Preprint

Embedding entanglement generation within a measurement-feedback coherent Ising machine

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

We present a new scheme to efficiently establish entanglement between optical modes in a time-multiplexed coherent Ising machine (CIM) by means of nonlocal measurement and feedback. We numerically simulate and evaluate the generation of steady-state entanglement in a system with nearest-neighbor interactions on a 1D ring, and we compare the results to those of a conventional CIM with all-optical interactions mediated by delay lines. We show that the delay-line architecture has a fundamental limit on accessible entanglement that our measurement-based scheme can substantially surpass. These results motivate the study of non-classical correlations in CIMs with levels of entanglement previously considered to be experimentally impractical.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We experimentally demonstrate continuous-variable quantum teleportation beyond the no-cloning limit. We teleport a coherent state and achieve the fidelity of $0.70\ifmmode\pm\else\textpm\fi{}0.02$ that surpasses the no-cloning limit of $2/3$. Surpassing the limit is necessary to transfer the nonclassicality of an input quantum state. By using our high-fidelity teleporter, we demonstrate entanglement swapping, namely, teleportation of quantum entanglement, as an example of transfer of nonclassicality.
Article
We discuss the entanglement properties of bipartite states with Gaussian Wigner functions. For the separability, and the positivity of the partial transpose, we establish explicit necessary and sufficient criteria in terms of the covariance matrix of the state. It is shown that, for systems composed of a single oscillator for Alice and an arbitrary number for Bob, positivity of the partial transpose implies separability. However, this implication fails with two oscillators on each side, as we show by constructing a five parameter family of bound entangled Gaussian states.
  • A Lucas
A. Lucas, Front. Phys. 2, 5 (2014).
  • F Barahona
F. Barahona, J. Phys. A 15, 3241-3253 (1982).
  • K Kim
  • M S Chang
  • S Korenblit
  • R Islam
  • E E Edwards
  • J K Freericks
  • G D Lin
  • L.-M Duan
  • C Monroe
K. Kim, M. S. Chang, S. Korenblit, R. Islam, E. E. Edwards, J. K. Freericks, G. D. Lin, L.-M. Duan, and C. Monroe, Nature 465, 590-593 (2010).
  • M Yamaoka
  • C Yoshimura
  • M Hayashi
  • T Okuyama
  • H Aoki
  • H Mizuhiro
M. Yamaoka, C. Yoshimura, M. Hayashi, T. Okuyama, H. Aoki, H. Mizuhiro, IEEE J. Solid-State Circuits 51 (1), 303-309 (2016).
  • M W Johnson
  • M H S Amin
  • S Gildert
  • T Lanting
  • F Hamze
  • N Dickson
  • R Harris
  • A J Berkley
  • J Johansson
  • P Bunyk
  • E M Chapple
  • C Enderud
  • J P Hilton
  • K Karimi
  • E Ladizinsky
  • N Ladizinsky
  • T Oh
  • I Perminov
  • C Rich
  • M C Thom
  • E Tolkacheva
  • C J S Truncik
  • S Uchaikin
  • J Wang
  • B Wilson
  • G Rose
M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose, Nature 473, 194-198 (2011).
  • Z Wang
  • A Marandi
  • K Wen
  • R L Byer
  • Y Yamamoto
Z. Wang, A. Marandi, K. Wen, R. L. Byer, and Y. Yamamoto, Phys. Rev. A 88, 063853 (2013).
  • P L Mcmahon
  • A Marandi
  • Y Haribara
  • R Hamerly
  • C Langrock
  • S Tamate
  • T Inagaki
  • H Takesue
  • S Utsunomiya
  • K Aihara
  • R L Byer
  • M M Fejer
  • H Mabuchi
  • Y Yamamoto
