters off Oregon and Washington with a comprehensive approach for studying salmon and their associated nekton and ocean environment (Jacobson et al. 2012(a), Morgan et al. 2019). ...
... During the May-June 2015 RREAS, water temperature at 30m was cooler than average near Point Arena, but unusually warm in the southern California bight (Sakuma et al. 2016, Fig. 3). June 2014 and 2015 water temperature in the upper 20m was also below the long-term average at stations off Oregon and Washington (Peterson et al. 2017, Morgan et al. 2019. Despite the ongoing marine heat wave, these reports are consistent with the cool to average water temperatures we encountered during the summer in 2014 and 2015. ...
... For example, the RREAS recorded anomalous catches in spring 2015, including record numbers of unusual warm-water species in the south (considered El Niño signature species) in combination with average or record numbers of normally cold-water associated species such as YOY rockfish and sanddab, market squid, and krill, resulting in anomalously high diversity (Sakuma et al. 2016, Santora et al. 2017). In the NCC off Oregon and Washington in 2015, the abundance of several prominent invertebrate species (market squid, crystal jellies, fried-egg jellies) was notably higher than the 20-year average but much lower for sea nettle jellyfish, which virtually disappeared from the NCC in 2015 (Morgan et al. 2019). Sea nettles were also seen at nearrecord low numbers in 2015 by the RREAS team (Leising et al. 2015), consistent with our observations. ...
Technical Report
Full-text available
We describe spatial and temporal patterns of abundance among salmonids and other fish and invertebrate species co-occurring in coastal (~30m depth to shelf break) surface waters in the central California Current System (CCS) during six summer surveys 2010–15. We caught a total of 63 fish and 18 invertebrate species during 366 surface trawls at predetermined stations. Chinook salmon (Oncorhynchus tshawytscha), coho salmon (O. kisutch), and steelhead (O. mykiss) were present in all surveys but varied in abundance spatially. Salmon catch was consistently high between the Klamath River and Cape Mendocino for all three species, and low or nonexistent in southern Oregon and south of Mendocino, except for juvenile Chinook which remained abundant on southern lines including those within the Gulf of the Farallones (GF) where migrating California Central Valley juveniles enter the sea. Epipelagic nekton community structure varied with latitude and was most distinct in the GF, where trawl catch on four southern lines formed a coherent group with similar average communities in nMDS plots. Principal coordinates analysis supported this interpretation of a measurably different GF biota with a higher abundance of characteristic fish and invertebrate species associated with warmer, saltier GF summer water. Community structure also differed significantly among years but no single year in the 6-year time series stood out as exceptional, even during the unusual 2014–15 marine heat wave. Ordination and cluster analysis showed a gradual progressive shift in catch composition over time, with significant effects of both year and shelf position on community structure. Shelf position affected species richness and abundance, but not evenness and diversity. Using a matrix-matching model, variation in full community structure was best described by a subset of local spatial and environmental variables that included bottom depth, water transmissivity, and water temperature. Using a negative binomial regression model, variation in juvenile Chinook salmon abundance was best described by bottom depth, transmissivity, and latitude. This survey provides useful data for exploring fisheries ecosystem structure in a hydrographically complex but less often studied region in the core of the CCS.
... These elevated SSTs coincided with the 2015-2016 El Niño event (Gentemann et al., 2017;Jacox et al., 2019), creating the largest marine heatwave on record (NOAA, 2020). Researchers documented many ecological effects associated with this marine heatwave, including unprecedented HABs, shifting marine life distributions, and changes in the marine food web (Morgan et al., 2019;CCIEA, 2021). Since then, another smaller and shorter lived marine heatwave developed off the U.S. West Coast, and researchers began tracking a third potential marine heatwave in February 2020 (CCIEA, 2021). ...
... In kelp forest habitats, there was more monitoring data available compared to other habitats, although data were limited to recent years ( Climate change, including marine heatwaves, poses a major concern for many focal species. Dramatic changes in organism abundances were documented during the 2014 marine heatwave (Morgan et al., 2019). These changes in abundance were due to organisms moving from south to north or from east to west. ...
Technical Report
Full-text available
The purpose of a condition report is to use the best available science and most recent data to assess the status and trends of various parts of the sanctuary’s ecosystem. The first condition report for OCNMS was released in 2008 (Office of National Marine Sanctuaries [ONMS], 2008); ratings from that report are provided in Appendix C. This updated condition report marks a second comprehensive description of the status and trends of sanctuary resources and ecosystem services. The findings in this condition report document status and trends in water quality, habitat, living resources, maritime heritage resources, and ecosystem services from 2008–2019, unless otherwise noted. The report helps identify gaps in current monitoring efforts, as well as causal factors that may require monitoring, and potential remediation through management actions in coming years. The data discussed will not only enable sanctuary resource managers and stakeholders to acknowledge and have a shared perspective on prior changes in resource status, but will also inform management efforts to address challenges stemming from pressures, such as increasing coastal populations and climate change.
