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Abstract: Land use and land cover (LULC) form a baseline thematic map for monitoring, resource 
management, and planning activities and facilitate the development of strategies to balance 
conservation, conflicting uses, and development pressures. In this study, changes in LULC in North 
Sumatra, Indonesia, are simulated and predicted using an artificial-neural-network-based cellular 
automaton (ANN-CA) model. Five criteria (altitude, slope, aspect, distance from the road, and soil 
type) are used as exploratory data in the learning process of the ANN-CA model to determine their 
impacts on LULC changes between 1990 and 2000; among the criteria, altitude and distance from 
the road have strong impacts. Comparison between the predicted and the real LULC maps for 2010 
illustrates high agreement, with a Kappa index of 0.83 and a percentage of correctness of 87.28%. 
Then, the ANN-CA model is applied to predict LULC changes in 2050 and 2070. The LULC 
predictions for 2050 and 2070 demonstrate high increases in plantation area of more than 4%. 
Meanwhile, forest and crop area are projected to decrease by approximately 1.2% and 1.6%, 
respectively, by 2050. By 2070, forest and crop areas will decrease by 1.2% and 1.7%, respectively, 
indicating human influences on LULC changes from forest and cropland to plantations. This study 
illustrates that the simulation of LULC changes using the ANN-CA model can produce reliable 
predictions for future LULC. 

Keywords: land use; land cover; cellular automata; artificial neural network; LULC prediction; 
North Sumatra; Indonesia 

 

1. Introduction 

Land use refers to the purpose that land serves, for example, recreation, wildlife habitat, or 
agriculture. Land cover refers to the surface cover on the ground, whether vegetation, urban 
infrastructure, water, bare soil or other. Although the meanings of the terms are distinct, land use 
and land cover (LULC) are often used interchangeably. Identifying, delineating and mapping land 
cover is important for global monitoring studies, resource management, and planning activities. 
Identification of land cover establishes the baseline from which monitoring activities (change 
detection) can be performed and provides the ground cover information for baseline thematic maps. 
Moreover, land use applications involve both baseline mapping and subsequent monitoring, since 
timely information is required to know what current quantity of land is involved in what type of use 
and to identify the land use changes from year to year. Therefore, knowledge of LULC will help with 
the development of strategies to balance conservation, conflicting uses, and development pressures. 
Additionally, issues can be identified from LULC studies, such as the removal or disturbance of 
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productive land, urban encroachment, and the depletion of forests suitable for species distribution 
[1]. 

Simulation of LULC changes provides the baseline scenario for use when predicting future 
scenarios and patterns in future development. Simulation of LULC changes can indicate 
anthropogenic impact, identify land use problems, such as the degradation and deforestation, and be 
used in land use planning [2]. Land use changes have been important aspects for regional and urban 
planning for centuries. Most of the research predicts land use changes using the independent variable 
with the highest correlation to those changes. Verburg et al. [3] illustrated that the multiscale 
characteristics of land use systems require new techniques to quantify neighborhood effects. 
Furthermore, Verburg et al. [3] also explicitly dealt with temporal dynamics and achieved a higher 
level of integration among disciplinary approaches and between models studying urban and rural 
land use changes. Multivariate spatial models [4], Markov analysis [5], cellular automata (CA) [3, 6, 
7, 8, 9], neural-network-based CA [2], empirical-statistical models [10, 11], optimization models [12], 
and agent-based models [13, 14] have all been used in the simulation of land use change. More details 
on each method can be found in [15]. 

The CA is a common method for simulating the LULC change spatial evolution by estimating 
the state of a pixel according to its initial state, surrounding neighborhood effects and transition rules. 
A CA model can generate rich patterns and effectively represent nonlinear spatially stochastic LULC 
change processes [16, 17]. The applications of CA models have been growing in urban development 
studies, with strong capabilities for simulating the spatiotemporal complexity of urban systems [18, 
19, 20, 21, 22, 23], and in the simulation of deforestation under the influences of natural hazards or 
human activities [24, 25]. However, most of these studies simulate the dynamics of one individual 
land use, while in many cases, various LULC change processes occur at the same time and affect each 
other [16, 26]. In addition, these models do not account well for the role of climate change in long-
term land use pattern changes. 

