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Abstract

When a robot has to imitate an observed action sequence, it must first understand the inherent characteristic features of

the individual actions. Such features need to reflect the semantics of the action with a high degree of invariance between

different demonstrations of the same action. At the same time the machine needs to be able to execute the action sequence

in any appropriate situation. In this study, we introduce a new library of actions, which is a generic framework for execut-

ing manipulation actions on robotic systems by combining features that capture action semantics with a framework for

execution. We focus on manipulation actions and first create a generic representation consisting of symbolic and sub-

symbolic components. To link these two domains we introduce a finite state machine allowing for sequential execution

with error handling. The framework is developed from observing humans which provides us with a high degree of ground-

ing. To quantitatively evaluate the scalability of the proposed approach, we conducted a large set of experiments involving

different actions performed either individually or sequentially with various types of objects in different scene contexts.
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1. Introduction

Contemporary research in robotics aims at developing intel-

ligent robotic systems with human-like skills. To perform

an action with a robot, very often the action is parameter-

ized and represented by a robotic-compatible encoding that

allows execution. Various ways exist for doing this, for

example one can employ methods for the imitation of

human-demonstrated actions by using low-level continuous

sensory-motor data streams (programming by demonstra-

tion (PbD); see, e.g., Inamura et al (2005), Aleotti and

Caselli (2006), and Dillmann et al (2010)). All these meth-

ods have in common that they lead to parametric and, thus,

executable action representations. They directly rely on

‘‘signals’’: for example, PbD needs perception signals from

the observed human action and outputs action signals to

reproduce it with the machine. The signal level, thus, allows

action execution but, owing to its high degree of detail, eas-

ily suffers from deficiencies by not being able to generalize

action concepts in a meaningful (semantic) way.

This, however, is needed as soon as the robot has to per-

form a complex task in different situations. For this it

requires some conceptual understanding of the required

action sequence and it needs to comprehend the general

constraints of the individual sub-actions. Several

frameworks exist that attempt action generalization and/or

action conceptualization. In a nutshell, they range from

generalization at the signal (trajectory) level all the way up

to generalization of actions by symbolic (planning-compa-

tible) descriptors (for more details see Section 2).

In this paper, we focus on manipulation actions because

they allow for a rather rigorous ontological structuring, the

germs of which had been discussed in an older paper

(Wörgötter et al, 2013). We extend this approach by devel-

oping a library of manipulation actions that captures the

essence of each action in an abstract way but remains com-

patible with robotic execution. To this end we use, as previ-

ously (Aein et al, 2013; Aksoy et al, 2011, 2015a), the
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framework of semantic event chains (SECs) to encode the

action type. SECs just analyze the sequence of touching

and untouching events that happen during an action to do

this, but they can, in this way, break the realm of manipula-

tion actions only down into a few semantically similar

classes (Pastra and Aloimonos, 2012; Wörgötter et al,

2013). The here-pursued approach enriches this by descrip-

tive movement primitives that allow for two things. On the

one hand, many more (possibly all single handed) manipu-

lation actions are now represented by a unique set of sym-

bolic descriptors, which on the other hand remain

execution-relevant, because they can at run-time be filled

with the required parameters for performing the different

movements to execute the action. Therefore, this approach

represents one possible way for linking a symbolic action

representation in a grounded way with its corresponding

signal-level description (derived from observations, hence

from sensory experience). All in all, with this framework

we hope to achieve a contribution towards closing, or at

least reducing, the signal-to-symbol gap (Coradeschi and

Saffiotti, 2003; Krüger et al, 2011) in robotics.

Thus, based on prior works from us and others, the main

contribution of this paper is the rigorous structuring of a

large set of manipulation actions into a three-layer repre-

sentation starting from a high, symbolic level via a state

machine-like encoding and ending at detailed movement

primitives. We show that these representations can then act

as library functions and that they can be parameterized in a

situation-dependent way to execute them either alone or in

a sequence.

The rest of the paper is organized as follows. We start

with introducing the state of the art in Section 2. We then

continue with a detailed description of action definition and

execution in Section 3. The results of many experiments

using this framework are finally shown in Section 4 fol-

lowed by a discussion in Section 5.

2. State of the art

There exists a large corpus of work on action representation

and execution (Calinon et al, 2007; Ijspeert et al, 2002; Lee

and Nakamura, 2006; Simmons and Apfelbaum, 1998;

Ude, 1993). Two distinct approaches are commonly pre-

ferred in order to represent and execute actions; one at the

trajectory level (Ijspeert et al, 2002), the other at the sym-

bolic level (Simmons and Apfelbaum, 1998). The former

gives more flexibility for an execution-relevant definition

of actions, while the latter defines actions at a higher level

and allows for generalization and planning.

For trajectory-level representation there are several well-

established techniques: splines (Ude, 1993), hidden

Markov models (HMMs) (Lee and Nakamura, 2006),

Gaussian mixture models (GMMs) (Calinon et al, 2007),

dynamic movement primitives (DMPs) (Ijspeert et al,

2002; Kulvicius et al, 2012; Luksch et al, 2012). With

trajectory-level encoding, one can investigate or learn

different complicated trajectories, but it is difficult to use

them in a more ‘‘cognitive sense.’’ Generalization of the

observed trajectories is the main challenge here (and often

addressed in different ways in the above-cited papers),

because even the same action can be demonstrated by fol-

lowing various trajectories.

High-level symbolic representations many times use

graph structures and relational representations (e.g. Ekvall

and Kragic, 2006; Pardowitz et al, 2007). Alternative meth-

ods, such as that of Lee et al (2013), described a syntactic

approach for learning robot imitation by capturing underly-

ing task structures in the form of probabilistic activity

grammars. These approaches give compact descriptions of

complex tasks, but they do not consider execution-relevant

motion parameters (trajectories, poses, forces) in great

detail.

In this work, our high-level action descriptor is based on

the concept of SECs introduced by Aksoy et al (2011) and

used also by others (Luo et al, 2011; Martinez et al, 2014;

Vuga et al, 2014; Yang et al, 2013). SECs are generic action

descriptors that capture the underlying spatio-temporal

structure of continuous actions by sampling only decisive

key temporal points derived from the spatial interactions

between hands and objects in the scene. The SEC represen-

tation is invariant to large variations in trajectory, velocity,

object type, and pose used in the action. Therefore, SECs

can be employed for the classification task of actions as

demonstrated in various experiments in Aksoy et al (2015b)

and we have shown in Aein et al (2013) that human-

demonstrated actions encoded by SECs can also be exe-

cuted by robots, once low-level data (object positions, tra-

jectories, etc.) are provided.

Many times trajectory-level descriptions of actions,

object properties, and high-level goals of the manipulation

were brought together through STRIPS-like planning (Beetz

et al, 2015; Dillmann et al, 2010; Kunze et al, 2011), result-

ing in operational although not very transparent systems.

The approaches in Ahmadzadeh and Kormushev (2016);

Ahmadzadeh et al (2015) attempted to integrate symbolic

action representation and planner with a motor skill learner.

The robot learned the goal of the human-demonstrated

actions by using a so-called visuo-spatial skill learning

(VSL) method, which produced symbolic predicates. Such

predicates were directly fed into a standard planner to

encode skills in a discrete symbolic form. This framework

also considered sensorimotor skills, such as the followed

trajectory from the observed action. In contrast to the works

in Ahmadzadeh and Kormushev (2016); Ahmadzadeh et al

(2015), we do not immediately require any additional sym-

bolic planner because SECs provide a fully observable state

sequence. As long as we are only dealing with straightfor-

ward linear action sequences, planning is no longer needed.

To show this here, we also perform evaluations on long and

complex human manipulation actions.