... To examine how poleward range expansion of Doryteuthis opalescens could involve long-distance migration sustained over multiple generations, we approximated the poleward progression of D. opalescens from 2014 to 2017 using observations of this species from scientific survey data in the CCS (Morgan et al. 2019) and GOA (NOAA AFSC RACE 2017) and from reports by community members in the GOA. The movement capability of D. opalescens has been approximated from allometry-based measurements made by remotely operated vehicles (average velocity p 0:21 m s 21 ; Zeidberg 2004) and from acoustic tagging efforts (average velocity p 0:15 m s 21 ; Payne and O'Dor 2006). ...
... 4B). This was also observed in the northern extent of the CCS (Morgan et al. 2019). Competitive release via the crash of ecologically similar fish populations (Lindegren et al. 2013;MacCall et al. 2016) may therefore have allowed large squid populations to develop via improved access to prey (Caddy and Rodhouse 1998;Doubleday et al. 2016). ...
Article
The distributions of marine ectotherms are governed by physiological sensitivities to long-term trends in seawater temperature and dissolved oxygen. Short-term variability in these parameters has the potential to facilitate rapid range expansions, and the resulting ecological and socioeconomic consequences may portend those of future marine communities. Here, we combine physiological experiments with ecological and demographic surveys to assess the causes and consequences of sudden but temporary poleward range expansions of a marine ectotherm with considerable life history plasticity (California market squid, Doryteuthis opalescens). We show that sequential factors related to resource accessibility in the core range-the buildup of large populations as a result of competitive release and climate-associated temperature increase and oxygen loss that constrain aerobic activity-may drive these expansions. We also reveal that poleward range expansion alters the body size-and therefore trophic role-of invading populations, with potential negative implications for socioeconomically valuable resident species. To help forecast rapid range expansions of marine ectotherms, we advocate that research efforts focus on factors impacting resource accessibility in core ranges. Determining how environmental conditions in receiving ecosystems affect body size and how body size is related to trophic role will help refine estimates of the impacts of future marine communities.
... There is increased recognition that marine heatwaves can have immediate short-term impacts on the ecosystem, as well as indicate stock displacements that may occur with long-term climate warming (Morgan et al. 2019. For these reasons, monitoring marine heatwaves and developing robust indices of these features are important for management. ...
... Forage assemblage data from the Northern CCE come from a NOAA survey off Washington and Oregon (see Figure 1-4a) called the Juvenile Salmon and Ocean Ecosystem Survey (JSOES). JSOES uses a horizontal trawl at 10 m to target juvenile salmon (Oncorhynchus spp.), and also catches pelagic fishes, squid, and gelatinous zooplankton (Brodeur et al. 2005, Morgan et al. 2019. Because JSOES is a daytime survey that employs a near-surface trawl, it is not suitable for effective quantitative monitoring of pelagic species that undergo diel vertical migration (DVM) or that tend to be deeper in the water column. ...
... Chinook salmon were selected as a model because they are highly valuable from commercial, sports fishing, and cultural standpoints, but as a cold-water specialist, Chinook salmon are highly susceptible to acute heatwave events (Crozier et al., 2008;Farrell et al., 2008). Captive and wild populations of Chinook salmon have suffered high levels of mortality following current-day heatwave events across North America, New Zealand, and Australia (Ciric et al., 2019;Daly et al., 2017;Morgan et al., 2019), and are predicted to be vulnerable to increases in temperature associated with climate warming (Crozier et al., 2008;Farrell et al., 2008;Muñoz et al., 2015). Chinook salmon are also active fish and may therefore benefit from exercise training. ...