LULC changes from human activities hinder predictive use. The changes are dynamic, 
depending on many factors, such as politics, regulation, and economic and social conditions. 
Regarding this condition, projection analysis needs to appear in the simulation to predict possible 
future scenarios. Among many methodologies described, agent-based modelling combines the 
cellular model (representing the landscape of interest) with an agent-based model (representing 
decision-making entities) [27]. Meanwhile, the other models use machine learning to process changes 
based on historical events and factors that provide the input for change. One of the models is an 
artificial-neural-network-based cellular automaton (ANN-CA), which was developed to simulate 
multiple land use changes and complex land use systems [2]. This approach can be used to determine 
LULC changes by considering the possible factors that may influence the changes. Therefore, ANN-
CA is utilized in this study. 

The study of land use change in the Asian region has been undertaken for many years. For 
instance, in China, a land use change model was developed using geographic information system 
(GIS) to monitor and predict change in the land [12, 16, 23, 28]. Furthermore, LULC change is 
monitored and detected by remote sensing and GIS in Indonesia [29]. This LULC change model is 
based on multicriteria analysis in the GIS programme. The criteria are weighted, based on the 
researcher’s input, to determine their relative impacts on the model. The subjectivity of the 
researcher’s input for the weights is the limitation in the model. This limitation needs to be addressed 
by reducing the subjectivity and uncertainty of the researcher’s input. 

The LULC is an essential factor influencing species distributions. This factor is one of the 
important environmental factors for addressing human activities that will affect the area suitable for 
biological populations in the present and future. North Sumatra, as one of the provinces in Indonesia 
with large forest area, requires that attention be paid to its LULC due to the threats of conversion and 
forestland degradation. Therefore, this research aims to define the transition of land use changes in 
North Sumatra between two different years (1990 and 2000) and to predict and demonstrate future 
land use changes in 2050 and 2070 using the ANN-CA approach for forest conservation, land use 
management and development, and species distribution management in the future. 
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2. Study Area and Data 

2.1. North Sumatra 

North Sumatra is located between 0°34’6.39” S–4°18’16.59” N in latitude and 97°3’32.7”–
100°25’27.85” E in longitude in the western part of Indonesia, where it borders the Indian Ocean on 
the west and Malaysia to the east. On the north, North Sumatra borders the Aceh region, and on the 
south, it borders the Riau and West Sumatra regions. North Sumatra covers 26 regencies and seven 
cities with a total area of approximately 71,068.68 km2 (Figure 1). 

 
Figure 1. Map of North Sumatra and Indonesia. Administrative areas of North Sumatra are also 
shown. 

North Sumatra has experienced massive development over the last three decades where 
industrialization has changed the land use of most of the area, followed by agricultural expansion 
[30]. The forest area in North Sumatra is one of the largest in Indonesia, with more than 1,206,881 ha 
of preservation forest and 51,600 ha of conservation forest. However, there is forest degradation 
resulting from forest disturbance, especially from land conversion [31]. Several changes impact the 
forest as the habitat for many tree species displaced by other functions or land use. Moreover, the 
cover has also changed from trees to buildings or crops. 

The human interest in land allocation influences the planning in North Sumatra to support the 
development of the area to be more productive, rather than maintaining it as forest [30]. For instance, 
most of the residents choose crop plantation for restoration of tree cover, rather than favouring 
hardwood trees, in the Lake Toba catchment area [32]. The LULC changes result from conflicting land 
interests. Crop plantation expands to increase profit, reducing forest area [33]. These conditions 
require the LULC perspective to emphasize the future impact of the changes, especially for loss of 
forest biodiversity. 

Since the 17th century, North Sumatra has become a famous regency for forest products, such 
as Sumatra benzoin from the Styrax sumatrana trees. This product has become the income source of 
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primary importance for communities around the forested areas in North Sumatra [34]. However, 
North Sumatra faces a problem with space allocation due to the increase in the population and 
industries, especially palm oil, rubber, and log-forest product plantations owned by private 
companies [35]. S. sumatrana was threatened by land conversion. This conversion influences the 
species sustainability in North Sumatra. The spatial LULC information is crucial to analyze the 
potential area for this species to grow. Therefore, the purpose of LULC change prediction in this 
study is to contribute to regional planning and management for the distribution of S. sumatrana in 
North Sumatra, and this is the rationale for choosing North Sumatra as the study region. 