Still the problem of how to bring the signal (trajectory)

level together with the symbolic level remains a big chal-

lenge in robotics.
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There are also many works concentrating on the execu-

tion of manipulation actions using cognitive agents.

Yamaguchi et al (2014) designed a finite state machine

(FSM) to execute a pouring action. Morante et al (2014)

used guided motor primitives (GMPs) to perform painting

and cleaning tasks on a simulated robot. Another approach

to deal with the signal–symbol gap was to combine motion

and task planning such as in the work of Srivastava et al

(2014). They generated trajectories for tasks such as pick-

up and put-down to solve problems in different domains. In

Ghalamzan et al (2015), GMM and DMPs were integrated

to learn robotic tasks from human demonstrations. He et al

(2015) proposed a manipulation planning framework with

linear temporal logic specifications. The system was

demonstrated on a simulated robot to successfully perform

some tasks, but the planning could take a long time as soon

as the number of objects and locations in the environment

increases. Kappler et al (2015) proposed a decision-making

approach to perform robotic tasks. Here, multi-modal sen-

sor data were processed to switch between several move-

ment primitives called associative skill memories.

Morante et al (2014) proposed execution of actions

using so-called continuous goal directed actions

(CGDAs). They generated a library of GMPs in the joint

space of the robot, and later used them in the execution

phase. A simulated robot was introduced to perform

cleaning and painting tasks. Lioutikov et al (2016) per-

formed a bimanual cutting task by sequencing the learned

DMPs. As only position data were used, the quality of

execution is highly dependent on the placement of the

knife in the robot hand.

In Rozo et al (2013) a pouring task was learned by using

parametric HMMs. In addition, in Yamaguchi et al (2015) a

pouring task was represented, planned and learned from

human demonstration. In this work, pouring of liquids and

granular material was modeled by a FM.

Although the existing works show promising

results, they are usually limited in the number of actions

and manipulated objects. One of the main goals of our

study is to develop a generic scheme that allows robots to

perform a much wider variety of actions on various object

sets.

3. Methods

As illustrated in Figure 1, our proposed perception–action

framework involves three main levels: high-, mid-, and

low-level action units. To address this we will start with a

detailed description of high and low levels together with

their components. In the very end, the mid-level action unit

that bridges the gap between high and low levels will be

introduced. The figure provides in red the section numbers

by which the road-map of this section is represented.

First, however, we provide a short overview of the

domain in which we operate and also discuss which actions

we have implemented. Then we describe the framework

using the structure from Figure 1.

3.1. Domain and actions

In our experiments, we are focusing on tabletop manipula-

tions related to cooking tasks, which can be performed with

a stationary robot. Note, however, that by design the frame-

work is not restricted to this domain, because the structur-

ing of all actions in high-, mid- and low-level action-units

allows transferring the same actions also to (for example) a

workshop or other tabletop manipulation action domains.

We have analyzed and structured our library of actions

for all 32 manipulation action types described in Wörgötter

et al (2013), 10 of those we are investigating in depth per-

forming also robotic experiments with them.

Note that action examples are kept simple to be able to

show clearly the belonging trajectories, force, and tactile

patterns (see the figures at the end of the Section 4). The

same framework, however, had been used to analyze long

and complex real-world manipulation actions (Aksoy et al,

2017). Hence, this framework can address much higher lev-

els of scene complexity than shown here.

3.2. High-level action definition

In this section, we give a high-level action definition to

extract and encode the semantics of manipulations. Note

that, at this level, definitions are mainly symbolic (abstract)

and close to human descriptions.

Fig. 1. Levels of action definition. The high-level components are symbolic and close to human language. The low-level components

are in the signal domain. The mid-level fills the gap and makes execution possible. The red numbers refer to the sections in the text.
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Take the example of a manipulation action ‘‘put a bucket

on a box.’’Figure 2 shows some sample frames from human

demonstration. This simple action may be described by a

human as follows:

1. Approach the bucket;

2. Grasp the bucket;

3. Lift the bucket from table;

4. Place the bucket on the box;

5. Release the bucket.

This description is by no means unique. One could eas-

ily describe the same action in different words, with differ-

ent number of steps and details. However, one could still

extract some common and descriptive properties from such

a naive description.

Fig. 2. A sample human demonstration and robot execution of a put-on-top action are shown to highlight different action components.

At the top, snapshots and segmented images of the human demonstration are shown. Next, a relational graph sequence is computed.

Each graph corresponds to one world state (S1 to S5). The objects in the scene are recognized and their roles in the action are

determined. Abstract spatial relations and their values at each state are shown in the SEC matrix. Here, each row represents a pairwise

object relation such as N and T that denote Not touching and Touching, respectively. Action primitives at each state are shown at the

bottom of the SEC matrix. Finally, some snapshots and segmented images of the robot execution with different objects are shown.
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� Property 1: The definition is still valid even if the

manipulated objects are (within reason) altered.
� Property 2: The action (here ‘‘put-on-top’’) can be bro-

ken into a sequence of smaller sub-actions (primitives)

such as Approach and Grasp.
� Property 3: There are conditions to end one primitive

and start with the next. In the above example these con-

ditions are not spelled out explicitly.
� Property 4: As humans, we intuitively know how to

perform these primitives, although our exact move-

ments are only then produced when we see the objects

and are adapted to the scene context while we perform

the action.

The main features that we use here to describe a scene

are the touching relations between its objects. During a

manipulation action, these touching relations change from

some initial state to a final state. A manipulation action is,

therefore, represented by a sequence of changes in touching

relations of the objects.

Our approach to represent and execute manipulation

actions with robots has the following fundamental proper-

ties. We introduce a generic high-level definition of actions

which is independent of the manipulated objects in the

action (Property 1), and consists of a sequence of symbolic

primitives (Property 2). The conditions to start and end

each primitive are defined by considering the touching

relation between objects in the action (Property 3). We also

store the default action descriptive parameters (e.g. trajec-

tory) to execute actions at the high-level with symbolic def-

initions. When novel physical objects are observed at each

specific instance of an action, these parameters are adapted

according to the situation to generate the required move-

ments (Property 4).

To fully satisfy these four properties in our high-level

action definition, we benefit from the ontology of manipu-

lation actions introduced in Wörgötter et al (2013). This

ontology structures human-demonstrated manipulation

actions, e.g. putting a bucket on a box, as sequences of

spatio-temporal interactions between objects (including the

manipulator) in the scene by using the concept of SECs

presented in Aksoy et al (2011). This ontology suggests

about 30 fundamental and unique manipulations that allow

complex and chained activities, e.g. ‘‘making a salad’’ or

‘‘preparing breakfast.’’

The ontology also introduces four constraints on the def-

inition of manipulation actions, which are stated as follows.

� Constraint 1: The action is performed by one hand.

This is true for most human actions, because the sec-

ond hand is usually used only as a support.
� Constraint 2: The hand touches exactly one object in

the course of the action and does not purposefully

touch other objects in the scene unless the current

action ends.
� Constraint 3: The hand is free at the beginning and at

the end of the action.

� Constraint 4: The action must lead to some changes in

the touching relations between objects and hands (e.g.

human or robot hand). In other words, the hand must

interact with at least one object.

These constraints had been discussed in great detail in

Wörgötter et al (2013) but we would like to add some

important notes here, too. (1) Considering one-handed

actions is to some degree a simplification, because a sup-

porting hand can also play an active role in a manipulation

(for example, in creating counter-forces, etc., see also

Section 5). (2) In case multiple objects need to be manipu-

lated at the same time (e.g. pushing clutter away) this

framework needs to be extended by a system that can rea-

son about the semantics of single versus multi-objects.

Such problems are related to the perceptual binding prob-

lem and cannot be solved without additional mechanisms.