Article
The progression of climate warming will expose ectotherms to transient heatwave events and temperatures above their tolerance range at increased frequencies. It is therefore pivotal that we understand species' physiological limits and the capacity for various controls to plastically alter these thresholds. Exercise training could have beneficial impacts on organismal heat tolerance through improvements in cardio-respiratory capacity, but this remains unexplored. Using juvenile Chinook salmon (Oncorhynchus tshawytscha), we tested the hypothesis that exercise training improves heat tolerance through enhancements in oxygen-carrying capacity. Fish were trained once daily at 60% of their maximum sustainable swim speed, UCRIT, for 60 min. Tolerance to acute warming was assessed following three weeks of exercise training, measured as the critical thermal maximum (CTMAX). CTMAX measurements were coupled with examinations of the oxygen carrying capacity (haematocrit, haemoglobin concentration, relative ventricle size, and relative splenic mass) as critical components of the oxygen transport cascade in fish. Contrary to our hypothesis, we found that exercise training did not raise the CTMAX of juvenile Chinook salmon with a mean CTMAX increase of just 0.35 °C compared to unexercised control fish. Training also failed to improve the oxygen carrying capacity of fish. Exercise training remains a novel strategy against acute warming that requires substantial fine-tuning before it can be applied to the management of commercial and wild fishes.
... Several studies have documented myriad biological responses to this event. For example, within the California Current Ecosystem (CCE), there were mass strandings of marine mammals [17], increased whale entanglements due to shifting prey sources [18], mass mortality events for marine seabirds [17,19,20], a record-breaking domoic acid outbreak [21], shifts in pelagic macronekton and micronekton communities and species richness [22][23][24], irruptions of previously rare fishes and invertebrates throughout the California Current [25][26][27][28], and extraordinarily high recruitment of rockfishes (genus Sebastes) [29,30] and northern anchovy (Engraulis mordax) [31]. Yet, to date, there have been few quantitative studies of how the marine heatwave impacted the broader CCE community at multiple trophic levels, and therefore the importance of this extreme event for communitywide patterns of variability, and the persistence of the community response, remains largely unknown. ...
Article
Full-text available
Ocean ecosystems are vulnerable to climate-driven perturbations, which are increasing in frequency and can have profound effects on marine social-ecological systems. Thus, there is an urgency to develop tools that can detect the response of ecosystem components to these perturbations as early as possible. We used Bayesian Dynamic Factor Analysis (DFA) to develop a community state indicator for the California Current Ecosystem (CCE) to track the system’s response to climate perturbations, and to forecast future changes in community state. Our key objectives were to (1) summarize environmental and biological variability in the southern and central regions of the CCE during a recent and unprecedented marine heatwave in the northeast Pacific Ocean (2014–2016) and compare these patterns to past variability, (2) examine whether there is evidence of a shift in the community to a new state in response to the heatwave, (3) identify relationships between community variability and climate variables; and (4) test our ability to create one-year ahead forecasts of individual species responses and the broader community response based on ocean conditions. Our analysis detected a clear community response to the marine heatwave, although it did not exceed normal variability over the past six decades (1951–2017), and we did not find evidence of a shift to a new community state. We found that nitrate flux through the base of the mixed layer exhibited the strongest relationship with species and community-level responses. Furthermore, we demonstrated skill in creating forecasts of species responses and community state based on estimates of nitrate flux. Our indicator and forecasts of community state show promise as tools for informing ecosystem-based and climate-ready fisheries management in the CCE. Our modeling framework is also widely applicable to other ecosystems where scientists and managers are faced with the challenge of managing and protecting living marine resources in a rapidly changing climate.
... The June time series has the most consistent temporal and spatial coverage (1998-present), the May time series is limited to 1999-2012 and 2015-present, and an additional September time series was collected from 1998 to 2012. Survey data have been used to study variability in nekton and recent ecosystem disturbances in the Northern California Current (Morgan et al., 2019) and to develop and test ecosystem models (e.g., Ruzicka et al., 2016). One important output of the survey is the indicator stop light chart, which combines regional and local physical and biological variables that affect juvenile salmonid survival into a simple visual. ...
Article
Full-text available
As climate change and other anthropogenic impacts on marine ecosystems accelerate in the 21st century, there is an increasing need for sustained ocean time series. A robust and collaborative network of regional monitoring programs can detect early signs of unanticipated changes, provide a more holistic understanding of ecosystem responses, and prompt faster management actions. Fisheries-related surveys that collect fisheries-independent data (hereafter referred to as “fisheries surveys”) are a key pillar of sustainable fisheries management and are ubiquitous in the United States and other countries. From the perspective of ocean observing, fisheries surveys offer three key strengths: (1) they are sustained due to largely consistent funding support from federal and state public sector fisheries agencies, (2) they collect paired physical, chemical, and biological data, and (3) they have large and frequently overlapping spatial footprints that extend into the offshore region. Despite this, information about fisheries survey data collection can remain poorly known to the broader academic and ocean observing communities. During the 2019 CalCOFI Symposium, marking the 70th anniversary of the California Cooperative Oceanic Fisheries Investigations (CalCOFI), representatives from 21 ocean monitoring programs on the North American West Coast came together to share the status of their monitoring programs and examine opportunities to leverage efforts to support regional ecosystem management needs. To increase awareness about collected ocean observing data, we catalog these ongoing ocean time series programs and detail the activities of the nine major federal or state fisheries surveys on the U.S. West Coast. We then present three case studies showing how fisheries survey data contribute to the understanding of emergent ecosystem management challenges: marine heatwaves, ocean acidification, and contaminant spills. Moving forward, increased cross-survey analyses and cooperation can improve regional capacity to address emerging challenges. Fisheries surveys represent a foundational blueprint for ecosystem monitoring. As the international community moves toward a global strategy for ocean observing needs, fisheries survey programs should be included as data contributors.