P. L. McMahon, A. Marandi, Y. Haribara, R. Hamerly, C. Langrock, S. Tamate, T. Inagaki, H. Takesue, S. Utsunomiya, K. Aihara, R. L. Byer, M. M. Fejer, H. Mabuchi, and Y. Yamamoto, Science 354, 614-617 (2016).
  • T Inagaki
  • Y Haribara
  • K Igarashi
  • T Sonobe
  • S Tamate
  • T Honjo
  • A Marandi
  • P L Mcmahon
  • T Umeki
  • K Enbutsu
  • O Tadanaga
  • H Takenouchi
  • K Aihara
  • K Kawarabayashi
  • K Inoue
  • S Utsunomiya
  • H Takesue
T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K. Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Takesue, Science 354, 603-606 (2016).
  • R Hamerly
  • T Inagaki
  • P L Mcmahon
  • D Venturelli
  • A Marandi
  • T Onodera
  • E Ng
  • C Langrock
  • K Inaba
  • T Honjo
  • K Enbutsu
  • T Umeki
  • R Kasahara
  • S Utsunomiya
  • S Kako
  • K Kawarabayashi
  • R L Byer
  • M M Fejer
  • H Mabuchi
  • D Englund
  • E Rieffel
  • H Takesue
  • Y Yamamoto
R. Hamerly, T. Inagaki, P. L. McMahon, D. Venturelli, A. Marandi, T. Onodera, E. Ng, C. Langrock, K. Inaba, T. Honjo, K. Enbutsu, T. Umeki, R. Kasahara, S. Utsunomiya, S. Kako, K. Kawarabayashi, R. L. Byer, M. M. Fejer, H. Mabuchi, D. Englund, E. Rieffel, H. Takesue, and Y. Yamamoto, Sci. Adv. 5, 5 (2019).
  • G Vidal
G. Vidal, Phys. Rev. Lett. 91, 14 (2003).
  • A Furusawa
  • J L Sørensen
  • S L Braunstein
  • C A Fuchs
  • H J Kimble
  • E S Polzik
A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, Science 282, 706-709 (1998).
  • D Bouwmeester
  • J.-W Pan
  • K Mattle
  • M Eibl
  • H Weinfurter
  • A Zeilinger
D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, Nature 390, 575-579 (1997).
  • M Żukowski
  • A Zeilinger
  • M A Horne
  • A K Ekert
M.Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Phys. Rev. Lett. 71, 26 (1993).
  • J.-W Pan
  • D Bouwmeester
  • H Weinfurter
  • A Zeilinger
J.-W. Pan, D. Bouwmeester, H. Weinfurter, and A. Zeilinger, Phys. Rev. Lett. 80, 3891 (1998).
  • X Jia
  • X Su
  • Q Pan
  • J Gao
  • C Xie
  • K Peng
X. Jia, X. Su, Q. Pan, J. Gao, C. Xie, and K. Peng, Phys. Rev. Lett. 93, 250503 (2004).
  • A Marandi
  • Z Wang
  • K Takata
  • R L Byer
  • Y Yamamoto
A. Marandi, Z. Wang, K. Takata, R. L. Byer, and Y. Yamamoto, Nat. Photon. 8, 937-942 (2014).
  • K Takata
  • A Marandi
  • R Hamerly
  • Y Haribara
  • D Maruo
  • S Tamate
  • H Sakaguchi
  • S Utsunomiya
  • Y Yamamoto
K. Takata, A. Marandi, R. Hamerly, Y. Haribara, D. Maruo, S. Tamate, H. Sakaguchi, S. Utsunomiya, Y. Yamamoto, Sci. Rep. 6, 34089 (2016).
  • S Olivares
S. Olivares, Eur. Phys. J. Spec. Top. 203, 3-24 (2012).
  • M M Wolf
  • F Verstraete
  • J I Cirac
M. M. Wolf, F. Verstraete, and J. I. Cirac, Phys. Rev. Lett. 92, 087903 (2004).
  • G Adesso
  • M Ericsson
G. Adesso, and M. Ericsson, Phys. Rev. A 74, 030305(R) (2006).
  • N Schuch
  • J I Cirac
  • M M Wolf
N. Schuch, J. I. Cirac, and M. M. Wolf, Commun. Math. Phys. 267, 65-92 (2006).
  • J Schäfer
  • E Karpov
  • N J Cerf
J. Schäfer, E. Karpov, and N. J. Cerf, Phys. Rev. A 85, 012322 (2012).
  • L.-M Duan
  • G Giedke
  • J I Cirac
  • P Zoller
L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 84, 2722 (2000).
  • D Maruo
  • S Utsunomiya
  • Y Yamamoto
D. Maruo, S. Utsunomiya, and Y. Yamamoto, Phys. Scr. 91, 083010 (2016).
  • D Ballarini
  • D Sanvitto
  • A Amo
  • L Viña
  • M Wouters
  • I Carusotto
  • A Lemaitre
  • J Bloch
D. Ballarini, D. Sanvitto, A. Amo, L. Viña, M. Wouters, I. Carusotto, A. Lemaitre, and J. Bloch, Phys. Rev. Lett. 102, 056402 (2009).