(3) Constraint 3 is very important to allow for a rigorous

cut between each two manipulations. Actions that involve

tools can be understood as a broken-up (interrupted) action

chain without violating Constraint 3. Constraint 4 is evi-

dent without further comment.

From the first two constraints one concludes that in each

action there are at least two entities: one hand and one

object that is directly touched by the hand. This fact will be

used in Section 3.2.1 to define object roles. The second

and third constraints together define actions in a way that

they cannot be further split into shorter actions. The last

constraint assures that there is at least one change in the

touching relations. This is essential because the whole

framework relies on the touching relations between objects.

In the rest of this section, we describe several compo-

nents of the high-level action definition that are required to

reach these descriptive properties. We refer the interested

reader to Wörgötter et al (2013) for details of the manipula-

tion action ontology.

3.2.1. Object roles. There exist many objects in the real

world and actions can be performed with different sets of

object combinations. It is, however, not practical to define

a separate action for each possible object set. Instead, as

stated in Property 1, we represent manipulation actions in a

generic way to make them applicable to any novel object.

For this, we label objects by their roles exhibited in the

action. First, recalling Constraint 1, we need an actor to

perform the action, which is here called manipulator. As

stated in Constraint 2, there exists exactly one object that is

directly manipulated by the manipulator. This object is

called main. Optionally, there are other objects in the

action, which interact with the main object in different

ways.

The object roles can be better explained in an example.

In the action ‘‘putting a bucket on a box’’ depicted in

Figure 2, the human hand is the manipulator, the bucket

which is directly touched by the hand is the main object.

There are two more objects whose relations with main

Aein et al. 5



change in the action: table and box. The relation of main

and the table changes from touching T to not touching N .

We call such objects primary or source object. Conversely,

the relation of main and the box changes from not touching

N to touching T . These objects are called secondary or des-

tination object.

The complete list of object roles with their definitions

are shown in Table 1. Some roles are defined by the

changes in relations, such as primary and secondary,

whereas others (such as support objects) are defined based

on constant touching relations. For instance, secondary

support is the object on which the secondary object is

located. In the above example, the table also plays the role

of secondary support. Note that not always all relations are

needed to define an action.

The role of objects are automatically detected with the

method described by Aksoy et al (2015b), which explores

the temporal evolution of spatial object relations embedded

in SECs.

3.2.2. SECs. At the highest symbolic level, actions are rep-

resented by the concept of SECs, which captures the

essence of an action by employing computer vision tech-

niques as described by Papon et al (2012) and Aksoy et al

(2011). A summary of this process is shown in Figure 2

along with the put-on-top example. To calculate the SEC

representation, an image sequence of an observed action is

first represented by 3D image segments, each of which cor-

responds to one object in the scene and is consistently

tracked during the action. Each frame in the sequence is

then converted into a graph: nodes represent tracked seg-

ments, i.e. objects, and edges indicate the contact relation

between a pair of objects. By employing an exact graph

matching method, the continuous graph sequence is discre-

tized into decisive main graphs, i.e. ‘‘states,’’ each of which

represents a topological change in the scene. The extracted

main graphs form the core skeleton of the SEC, which is a

matrix where rows are the spatial relations between object

pairs in the scene. Each column of the SEC matrix is inter-

preted as a state of the scene, which is the combination of

object relations when a new main graph occurs.

Possible spatial relations in the SEC matrix are Not

touching (N ), Touching (T ), and Absence (A), where N cor-

responds to two spatially separated objects, T represents

objects that touch each other. The value A occurs when

there exists no information about the relation, e.g. one

object is not visible in the scene.

Note that the SEC matrix will not unduly grow when there

are many objects in the scene. This is due to the fact that only

the (abstract) objects in Table 1 are considered for any possible

action. Hence, relations between objects that do not partake in

an action do not create additional rows in the SEC.

Thus, in a SEC, the progress of the action from the

beginning to the end is stored in a compact way. In addi-

tion, the SEC matrix is invariant to large variations in tra-

jectory, velocity, object type, and pose used in the action

and, therefore, remains the same for different instances of

the same action.

Figure 2 shows a put-on-top action from human demon-

stration to robot execution. The snapshots of the demonstra-

tion are shown together with the tracked segments (colored

regions) and main graphs. The objects in the scene and the

extracted SEC matrix are shown with the corresponding

states and primitives. At the bottom, the snapshots and

tracked segments of the robot execution are depicted.

Table 1. Object roles defined based on spatial relations. Each role is defined and the constraints on the relations are presented. Note

that main object is defined with regard to the manipulator, unless the action is performed using a tool. In this case, the main object is

defined with regard to the tool.

Object role Description Relation constraints

Manipulator The object that performs the action Not touching anything at the beginning and the end of
action. During the action, it touches at least one object.

Main The object that is directly in contact
with the manipulator (tool)

Not touching the manipulator (tool) at the beginning
and the end of action. It touches the manipulator (tool)
at least once.

Primary The object from which the main object separates Initially touches the main and makes a T to N
transition.

Secondary The object to which the main object joins Initially does not touch the main and makes an N to T
transition.

Load The object that is indirectly manipulated Does not touch the manipulator. During the action
leaves the main and touches the container or vice versa.

Container The object whose relation with load changes
and it is not the main object

Touches or untouches the load object.

Main support The object on which the main object is located Touching the main object all the time.
Primary support The object on which the primary object is located Touching the primary object all the time
Secondary support The object on which the secondary object is located Touching the secondary object all the time.
Container support The object on which the container is located Touching the container all the time.
Tool The object which is used by the manipulator to

enhance the quality of some actions
Grasped by the manipulator at the beginning of action
and released at the end.

6 The International Journal of Robotics Research 00(0)



Figure 3 depicts the event chain patterns of different

actions in the library as color-coded images. These SEC

patterns are stored as high-level action descriptors in the

action library. Although SEC patterns are very distinctive,

some are semantically identical as in Push by grasp, Poke,

and Push by holding actions. This semantic similarity is

natural since those actions have the same changes in the

touching relation of objects. However, they have different

primitives with different object poses, trajectories, and force

parameters that are not captured by SECs.

This action descriptive object, trajectory, and force infor-

mation is separately stored as primitives (see Sections 3.2.4

and 3.3.3).

3.2.3. Abstract relations. We continue with computing the

spatial relations between each abstract object pair, e.g.

between the manipulator and the main object. Table 2

shows the abstract relations for the action ‘‘putting a bucket

on a box’’, previously shown in Figure 2.

Each relation is defined by two attributes, namely type

and value. The type of a relation is determined by the

importance and variation of that relation throughout the

action. For example, for the action in Figure 2, the relation

between the manipulator and the primary is always not

touching and does not affect the outcome of the action

because they are not directly interacting with each other at

all. The type of such relations is don’t care.

Other relations, which are crucial for an action, are categor-

ized as variable and constant relations. For example, the rela-

tion between the manipulator (i.e. hand) and the main object

(i.e. bucket) in Figure 2 is variable because it naturally alters

during the action. The variable relations encode the dynamics

Fig. 3. Extracted SEC matrices for 10 single atomic manipulation actions. The abstract spatial relation associated to each SEC row is

color coded in which blue and yellow represent Touching (T ) and Not touching (N ), respectively. The gray color shows either an

Absent (A) or a Don’t care relation. Note that the SEC matrix of three actions push by grasp, poke, and push by holding are the same,

whereas their action primitives and parameters are different. In the action Put on top the primary object is the same as the secondary

support, which makes the relations R5 and R8 identical. Similarly, relations R4 and R7 in the action Take down are identical, because

the secondary object is the same as primary support.
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of the action. On the other hand, the relation between the sec-

ondary object (i.e. box) and the primary (i.e. table) remains

constantly touching, and hence is constant. We note that such

constant relations highlight the necessary pre-conditions to

perform an action and any unexpected change in these con-

stant relations implies a failure of the action.