... Marine heatwaves are characterized by an intense amplification and duration of anomalously high sea surface temperatures over a large area (Di Lorenzo and Mantua 2016;Hobday et al. 2016). The shift in the COG for market squid during MHWs is not surprising given the documented northward shift in fish and other marine nekton in the CCE (Cavole et al. 2016;Morgan et al. 2019;Sanford et al. 2019). However, unlike the habitat models for demersal and reef fishes, it remains unclear whether the estimated COG shifts for pelagic species are due to changes in survival in response to changes in habitat or due to the redistribution of the population in response to ocean currents. ...
Article
Full-text available
Climate change is impacting the abundance and distribution of marine resources. The consequences of these impacts are likely to alter trophic interactions between species within an ecosystem and affect fisheries opportunities for coastal communities. Market squid Doryteuthis opalescens comprise the largest fishery (by volume) in California, USA, and questions persist about whether the changing ocean conditions are leading to an increase in squid abundance in traditional fishing locations as well as marginal habitats in northern areas. To examine this potential phenomenon, we used fisheries‐independent survey data collected by the National Marine Fisheries Service between 1998 and 2019 to develop a spatiotemporal model that estimates changes in the squid density from central California to northern Washington. We found a fivefold increase in the squid index of abundance across the entire spatial domain of the surveys during the sampling period, with the largest increases occurring in the Oregon and Washington strata. Although our model demonstrated that encounter rates and squid densities for the surveys increased in warmer and more saline waters, large shifts in squid distribution were only associated with deviations in ocean temperatures that could be characterized as marine heatwaves. This analysis adds to a growing body of work documenting the spatiotemporal response of marine resources to both long‐term trends in warming ocean conditions and episodic events, such as marine heatwaves. Furthermore, it demonstrates the need for ecosystem assessment models with the ability to forecast changes in species distribution and abundance at spatiotemporal scales that are relevant for coastal fishing communities.
... Space -time Densities of the two dominant larger medusa species in the northern California Current, Chrysaora fuscescens and Aequorea spp., have been monitored as part of a surface trawl survey in the northern California Current conducted every June and September from 1999 to 2012 (Suchman et al. 2012, Morgan et al. 2019). With few exceptions, Chrysaora fuscescens dominated the catch and was generally one to two orders of magnitude higher than that of Aequorea ( Figure 28). ...
... Space -time Densities of the two dominant larger medusa species in the northern California Current, Chrysaora fuscescens and Aequorea spp., have been monitored as part of a surface trawl survey in the northern California Current conducted every June and September from 1999 to 2012 (Suchman et al. 2012, Morgan et al. 2019). With few exceptions, Chrysaora fuscescens dominated the catch and was generally one to two orders of magnitude higher than that of Aequorea ( Figure 28). ...
Chapter
The productive eastern boundary current (EBC) systems provide significant sources of global marine protein and have been subject to intense research over the last 50 years. Yet large jellyfish, which are present in all four major systems, have seldom been included in otherwise comprehensive reviews. This undoubtedly reflects their lack of intrinsic commercial value, and the consequently slow pace of knowledge generation. We attempt to redress that imbalance here and to consolidate disparate information on the macromedusae of EBC systems. With the exception of the Canary Current system, which supports a generally low biomass of mostly subtropical taxa, jellyfish assemblages in the Benguela, Humboldt and California Current systems are dominated by cool water taxa that can occur at high abundances. While there are large gaps in knowledge, which are highlighted, it is clear that jellyfish can play significant ecological roles in each system. Although there may be strong similarities in faunal composition among the different systems, there are pronounced differences in population responses to the environment and in system resilience and these are reviewed and discussed.
Article
Full-text available
The community structure of pelagic zooplankton and micronekton may be a sensitive indicator of changes in environmental conditions within the California Current ecosystem. Substantial oceanographic changes in 2015 and 2016, due to the anomalously warm ocean conditions associated with a large-scale marine heatwave perturbation, resulted in onshore and northward advection of warmer and more stratified surface waters resulting in reduced upwelling. Here we quantify changes in the macrozooplankton and micronekton community composition and structure based on five highly contrasting ocean conditions. Data from fine-mesh pelagic trawl surveys conducted off Oregon and Washington during early summer of 2011 and 2013–2016 were examined for interannual changes in spatial distribution and abundance of fish and invertebrate taxa. Overall species diversity was highest in 2015 and lowest in 2011, but 2016 was similar to the other years, although the evenness was somewhat lower. The community of taxa in both 2015 and 2016 was significantly different from the previously sampled years. Crustacean plankton densities (especially Euphausiidae) were extremely low in both of these years, and the invertebrate composition became dominated mostly by gelatinous zooplankton. Fishes and cephalopods showed mixed trends overall, but some species such as age-0 Pacific hake were found in relatively high abundances mainly along the shelf break in 2015 and 2016. These results suggest dramatically different pelagic communities were present during the recent warm years with a greater contribution from offshore taxa, especially gelatinous taxa, during 2015 and 2016. The substantial reorganization of the pelagic community has the potential to lead to major alterations in trophic functioning in this normally productive ecosystem.
Article
Full-text available
This report examines the ecosystem state of the California Current System (CCS) from spring 2016–spring 2017. Basin-scale indices suggest conditions that would support average to below average coast-wide production across the CCS during this time period. Regional surveys in 2016 sampled anomalously warm surface and subsurface waters across the CCS. Chlorophyll concentrations were low across the CCS in 2016 and, concomitant with that, copepod communities had an anomalously high abundance of subtropical species. Early in 2017 conditions between northern, central, and southern CCS were dissimilar. Specifically, surface conditions north of Cape Mendocino remained anomalously warm, chlorophyll was very low, and subtropical copepods were anomalously abundant. Southern and central CCS surveys indicated that environmental conditions and chlorophyll were within normal ranges for the longer time series, supporting an argument that biophysical conditions/ ecosystem states in the southern and central CCS were close to normal. Epipelagic micronekton assemblages south of Cape Mendocino were generally close to longer-term average values, however the northern assemblages have not returned to a “normal” state following the 2014–15 large marine heatwave and 2016 El Niño. North of Cape Mendocino the epipelagic micronekton was largely composed of offshore and southern derived taxa. We hypothesize that stronger-than-typical winter downwelling in 2017 and a reduced spawning biomass of forage taxa are contributors to the anomalous forage community observed in the north. Also of note, surveys indicate northern anchovy (Engraulis mordax) abundance was greater than average (for recent years) and nearer shore in northern regions. Finally, record-low juvenile coho and Chinook salmon catches in the 2017 northern CCS salmon survey suggest that out-migrating Columbia Basin salmon likely experienced unusually high early mortality at sea, and this is further supported by similarities between the 2017 forage assemblage and that observed during poor outmigration survival years in 2004, 2005, and 2015. Generally, the reproductive success of seabirds in 2016 (the most current year available) was low in the north but near average in central California. At Yaquina Head off Oregon and Castle Rock off northern California some of the lowest reproductive success rates on record were documented. In addition to reduced abundance of prey, there was a northward shift of preferred seabird prey. Seabird diets in northern areas also corroborated observations of a northward shift in fish communities. Nest failure was attributed to a combination of bottom-up and top-down forces. At Castle Rock, most chicks died of starvation whereas, at Yaquina Head, most nests failed (95% of common murre, Uria aagle) due to disturbance by bald eagles (Haliaeetus leucocephalus) seeking alternative prey. Mean bird densities at sea for the 2017 surveys between Cape Flattery Washington and Newport Oregon were the lowest observed and may indicate continued poor reproductive performance of resident breeders in 2017. South of Cape Mendocino, where forage availability was typical, seabird reproductive success was also below average for most species in 2016, but did not approach failure rates observed in the north. Finally, in 2017, abundances of seabirds observed at-sea off southern California were anomalously high suggesting an improved foraging environment in that area. Marine mammal condition and foraging behavior were also impacted by the increased abundance and shifting distribution of the northern anchovy population. Increases in the abundance of northern anchovy in the Southern California Bight coincided with improved condition of sea lion (Zalophus californianus) pups in 2016. Namely, lipid-rich northern anchovy occurred in great frequencies in the nursing female diet. Increases in northern anchovy nearshore in the central and northern CCS may have also contributed to a shoreward shift in distribution of humpback whales (Megaptera novaeangliae) in these regions. These shifts along with recovering humpback whale populations contributed to recent increases in human-whale interactions (e.g., fixed-gear entanglements).