3.2.4. Abstract primitives. As stated in Property 2 in

Section 3.2, an action can be divided into several sub-

actions or primitives. In our approach we define the follow-

ing abstract primitives.

� arm move(object): The robot arm moves to a pose rela-

tive to object.
� arm move periodic(): The robot arm moves

periodically.
� arm exert(): The robot arm exerts a force.
� hand preshape(): The robot hand moves to a certain

pre-shape.
� hand grasp(): The robot hand performs a grasp.
� hand release(): The robot hand releases the already

grasped object.

These abstract primitives correspond to the basic func-

tions of the robot manipulator, which can be implemented

in many different ways. Our way of implementing such pri-

mitives at the lowest motor control level are presented in

Section 3.3.3. The focus of our work is, however, not a spe-

cific implementation, but rather we would like to propose a

way to combine them to seamlessly perform actions. In our

approach a state transition in the SEC, i.e. a change from

one column to the next, needs at least one of these unique

primitives. All manipulations that we have analyzed have a

strictly linear sequence of primitives between two subse-

quent SEC columns. Thus, an action is performed when all

of its primitives are sequentially executed while the rela-

tions change according to the SEC matrix.

In Figure 2, the necessary primitives associated with

each column of the SEC matrix of the put-on-top action

are shown. The reason of having multiple primitives is that

sometimes more than one primitive is required to induce

the desired change in the spatial relation. For example, the

combination of arm move(main) and hand grasp()

primitives is necessary to change the relation of manipula-

tor and main from N to T .

In general, which primitives to choose is determined by

the column-to-column transition in a given SEC. Owing to

the fact that we had in total analyzed 32 manipulation

action types, which on average contain five SEC columns

each, we were faced with only about 150 column-to-column

transitions in total. It was, thus, possible to analyze all of

those ‘‘by hand’’ and manually define the required primi-

tives for every transition.

3.3. Low-level action definition

In this section, the abstract components of the high-level

definition are related to their real-world counterparts at the

signal level. This includes defining objects in the real world,

calculating their spatial relations from the sensor data, and

implementing low-level primitives such that proper com-

mands are sent to the robot arm and hand control systems.

In the rest of this section, these elements are described in

more detail.

3.3.1. Real objects. In real-world experiments, abstract

objects (i.e. manipulator, main, primary, etc.) are instan-

tiated by real objects in the scene. For the ‘‘putting a bucket

on a box’’ example depicted in Figure 2, these objects are

hand (manipulator), bucket (main), table (primary), and

box (secondary). We need to identify the real-world objects

in the signal space in order to perform the low-level

primitives.

For this task, we use our modular computer vision archi-

tecture described in Papon et al (2012), which segments

each object in the scene by employing the color and depth

cues fed from the RGB-D sensor. We further apply the

instance-based object recognition method from Schoeler

et al (2014) to identify extracted image segments. By incor-

porating the depth information, we also detect the back-

ground segment (supporting surface, i.e. Table), which is in

the form of a planar surface.

Once real objects in the scene are detected, we compute

each object pose in signal space. In our work, two pieces

of information are required to represent an identified

object: position and orientation. The position of each object

Table 2. Abstract relations and their attributes for the action ‘‘putting a bucket on a box’’ shown in Figure 2.

Relation name Abstract relation Real relation Type

R1 R(manipulator,main) R(hand,bucket) Variable
R2 R(manipulator,secondary) R(hand,box) Don’t care
R3 R(manipulator,primary) R(hand,table) Don’t care
R4 R(main,secondary) R(bucket,box) Variable
R5 R(main,primary) R(bucket,table) Variable
R6 R(secondary,primary) R(box,table) Constant
R7 R(main,primary support) — Absent
R8 R(main,secondary support) R(bucket,table) Variable
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is computed in Cartesian space. To associate a position to

an object, we model the object with a single point located

at the center of mass. The orientation of objects is defined

as the angle that the main axis of the object makes with

respect to the X -axis of the reference frame. Note that we

extract the orientation information only for elongated

objects (e.g. cucumber) but not for symmetric objects (e.g.

apple). The abstract pose of the respective object is finally

estimated from its major axis derived by principle compo-

nent analysis (PCA). The orientation information is used to

find the parameters of the primitives for elongated objects.

Note that the position of the manipulator, i.e. robot end

effector, is directly calculated from position sensors and the

kinematics of the arm.

3.3.2. Real relations. The real relations are the values of

relations between pairs of objects in the scene. To detect

these values, we use a combination of proprioceptive (e.g.

position) and exteroceptive (e.g. tactile, force, and vision)

sensors.

When it comes to detecting object relations, there are

three phases: before, during, and after the action. In the

first and last phases, the only source of information is the

vision interface, which essentially computes the Euclidean

distance between segmented object point clouds to decide

whether they touch each other or not. An example of this

detection is shown in Figure 4.

While the action is being performed, the data acquired by

other sensors (position, force, and tactile) are used in addition

to the vision system. The data collected from these sensors

are fused using several heuristic rules, which are conjunctions

of individual conditions on different sensor data. For example,

the first rule to detect the relation of manipulator with main

object is a combination of conditions on two sensors: position

and tactile. This rule declares a touching relation when the

Euclidean distance between the two objects is less than a

threshold (denoted by D1) and the tactile sensor detects a

grasp. These rules are listed in Table 3.

The rules of Table 3 use some intermediate signals that

are abstractions of force and tactile sensor data: contact

and grasped. These are flags showing when the robot arm

is touching the environment (contact) or the robot hand is

grasping an object (grasped). The grasped flag is set to

one if the average values of tactile sensors on all three fin-

gers exceed a threshold. An example of tactile sensor read-

ings during an action are shown in Figure 5 (top). The solid

red line shows the raised grasped flag at the times that the

hand is grasping some object.

The contact flags raise when the external force applied

to the end effector of the robot arm exceeds a threshold. In

the rules of Table 3, we have only used the contactz flag

which shows contact along the Cartesian Z axis. Figure 5

(bottom) shows an example of contact detected along the Z

axis.

As multiple rules exist to detect the same relation in

Table 3, we should assign the rules that need to be consid-

ered in each action. This is summarized in Table 4 for the

actions in the library.

3.3.3. Real primitives. In Section 3.2.4 we defined the

abstract primitives. Here, we re-introduce these primitives

by adding their parameters and describe their implementa-

tions at the low level.

For the robot arm, we have the following primitives:

� arm move(object, Toff ,P);
� arm move periodic(ax, ay, az, bx, by, bz,v);
� arm exert(Fdes).

For the robot hand we have defined the following

primitives:

� hand preshape(q);
� hand grasp();
� hand release().

Here we explain these primitives in more detail and dis-

cuss their specific implementation in our system.

arm move object,ToffP
� �

This primitive moves the end effector from the current

pose to a pose relative to object. The offset of the target is

stored in the homogeneous transformation Toff . Equation

(1) shows how the goal of this primitive is calculated from

the pose of the object and the offset transformation:

Fig. 4. Calculating the contact relation with our visual perception interface. The small red lid is touching the jar and the yellow cup is

on top of the bucket (left). The red lines indicate the existing touching relations between objects (right).
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Pgoal = Toff Pobj ð1Þ

The parameters of the trajectory are stored in P. We use

DMPs introduced by Ijspeert et al (2002) and the joining

method proposed by Kulvicius et al (2012) to generate smooth

trajectories. To save space, the equations of DMP that generate

trajectories are not repeated here. The outputs of DMP are the

desired trajectory of robot end-effector in Cartesian space that

move from the start pose to the goal pose.