Article
Full-text available
Understanding changes in the migratory and reproductive phenology of fish stocks in relation to climate change is critical for accurate ecosystem-based fisheries management. Relocation and changes in timing of reproduction can have dramatic effects upon the success of fish populations and throughout the food web. During anomalously warm conditions (1–4°C above normal) in the northeast Pacific Ocean during 2015–2016, we documented shifts in timing and spawning location of several pelagic fish stocks based on larval fish samples. Total larval concentrations in the northern California Current (NCC) during winter (January–March) 2015 and 2016 were the highest observed since annual collections first occurred in 1998, primarily due to increased abundances of Engraulis mordax (northern anchovy) and Sardinops sagax (Pacific sardine) larvae, which are normally summer spawning species in this region. Sardinops sagax and Merluccius productus (Pacific hake) exhibited an unprecedented early and northward spawning expansion during 2015–16. In addition, spawning duration was greatly increased for E. mordax, as the presence of larvae was observed throughout the majority of 2015–16, indicating prolonged and nearly continuous spawning of adults throughout the warm period. Larvae from all three of these species have never before been collected in the NCC as early in the year. In addition, other southern species were collected in the NCC during this period. This suggests that the spawning phenology and distribution of several ecologically and commercially important fish species dramatically and rapidly changed in response to the warming conditions occurring in 2014–2016, and could be an indication of future conditions under projected climate change. Changes in spawning timing and poleward migration of fish populations due to warmer ocean conditions or global climate change will negatively impact areas that were historically dependent on these fish, and change the food web structure of the areas that the fish move into with unforeseen consequences.
Article
Full-text available
A warm anomaly in the upper ocean, colloquially named “the Blob”, appeared in the Gulf of Alaska during the calm winter of 2013-2014, spread across the northern North Pacific (NP) Ocean and shifted eastward and onto the Oregon shelf. At least 14 species of copepods occurred which had never been observed in shelf/slope waters off Oregon, some of which are known to have NP Gyre affinities, indicating that the source waters of the coastal “Blob” were likely of both offshore (from the west) and subtropical/tropical origin. The anomalously warm conditions were reduced during strong upwelling in spring 2015 but returned when upwelling weakened in July 2015 and transitioned to downwelling in fall 2015. The extended period of warm conditions resulted in prolonged effects on the ecosystem off central Oregon, lasting at least through 2016. Impacts to the lower trophic levels were unprecedented and include a novel plankton community composition resulting from increased copepod, diatom and dinoflagellate species richness and increased abundance of dinoflagellates. Additionally, the multi-year warm anomalies were associated with reduced biomass of copepods and euphausiids, high abundance of larvaceans and doliolids (indictors of oligotrophic ocean conditions), and a toxic diatom bloom (Pseudo-nitzschia) throughout the California Current in 2015, thereby changing the composition of the food web that is relied upon by many commercially and ecologically important species.
Article
Full-text available
We report on the anomalous distribution, abundance, and community structure patterns of epipelagic micronekton from a midwater trawl survey in May-June 2015 that has a 26-year time series within a core region off central California (36°35′-38°10′N) and a 12-year time series with expanded spatial coverage (extending from 32°42.5′-39°50′N). The 2015 survey took place during an extended period of record-breaking warm surface temperatures in much of the northeast Pacific Ocean. In the neritic waters off central and northern California, this broad-scale extended marine heat wave was combined with more localized, above average coastal upwelling in spring 2015 that led to slightly cooler than normal surface temperatures over the continental shelf and shelf break. The unusual micronekton assemblages in our 2015 trawl survey featured anomalously high catches of warm water species such as pelagic red crabs (Pleuroncodes planipes), coincident with high catches of colder water species such as YOY rockfish (Sebastes spp.), and also large catches of pelagic tunicates such as Pyrosoma atlanticum. Principal component analysis (PCA) on a subset of the most frequently occurring species for both the shorter time series (expanded survey area) and the longer time series (core region) yielded similar results to previous studies off central California, with a suggested alternation between micronekton communities dominated by coastal pelagic species and those dominated by YOY groundfish (rockfish, Pacific hake [Merluccius productus], and sanddabs [Citharichthys spp.]), krill, and cephalopods. In addition, the leading principal components for the different regions of the expanded survey area were highly correlated, suggesting similar micronekton community responses to forcing mechanisms over a broad spatial scale. As the PCA analysis was limited to a relatively small subset of species and the time series for some frequently encountered species are not continuous throughout the history of the survey, we also report on species that reflect additional aspects of the unusual nature of the 2015 survey catches. Together, these results indicate that the micronekton community structure in the late spring of 2015 was highly anomalous in that species characteristic of what might generally be considered three different nominal states (YOY groundfish/market squid and krill, warm-water subtropical species, and pelagic tunicates) were all encountered in high abundance. © 2016, Scripps Institution of Oceanography. All rights reserved.
Article
Full-text available
Warm conditions in the North Pacific in 2014-15 were a result of the continuation of the North Pacific marine heat wave, a large area of exceptionally high SST anomalies that originated in the Gulf of Alaska in late 2013. The North Pacific heat wave interacted with an El Niño developing in the equatorial Pacific in 2015. Weekly periods of exceptionally high temperature anomalies (>2˚C) occurred until the start of the El Niño (winter of 2015), when SSTs were still high but not as high as those due to the marine heat wave. During the 2015-16 El Niño, the depth of the 26.0 kg m-3 isopycnal (d26.0) was considerably shallower than during the 1982- 83 and 1997-98 events. The area affected by the marine heat wave and the 2015-16 El Niño in the mixed layer was comparable to the 1997-98 El Niño, but lasted longer. Water column stratification in the upper 100 m during 2015-16 was as strong as the most extreme values during the 1997-98 El Niño. This stratification was primarily driven by the warming of the upper 100 m. Despite notable perturbations, the effects of the 2015- 16 El Niño on hydrographic properties in the CalCOFI domain were not as strong as those observed during the 1997-98 El Niño. Warm ocean conditions, stratification, nutrient suppression, and silicic acid stress likely favored initiation of a toxic Pseudo-nitzschia bloom in fall 2014. Very low zooplankton displacement volumes were associated with anomalously warm and saline surface waters off Baja California. In contrast, during the 1997-98 El Niño, zooplankton volume was near average. Off California, pelagic red crab (Pleuroncodes planipes) adults were abundant in the water column and frequently washed up on beaches of southern California from January 2015 into 2016, and central California by September 2015. Glider measurements of integrated transport up to June 2015 did not detect anomalous northward advection. As expected, HF radar indicated northward surface currents along the central California coast in fall and winter 2015-16. Northward advection appeared to be much stronger during the 1997-98 El Niño. Throughout 2015-16, the zooplankton community on the Oregon shelf was dominated by lipid-poor tropical and sub-tropical copepods and gelatinous zooplankton, indicating poor feeding conditions for small fishes that are prey for juvenile salmon. The presence of rarely encountered species increased copepod species richness during 2015-16 to levels higher than the 1998 El Niño. We infer that the unusual copepod vagrants of 2015-16 originated from an offshore and southwesterly source; an important difference from the southerly origin of vagrants during the 1997-98 El Niño. The very warm conditions caused sardine spawning to shift from central California to Oregon. Mesopelagic fish assemblage off southern California exhibited higher abundances of species with southern affinities, and lower abundances of species with northern affinities. Forage fish (Pacific herring, northern anchovy, and Pacific sardine) were much less abundant in 2015-16 compared to previous years. In contrast, catches of salmon were close to average off northern California. Catches of young-ofthe- year rockfishes were high off central California, but low off both northern and southern California. Seabirds at Southeast Farallon Island in 2015 exhibited reduced breeding populations, reduced breeding success, lower chick growth rates, and lower fledging weights. Common murres were negatively affected in central and northern California, but seabird responses were species-specific. It is clear from the results presented here that the warm anomaly effects on the ecosystem were complicated, regionally specific, and that we do not fully understand them yet. © 2016, Scripps Institution of Oceanography. All rights reserved.
Article
Full-text available
In the northern California Current, Columbia River Chinook salmon Oncorhynchus tshawytscha that return as adults in spring are primarily hatchery-produced, though they include natural-origin fish listed under the US Endangered Species Act. Anomalously warm ocean conditions persisted in the California Current during 2015 (>2.5°C above normal) through the winter period when fish prey resources of juvenile salmon develop and during spring as salmon enter the ocean. The biomass of ichthyoplankton in winter 2015 was the 4th highest of our 18 yr time-series (1998−2015), predicting good food conditions for salmon and high adult salmon returns several years later. The larval composition of 2015 ichthyoplankton included abnormally large amounts of the warm-water taxa northern anchovy Engraulis mordax and rockfish Sebastes spp. When the composition of ichthyoplankton is dominated by warm-water taxa in winter, we would predict poor returns of salmon. May diets of juvenile Chinook salmon collected in coastal waters reflected high proportions of juvenile rockfish, no evidence of northern anchovy, and most closely resembled those of other warm years. June diets also reflected a warm prey community being consumed, predicting poor returns of salmon. Chinook salmon had high percentages of empty stomachs and were small and thin in 2015, with fish weighing 17.6% less than the same-length fish in a cold year (2008). Lower condition of juvenile Chinook salmon related to decreased returns of adult salmon. Overall, all but one biological predictor (biomass of prey) suggests that the prospects for the 2015 ocean-entry smolts were not favorable for survival.