These trajectories are fed as desired values to the low-

level control system of the robot arm. In our setup, we have

a KUKA LWR robot which has the following control pol-

icy to generate commanded joint torques tcmd :

tcmd = JT(kc(X
� � X ))+ D(q)+ fdyn(q, _q, €q) ð2Þ

where X � is the desired pose, X is the measured actual pose

of the robot. The coefficient kc denotes the gain of the posi-

tion control which determined the stiffness of the arm dur-

ing motion. The terms D(q) and fdyn(q, _q, €q) are the friction

and dynamics of the robot arm which are used in the con-

trol system.

Fig. 5. Intermediate exteroceptive sensory input in the process of analyzing the spatial relation rules given in Table 3. The tactile

sensor values are used to detect when an object is grasped by the hand (top). The external force signals are processed to detect the

touching event (bottom). Here a contact in the Z direction is detected.

Table 3. Rules for detecting the spatial relational changes during action execution. Note that k manip,Oi k represents the Euclidean

distance between manipulator end-effector and position of object Oi. Similarly, k Oi,Oj k is the distance between objects Oi and Oj. Oi

and Oj are any pair of objects in the scene. contactz means that the sensor sensed a contact in Z axis, while !contactz means there is no

such contact. grasped means the hand has grasped some object, while !grasped means the hand is empty. The parameters Dij are the

distance thresholds to decide whether two objects are touching or not.

Conditions
Rule Relation Change Vision position Force Tactile R(manip,Oi)

1 R(manip,Oi) N to T — k manip,Oi k\D11 — grasped —
2 R(manip,Oi) N to T — k manip,Oi k\D21 contactz — —
3 R(manip,Oi) T to N — — - !grasped —
4 R(manip,Oi) T to N — — !contactz — —
5 R(Oi,Oj) N to T k Oi,Oj k\D51 k manip,Oj k\D52 contactz grasped T
6 R(Oi,Oj) N to T k Oi,Oj k\D61 k manip,Oj k\D62 — grasped T
7 R(Oi,Oj) T to N k Oi,Oj k .D71 k manip,Oj k .D72 — grasped T
8 R(Oi,Oj) N to T k Oi,Oj k\D81 — — — —
9 R(Oi,Oj) T to N k Oi,Oj k .D91 — — — —
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arm move periodic(ax, ay, az, bx, by, bz,v)
For some actions we need to perform some simple peri-

odic motions. There are comprehensive frameworks to cre-

ate periodic (rhythmic) motions on robots such as rhythmic

DMPs. However in our system we only need simple back-

and-forth and circular motions, for which a combination of

sine and cosine functions suffice. Therefore we implement

arm move periodic primitive using the following

equations:

x(t)= x(0)+ ax sin (vt)+ bx cos (vt)� bx ð3Þ

y(t)= y(0)+ ay sin (vt)+ by cos (vt)� by ð4Þ

z(t)= z(0)+ az sin (vt)+ bz cos (vt)� bz ð5Þ

These equations generate smooth trajectories from an initial

position (which is ½x(0), y(0), z(0)�). The ax and bx deter-

mine the strength of sine and cosine components on the X

axis. There period of trajectory is determined by the para-

meter v. Examples of periodic motion generated in actions

are shown in Figure 6. The back-and-forth motion is used

in actions such as cutting, while a circular motion is needed

in stirring.

arm exert(Fdes)
Manipulation actions sometimes need more than just

pure position control. In some tasks we need to also regu-

late the force exerted at the environment. Many times it is

important to have both position and force control at the

same time. For example, in a cutting action, the robot arm

keeps a force between the knife and banana in the Z direc-

tion (constrained space), while moving the knife back and

forth in the XY plane (unconstrained space).

This is possible by using parallel position–force control

schemes such as that introduced by Chiaverini and

Sciavicco (1993). The following control policy is used in

this case:

tcmd = JT(kc(X
� � X )+ Fcmd)+ D(q)+ fdyn(q, _q, €q) ð6Þ

Table 4. Rule consideration for detecting spatial object relations (see Table 3 and Figure 3).

Relation

Action R1 R2 R3 R4 R5 R6 R7 R8

Pick and place Rule 1,3 — — Rule 5 Rule 7 — — —
Put on top Rule 1,3 — — Rule 5 Rule 7 Rule 8,9 — Rule 7
Take Down Rule 1,3 — — Rule 5 Rule 7 Rule 8,9 Rule 5 —
Stir Rule 1,3 — — Rule 6 — Rule 8,9 — —
Cut Rule 1,3 — — Rule 5 Rule 6 Rule 8,9 — —
Poke Rule 2,4 — — — — Rule 8,9 — —
Push with grasp Rule 1,3 — — — — Rule 8,9 — —
Push with holding Rule 2,4 — — — — Rule 8,9 — —
Push apart by holding Rule 2,4 — — — Rule 9 Rule 8,9 — —
Push together by holding Rule 2,4 — — Rule 8 — Rule 8,9 — —
Pour Rule 1,3 Rule 8,9 Rule 8,9 Rule 7 Rule 5 Rule 8,9 — —
Unload Rule 1,3 Rule 8,9 Rule 8,9 Rule 7 Rule 5 Rule 8,9 — —

Fig. 6. Examples of periodic trajectories in actions. (a) In the cutting action the following parameters are used to generate a back-and-

forth motion: ax = � 0:008 m, ay = � 0:01 m, and v = 1:8 rad/s. The initial position is x(0)= � 0:6 m and y(0)= 0:7 m. (b) In the

stirring action a circular motion is generated by using the following parameters: bx = 0:03 m, ay = � 0:05 m, and v = 1 rad/s. The

initial position is x(0)= 0:187 m and y(0)= 0:55 m.
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Here the term Fcmd implements a force control that is feed-

forward and PI terms:

Fcmd = Fdes + Kp(Fdes � f )+ KI �
Z

(Fdes � f ) ð7Þ

An example of force control is shown in Figure 7 where the

desired force is Fdes = ½0, 0, 1�T N.

hand preshape(q)
This primitive is used to create a desired shape of the

robotic hand. Our robot hand (Schunk SDH-2) has three

fingers and in total seven degrees of freedom (DOFs). The

control system of the hand has the ability to move to a

desired configuration:

q = ½q1, q2, q3, q4, q5, q6, q7�T ð8Þ

Two sample configurations are shown in Figure 8, which

are the power and precision grasps used for round and elon-

gated objects, respectively.

hand grasp()
Manipulating objects usually requires grasping them

first. For grasping, we use velocity control of finger joints

together with feedback from tactile sensors on the fingers.

The combination of hand preshape and hand grasp primi-

tives enables us to grasp simple objects, which is enough

to demonstrate the functionality of the proposed execution

system. The complex problem of grasping arbitrary objects

is out of the scope of this research.

hand release()
This primitive is used to release a previously grasped

object, which is simply opening the hand until the tactile

sensors show that the object is released.

3.4. Mid-level action definition

So far, we explained high- and low-level action compo-

nents. In this section, we present a mid-level component

that acts as a bridge between those two levels and guides

action execution. The core of the mid-level component is a

FSM together with an error-handling protocol.

3.4.1. FSM. A FSM has a number of states, inputs, out-

puts, and transition rules. The states show different stages

of the execution algorithm. The inputs are the real relations

of the objects. The outputs are the robot primitives that are

sent to the control system of robot arm and hand.

In the FSM we have some parameters that define the

current action. The main parameters are the number of

states, the desired relations and primitives at each state. To

execute any action in the library, the proper set of para-

meters should be loaded into the FSM.

There are also some variables used during the FSM exe-

cution. For instance, variables current column shows which

column of the SEC matrix the current relations refer to.

This variable is used to track the progress of the action.

The FSM is part of a software package to control the

robot setup that is implemented using the Open Robot

Fig. 8. Two pre-shape configurations are used in our system.

The power grasp (right) is used for symmetric objects whereas

the precision grasp (left) is for elongated objects.

Fig. 7. Example of force control using the arm exert primitive. The desired force is 1 N in the Z direction.
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Control Software (OROCOS) framework [Soetens(2013),

Soetens(2006)]. The OROCOS framework provides tools

to develop real-time robotic software including a useful

FSM implementation. The overview of the mid-level FSM

and execution process is shown in Figure 9. The details of

states and transitions are as follows.

� Initialize: After receiving a new action command, the

high-level definition of the desired action is loaded.

The variable current column is set to 1 to point to the

first column of the SEC matrix. The action command

consists of the action type, the main and other objects

involved in the action.
� Check Initial Relations: Here the current relations of

objects are compared with the first column of the SEC

matrix of the commanded action. The pre-condition of

executing the action is that the two are equal, otherwise

the FSM transitions to the Failure state.
� Go to Next Column: This state increments the variable

current column and causes the action to progress from

one column of the SEC matrix to the next. If we are

already in the last column of the SEC matrix, it

Fig. 9. State diagram of the FSM that controls the execution of actions. This state machine is the main component of the mid level.

For clarity, different colors are used for normal execution (blue), error handling (orange), failure (red), and success (green) states and

transitions.
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transitions to Success state, which means the action is

done successfully.
� Select Primitive: In this state the next primitive of the

current SEC column is selected. If available, we transi-

tion to the ExecutePrimitive state. Otherwise, we are

entering the Error state and we need to handle the

error, because this implies that all primitives of the cur-

rent SEC column are executed but the desired changes

in relations did not happen.
� Execute Primitive: The selected primitive is executed

here. This state has several sub-states, each performing

one type of primitive. To keep the diagram simple, they

are not shown in Figure 9. In this state, the relations of

objects are monitored and if they change to the desired

values, we transition to the GotoNextColumn state. If

relations change to unwanted values, the next state will

be the Error state. Finally if the primitive is done and

no change in relations is detected, it transitions to the

SelectPrimitive state, to look for the next primitive.
� Error: This state indicates that the execution of the

current action is not progressing as expected. However,

there is still hope to recover from the error, and con-

tinue the execution. There are two ways to enter this

state. First, the primitives defined for the current SEC

column are all executed but the desired change in rela-

tions has not occurred. Second, during the execution of

primitives an unwanted change in relations happened.

In this state we try to go back to a previously known state

of the action, and continue from that point. Usually this

means that the robot arm retracts from the scene and

receives new object poses and relations. After receiving the

new perception, we transition to EvaluateRelations state.

In Section 3.4.2 we show some examples of handling

errors.

� Evaluate Relations: After receiving the new percep-

tion in Error state, we evaluate the current situation of

the objects in this state. If for these relations, we could

continue from the last known state, we transition to

GotoNextColumn state and continue the execution.

Otherwise, we go to Failure state since we are in an

invalid state and can not proceed.
� Failure: If the relations of objects are in a way that

there is no known way to proceed the execution, we

transition to Failure state. At this point we stop the exe-

cution and announce failure. The failure is reported to

the operator or the high-level planner, so that a proper

decision can be made. Note that there is no high-level

planner introduced here, since it is not in the scope of

this work.
� Success: This state is entered if the action is success-

fully executed according to the SEC matrix.

3.4.2. Error handling. The execution of actions could fail

due to different problems. Faults may happen in controllers

and their interfaces, for which proper detection and recov-

ery systems are necessary. Other errors may happen at more

abstract levels like failure to properly grasp or push an

object. These errors are detectable by observing the rela-

tions of the objects and we can deal with them in our exe-

cution engine.

In the previous section we described the Error state in

the state machine, which is entered under these conditions:

1. the execution of the primitives does not result at the

expected change in relations (from SelectPrimitive state);

2. the execution of the primitives causes unexpected

changes in object relations (from ExecutePrimitive

state).

To deal with these errors, first we undo the primitives of

the current state (SEC column) to reach the previous known

state. Then, we evaluate the object relations again and tran-

sition to the CheckCurrentRelations state and continue the

execution. This results in a new perception of the position

and relations of objects, by which the system decides which

primitive should be executed next.

The first example shows an error when expected

changes in relations do not happen. In Figure 10, the robot

hand approaches the apple to grasp it, but fails, because the

apple is not in the expected position. The manipulator

retracts and receives the new position of the apple from the

vision system and repeats the grasp.

An example of the second type of error is shown in

Figure 11, in which after a successful grasp, the object is

taken away from the robot hand. The robot detects the

absence of the grasped object and reacts to it by opening

the hand and moving up. After receiving the new position

of the object, the grasp is repeated. The videos of error

handling cases are shown in Extension 1 submitted with

this paper.

There are cases where error handling cannot help, for

example if we try to cut an uncuttable object (such as a

cup). The error handling would try to repeat cutting the

cup without success. After a few unsuccessful repetitions,

the system transitions to the Failure state.

4. Experimental results

In this section, we present various experimental results of

our proposed action execution framework. Results cover

execution of both single atomic actions (e.g. cutting, push-

ing, etc.) and long chained activities such as ‘‘making a

salad.’’ Before presenting these results, we briefly introduce

our hardware and software tools used in the experiments.

4.1. Hardware

Our setup consists of a robot manipulator, a three-finger

robotic hand, and a vision interface.
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4.1.1. Robot arm. Our robot arm is a KUKA LWR (Light

Weight Robot) IV manipulator. It is a kinematically redun-

dant anthropomorphic manipulator developed jointly by

KUKA Robot Group and the German Aerospace Center

(DLR). It has 7 DOFs and is equipped with position and

torque sensors at each joint. It estimates the external tor-

ques applied to each joint, which also gives an estimate of

external force and torque at the end-effector. The robot can

be controlled both in joint and Cartesian spaces with vari-

able compliance and damping.

4.1.2. Robot hand. Our robot hand is a Schunk Dexterous

Hand 2 (SDH-2) produced by the company Schunk. It has

three fingers and 7 DOFs, which can be controlled in position

or velocity modes. It is equipped with two tactile sensors on

each finger, that provide feedback while grasping objects.

4.1.3. Vision system. Our vision system includes a static

RGB-D (Asus Xtion) sensor and a DSLR camera (Nikon

D7200). The RGB-D sensor provides both color and depth

cues that are processed for image segmentation and track-

ing issues. The DSLR camera is further integrated into the

vision system to capture high-resolution images of the

scene for the purpose of object recognition. The vision sys-

tem was developed using the ROS framework (Papon et al,

2012; Schoeler et al, 2014: see).

4.2. Single atomic actions

To quantitatively evaluate the proposed action execution

framework, we conducted a large set of experiments with

several types of actions and objects. The central goal here

is to benchmark the success of the execution of actions pro-

vided in the library. Note, to arrive at a useful characteriza-

tion of this framework all actions are analyzed without

error handling. Only by this can decisive percent-success

values be measured. We are not concerned with complex

computer vision, thus, colored and textureless objects were

mostly preferred in the experiments to cope with the intrin-

sic limitations of the imaging sensors and to have more

reliable visual segmentation of perceived scenes. Figure 12

illustrates the set of manipulated objects, which contains in

total 19 different samples from 8 categories, such as con-

tainers, round fruits, etc.

The first part of our experiments covers only single

atomic actions, such as pushing, cutting, or stirring. The

first 10 actions defined in Table 4 are considered as atomic

actions, each of which is performed by the robot using

objects of various types, sizes, shapes, and poses (see

Figure 12). The executed atomic actions with their brief

explanations and involved objects are listed in Table 5.