Article
Full-text available
Warm conditions in the North Pacific in 2014–15 were a result of the continuation of the North Pacific marine heat wave, a large area of exceptionally high SST anomalies that originated in the Gulf of Alaska in late 2013. The North Pacific heat wave interacted with an El Niño developing in the equatorial Pacific in 2015. Weekly periods of exceptionally high temperature anomalies (>2˚C) occurred until the start of the El Niño (winter of 2015), when SSTs were still high but not as high as those due to the marine heat wave. During the 2015–16 El Niño, the depth of the 26.0 kg m –3 isopycnal (d 26.0 ) was considerably shallower than during the 1982–83 and 1997–98 events. The area affected by the marine heat wave and the 2015–16 El Niño in the mixed layer was comparable to the 1997–98 El Niño, but lasted longer. Water column stratification in the upper 100 m during 2015–16 was as strong as the most extreme values during the 1997–98 El Niño. This stratification was primarily driven by the warming of the upper 100 m. Despite notable perturbations, the effects of the 2015–16 El Niño on hydrographic properties in the CalCOFI domain were not as strong as those observed during the 1997–98 El Niño. Warm ocean conditions, stratification, nutrient suppression, and silicic acid stress likely favored initiation of a toxic Pseudo-nitzschia bloom in fall 2014. Very low zooplankton displacement volumes were associated with anomalously warm and saline surface waters off Baja California. In contrast, during the 1997–98 El Niño, zooplankton volume was near average. Off California, pelagic red crab (Pleuroncodes planipes) adults were abundant in the water column and frequently washed up on beaches of southern California from January 2015 into 2016, and central California by September 2015. Glider measurements of integrated transport up to June 2015 did not detect anomalous northward advection. As expected, HF radar indicated northward surface currents along the central California coast in fall and winter 2015–16. Northward advection appeared to be much stronger during the 1997–98 El Niño. Throughout 2015–16, the zooplankton community on the Oregon shelf was dominated by lipid-poor tropical and sub-tropical copepods and gelatinous zooplankton, indicating poor feeding conditions for small fishes that are prey for juvenile salmon. The presence of rarely encountered species increased copepod species richness during 2015–16 to levels higher than the 1998 El Niño. We infer that the unusual copepod vagrants of 2015–16 originated from an offshore and southwesterly source; an important difference from the southerly origin of vagrants during the 1997–98 El Niño. The very warm conditions caused sardine spawning to shift from central California to Oregon. Mesopelagic fish assemblage off southern California exhibited higher abundances of species with southern affinities, and lower abundances of species with northern affinities. Forage fish (Pacific herring, northern anchovy, and Pacific sardine) were much less abundant in 2015–16 compared to previous years. In contrast, catches of salmon were close to average off northern California. Catches of young-of-the-year rockfishes were high off central California, but low off both northern and southern California. Seabirds at Southeast Farallon Island in 2015 exhibited reduced breeding populations, reduced breeding success, lower chick growth rates, and lower fledging weights. Common murres were negatively affected in central and northern California, but seabird respones were species-specific. It is clear from the results presented here that the warm anomaly effects on the ecosystem were complicated, regionally specific, and that we do not fully understand them yet.
Article
Full-text available
From January 2014 to August 2016, sea-surface temperatures (SSTs) along the Washington, Oregon, and California coasts were significantly warmer than usual, reaching a maximum SST anomaly of 6.2 °C off southern California. This marine heat wave occurred alongside the Gulf of Alaska marine heat wave, and resulted in major disturbances in the California Current ecosystem and massive economic impacts. Here, we use satellite and blended reanalysis products to report the magnitude, extent, duration, and evolution of SSTs and wind stress anomalies along the west coast of the continental United States during this event. Nearshore SST anomalies along the entire coast were persistent during the marine heat wave, and only abated seasonally, during spring upwelling-favorable wind stress. The coastal marine heat wave weakened in July 2016 and disappeared by September 2016.