To evaluate the atomic actions, we provide two types of

results. First, the success rate of execution of each action

type is measured. These results give an overview of the exe-

cution performance of actions on different object categories

Fig. 10. Error handling after failure in grasping an object. 1. The initial scene. 2. Perception of the objects by vision system. 3–5.

When the manipulator approaches to grasp the apple, we move it to cause the grasp to fail. 6. The robot hand opens and the robot arm

moves up waiting for a new perception. 7. New perception of the objects by vision system. 8, 9. Approaching the apple in its new

position and performing a grasp.
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presented in various scene contexts. Thus, we can measure

the robustness as well as the generalization capacity of the

proposed action library. Second, we plot variations in the

low-level sensory input, such as tactile, position, and con-

tact signals, while the action is being executed. In these

results, we can obtain information on the underlying per-

ception mechanism in the execution framework and the dis-

cretization of the low-level continuous sensory data to

reach high-level symbolic action representation.

To evaluate success rates, we repeated each atomic

action 3 times on 10 different object sets, i.e. various object

combinations with different poses. Thus, we obtained 30

trials for each action, i.e. in total 300 experiments. The

overall success rate per action type is shown in Figure 13.

Red bars in the figure depict the standard error of the mean.

The first result is that in 7 out of 10 actions, the success

rate is equal or more that 50%. This shows that the system

is able to cope with different objects and poses for most of

the actions. The second impression that the figure conveys

is that there is a prevalent failure, mostly observed in the

execution of pushing actions which were mainly performed

by just holding objects without applying any certain grasp,

e.g. push with holding described in Table 5. The overall

accuracy was measured as 64:5% and this value reached

75:8% in the case of excluding those failed pushing types.

The main reason for this accuracy drop in pushing actions

Fig. 12. The set of objects used in our experiments. There are in

total 19 objects in 8 categories: 1. round fruits; 2. long fruits; 3.

cubes; 4. cups; 5. containers; 6. plates; 7. spoons; 8. knives.

Fig. 11. Error handling after the grasped objects slips through the robot hand. 1- The initial scene. 2. Perception of the objects by

vision system. 3, 4. The manipulator approaches the apple and grasps it successfully. 5. The grasped object is taken out of the robot

hand to cause the error. 6, 7. The robot hand opens and the manipulator retracts. 8. New perception of the objects is received from the

vision system. 9. The grasp is repeated successfully.
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is due to the shape of manipulated objects. For instance,

while the robot was gently holding the object, e.g. an apple,

to push it, the object slipped over the contact surface and,

thus, led to a failure of the action. It is known that such

types of actions are exceedingly difficult for robots but also

for humans and we have often to reactively correct grasp

and push to succeed. Hence, building in reactive correction

mechanisms would certainly mitigate this problem.

We also observed a low success rate of about 50% for

the cutting and stirring action types. In the stirring action,

some of the failures occurred because the manipulated

spoons were slightly too big for the containers. In the case

of the cutting action, failures were due to inability to cut

thick objects such as round fruits (apple or orange). Human

cutting operations are heavily dominated by reacting to the

‘‘feel’’ of cutting and correcting force and angle.

A more detailed analysis on the execution of single

actions is given in Figure 14. The results are separately

computed for each individual action and object category.

For those actions which initially require object grasping,

the results are also categorized according to the grasp type.

We here note that object grasping is not in the focus of this

study and therefore in our experiments we only considered

two types of grasps: power and precision. The average suc-

cess rate for each grasp type and for the entire experiment

are shown in the last three columns. For instance, in Pick

and place action, 21 out of 30 trials were successfully per-

formed with power grasp, which led to 67% average accu-

racy, whereas it was computed as 100% for the precision

grasp.

A deeper look at the errors encountered for those 300

experiments shows that about one-third of them could have

been recovered when switching error-handling on. The rest

are non-recoverable. Given that the number of errors is in

general relatively small, this estimate could, however, be

incorrect, because not enough error data exist for strong

statistical evaluation and many more experiments would be

needed to achieve this.

Next, we take a closer look at the low-level sensory data

including the position, tactile, and force contact signals of

the robot arm during the experiments. Here, we aim at topo-

logical changes in the perceived scene by fusing data from

several sensors, and to calculate object relations.

Figure 15 shows the position, tactile, and force sensor

data together with detected relational changes between

objects and the robot arm during the execution of a sample

Put on top action. The first plot in Figure 15 confirms that

due to the use of DMPs with joining, the robot arm seam-

lessly follows the desired goal positions which are indicated

with circles. In the second plot in Figure 15 we also see that

the tactile sensor is activated once the primary object is

grasped. In a similar manner, the force sensor reports a con-

tact when the object is placed. All these sensory data

together with the visual feedback are fused to detect final

spatial relational changes in the scene as described in sec-

tion 3.3.2. Figure 15 at the bottom illustrates the extracted

SEC representation over time for the Put on top action as a

colored matrix which is identical to the one stored in the

action library as shown in Figure 3. This plot confirms that

the proposed action execution framework can successfully

Table 5. List of 10 atomic actions stored in the library and also used in experiments introduced in Section 4.2. The last two columns

show sample objects used in each action.

# Action Name Explanation Main Tool Primary Secondary

1 Pick and Place The main object is cup, apple, orange, — table table
picked from primary cucumber, eggplant, —
and placed on the same object. bucket, plate, box —

2 Push with Grasp The main object is box, apple, orange — — —
pushed to the goal position cucumber — — –
after being grasped.

3 Push with Holding The main object is box, apple, orange — —
pushed to the goal position
after being held on top

4 Poke The main object is poked. box, apple, orange — —
5 Put on Top The main object is put on top cup, cucumber, — table box, bucket, cup

of the secondary object. apple, orange — table plate, board
6 Take Down The main object is taken down cup, banana, — box, bucket, cup table

from the primary object. apple, orange — board table
7 Push apart by holding The main object is pushed orange, box — apple, cup

apart from primary after
being held from top.

8 Push together by holding The main object is pushed apple, orange — box
to secondary after.
being held from top.

9 Cutting The main object is cut zucchini, cucumber knife
by the tool. banana

10 Stirring The main object is stirred bucket spoon, knife
by the tool object.
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process continuous sensory data and extract descriptive

states in the scene, which yields compact high-level action

representation, i.e. SEC.

In Figure 16, we show similar plots for a Cutting action

in which the robot first grasps a knife and then cuts a

cucumber into pieces. The position plot on the top high-

lights the oscillatory motion pattern of the robot arm during

the actual cutting phase. Note that in some cases the actual

robot position does not meet the goal position. This is

expected, since whenever the desired relation changes hap-

pen, the current primitive is ended and the state machine

moves to the next primitive. The second row shows how

the tactile sensors detect the contact which happens at the

hand grasp() primitive (grasping the knife) and how this

signal vanishes right after the hand release() primitive.

The force signal in Z direction is used to verify the con-

tact between the tool and main objects, in this case the knife

and cucumber, which triggers the oscillatory motion. The

extracted SEC is again the same as the one stored in the

action library (see Figure 3).

In Figure 17 and Figure 18 we show the 3D trajectory

of the robot arm for both Put on top and Cutting actions.

The start and the end of the trajectory as well as position of

objects in the action, are highlighted with red circles and

text labels. Examples of single action executions are shown

in Extension 2.

4.3. Chained actions

To demonstrate the scalability and strength of the proposed

framework, we further benchmarked our system with exe-

cution of chained actions. For this purpose, we defined two

scenarios. In the first scenario, the robot arm was given the

Fig. 13. Overall success rate of 10 atomic action executions after

30 trials for each.

Fig. 14. Success rate of executing actions in each object category. Each action is executed 30 times using different object sets. The

ratio of successful trials are shown for each object category (middle columns). For actions involving grasp, the results are separately

shown for each grasp type. The overall success rates on each grasp type and average success scores are shown in the last two columns.

The values in the last column match the final average accuracy rates shown in Figure 13.
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task of performing three atomic actions: Take down, Push,

and Put on top. The second scenario is a more challenging

task: making a salad.

Figure 19 shows the robot execution of the first chained

action scenario. The first three plots depict the low-level

sensory data. Due to having three atomic actions, there

exist three peaks in the force sensor, whereas we obtain

only two contact changes in the tactile sensor. In each

action there is one interval at which the contact in Z axis is

detected. However, we can see that in the second action

there is no grasping.

In the second scenario, i.e. the salad making task, the

robot performed a longer action sequence, in which we

additionally introduced the last two actions defined in

Fig. 15. Low-level sensory data in a sample put on top action. The position, tactile, and force contact signals are shown on the top.

All changes in object contact relations are shown in the bottom plot as a color-coded SEC matrix. Here, blue and yellow represent

Touching (T ) and Not touching (N ) respectively. The gray color shows either Absence (A) or relations which are not important (don’t

care). Note, primary support and secondary support are the same as primary itself (the table). From the definition in Figure 3 some

relations can be ignored (don’t care). Some sample snapshots at the bottom show the scene topology at each state of the action.
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Table 4: pouring and unloading. Consequently, the salad

scenario contains the following steps:

1. pick up a cucumber and put it on a cutting board;

2. grasp the knife and cut the cucumber;

3. grasp the cutting board and unload the cucumber

pieces into a bowl;

4. grasp the bottle and pour its content into the bowl;

5. grasp a spoon and stir ingredients in the bowl.

The final results of the salad scenario are shown in

Figure 20. The low-level signals and high-level symbolic

object relations are shown as usual. For the sake of clarity,

sample snapshots for all five actions are shown vertically

with horizontal arrows on the top showing the correspond-

ing temporal interval of each action.

Note that in both scenarios, we assume that the high-

level action plan is given in advance because we are not

addressing any planning related issue in this study. Our

only aim is to introduce a generic representation for the

seamless execution of atomic and sequential actions inde-

pendent from variations in the scene context.

The videos of chained action executions are shown in

Extension 3.
1

5. Discussion

The main contribution of this study was to give a thorough

definition of manipulation actions at symbolic (high) and

sub-symbolic (low) levels and link them through a mid-

level FSM. The proposed state machine provides a mechan-

ism to execute the actions on a robotic arm/hand system.

Fig. 16. Low-level sensory data in a sample cutting action. The position, tactile, and force contact signals are shown on the top. In the

cutting action, a part of the trajectory corresponding to the back and forth motion of knife is zoomed in to show the oscillatory motion

pattern. All changes in object contact relations are shown in the bottom plot as a color-coded SEC matrix. Here, blue and yellow

represent Touching (T ) and Not touching (N ), respectively. The gray color shows either Absence (A) or relations which that not important

(don’t care). Compare with Figure 3. Some sample snapshots at the bottom show the scene topology at each state of the action.
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The proposed framework was tested on a wide range of

actions and objects and we found satisfactory execution

performance on various atomic and chained manipulation

actions. Actions that produced problems are those notor-

ious types that also humans find hard. So far our methods

are excluding bimanual manipulation actions. True biman-

ual manipulations are rare, but also in a single-hand manip-

ulation the supporting hand can help to control the force–

torque patterns during the action. In Aksoy et al (2017) we

performed a machine vision analysis also of manipulations,

where both hands are used, which may pave the path for

robotic execution.

5.1. Possible extensions

Note that all evaluations had been performed without enga-

ging error correction so as to show the plain (feed-forward)

properties of this system in a fair way. Performance

increases to near perfect using error correction for all but

the systematic errors; those, for example, where the chosen

object lacks the required affordance for the action. It is the

use of event chains that makes it possible to detect execu-

tion failures at all decisive action time points. If an expected

object relation has not come into being, then an error must

have happened. This event-based error detection is another

advantage of our framework. Interestingly, a possible exten-

sion of this work would be to use it for active object affor-

dance estimation. Repeated trials of an action will allow

distinguishing random from systematic failures because

random failures can be corrected, but systematic failures

cannot. Hence, an uncorrectable error hints at a systemic

lack of the required affordance (e.g. when repeatedly trying

to cut a banana with a cup). This touches the field of devel-

opmental robotics (Pagliuca and Nolfi, 2015; Tikhano_

et al, 2013) where object affordance estimation remains a

difficult issue.

Another way to extend this framework would be to cre-

ate movement primitives automatically. At the moment we

are working on an algorithmic framework that tries to

achieve this using humans demonstration combined with

DMPs and relying on the temporal chunking that the SECs

provide. These preliminary results currently indicated that

the here selected and hand-defined set of primitives is quite

well reflected also by those that can be created by an auto-

matic procedure.

Along the same lines, it is also conceivable to try to learn

(some of) the parameter ranges needed for execution of a

movement primitive for example by using reinforcement learn-

ing (RL) techniques. So far, parameter ranges have been set

manually by us. In general, we observed that the rigorous

chunking of the actions, using SECs and primitives, leads to

large intrinsic robustness of our framework and it was never a

problem to define the required parameter ranges. Still, using

RL might lead to even more robustness, but would, very likely,

require creating first a detailed simulation of the complete

setup/framework to assure convergence of learning by allowing

for enough iterations. Thus, implementing automatic primitive

generation and/or parameterization via RL would, however,

exceed the scope of this study by far.

In the context of a European project ACAT,
2

we had

developed a massive XML schema called action data table

(ADT) to capture actions generated by the framework pro-

posed here. Essentially, this is the file format used to actu-

ally store the library data,
3

which are the high- and low-

level data of an action as specified in the current paper.

This data format enables us to execute new actions also on

different robots and a main advantage of the action library

framework is, thus, that it is (within reason) independent of

the robot embodiment. Transfer to a different machine

requires only the fine-tuning of a set of parameters (e.g.

parameters related to the kinematic chain or to the sensor

hardware). As a consequence, the framework proposed here

has already been used as an action execution routine in dif-

ferent robotic applications (Agostini et al, 2015; Wörgötter

Fig. 17. Trajectory of robot arm during the Put on top action

shown in Figure 15.

Fig. 18. Trajectory of robot arm during the Cutting action shown

in Figure 16.
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et al, 2015). In the work of Agostini et al (2015), we

showed that the robot can still generate similar actions by

replacing tools in manipulations using the aspect of tool

affordance. The work introduced in Wörgötter et al (2015)

showed that robots can apply bootstrapping at different

cognitive levels to improve their behavior based on the

action representation and generation method proposed here.

Therefore, we hope that the library of actions as proposed

here can, in the long run, turn into a useful (and standardiz-

able) robotics software tool also for other uses.
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Notes

1. All videos of this project including the extensions included

here can be found at https://sites.google.com/site/aeinweb-

page/actions/videos.

Fig. 19. Robot execution of three chained actions: 1. taking down the red apple from the box; 2. pushing the box by holding; 3.

putting the green apple on top of the box. From top to bottom are shown the position, tactile, and force sensor data as well as the

changes that are detected in the relation of objects in the scene. Sample snapshots for some SEC states are also depicted with numbers

showing their order. Black arrows represent the temporal interval of each action.
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2. See http://www.acat-project.eu/.

3. See http://www.acat-project.eu/index.php?page=adt for exam-

ples of ADT.
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Appendix. Index to multimedia extensions

Archives of IJRR multimedia extensions published prior to

2014 can be found at http://www.ijrr.org, after 2014 all

videos are available on the IJRR YouTube channel at http://

www.youtube.com/user/ijrrmultimedia

Table of Multimedia Extensions

Extension Media type Description
1 Video Error handling cases
2 Video Single action executions
3 Video Chained action executions

Aein et al. 25