2.2. Data and Criteria 

The data collected and used in this study include a digital elevation model (DEM), road map, 
soil types and three LULC maps for 1990, 2000, and 2010, as presented in Table 1. The Advanced 
Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER 
GDEM) v2 is one of the most widely used DEM datasets and is used in this study. The road map and 
LULC maps were obtained from the Ministry of Environment and Forestry of Indonesia, and the soil 
type map was obtained from the Food and Agriculture Organization (FAO). 

From the dataset, five criteria, including altitude, slope and aspect from the DEM, distance from 
the road from the road map, and soil type, were selected for further analysis. Then, the criteria were 
classified into the input data and the explanatory data in the LULC simulation and prediction. The 
three LULC maps are the input data, and the other criteria, altitude, slope, aspect, distance from the 
road, and urban density, belong to the explanatory data (Table 1). 

Table 1. Summary of dataset, including digital elevation model (DEM), road map, soil type map, and 
land use and land cover (LULC) map used in this study. 

Data Criteria LULC Simulation Year Description Source Data 
Format 

DEM 

Altitude Exploratory map 

2017 

ASTER GDEM 
with 30 arc-sec 

spatial 
resolution 

United State Geological Survey (USGS) 
(https://earthexplorer.usgs.gov/) 

GeoTIFF Slope Exploratory map 

Aspect Exploratory map 

Road 
map 

Distance from 
the road 

Exploratory map 2000 
The main road 
map of North 

Sumatra 

Ministry of Environment and Forestry, 
Indonesia 

shp 

Soil 
type 

Soil type Exploratory map 2000  

A spatial soil 
type inventory  

(30 arc 
seconds)  

for year 2000 

Food and Agriculture Organization 
(FAO) 

(http://www.fao.org/soils-portal/soil-
survey/soil-maps-and-

databases/harmonized-world-soil-
database-v12/en/) 

TIFF 

LULC 
map 

LULC Input map 

1990 A satellite 
image from 

Landsat, USGS 
and LAPAN 

Ministry of Environment and Forestry, 
Indonesia 

(http://webgis.dephut.go.id:8080/keme
nhut/index.php/id/fitur/unduhan) 

KML 2000 

2010 

Table 2. Twelve classifications for LULC maps. 

No Classification Description 
1 Airport The built area for transportation 
2 Crop The area for crop plants alone and with shrub plants 
3 Forest The area of primary, secondary and plantation forest 
4 Lake The area of large-scale water bodies 
5 Mangrove The area for primary and secondary mangrove forest 
6 Open area The barren area 
7 Garden field The area with square and near human settlement 
8 Plantation The area dominated by oil palm and rubber plant 
9 Pond The area of small-scale water bodies for fisheries 

10 Residential Transmigration and permanent residential area 
11 Shrub Shrub and juvenile plant area 
12 Swamp Primary and secondary swamp forest area 
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The three LULC maps were converted into raster data using ArcGIS. The resolution was 30 arc 
seconds, with 25 categories. Then, the number of categories was reduced into 12 classifications by 
regrouping several categories as shown in Table 2. The airport is considered separately, since it is 
assumed to be unchangeable in land use. 

3. Methodology 

3.1. Artificial-Neural-Network-Based Cellular Automaton Model 

The simulations of LULC change and prediction were conducted using the ANN-CA model. 
ANN is used to determine the transition probability of LULC using multiple output neurons for 
simulating multiple LULC changes, within the structure of ANN-CA presented in Figure 2. CA is 
used to model the LULC changes by applying the transition probabilities from the ANN learning 
process. The overall analytic procedure is described in the following steps (Figure 3), and QGIS and 
its MOLUSE module were utilized for the ANN-CA modelling [24]. 

Step 1: The first step is to define the inputs to the neural network for the simulation. The simulation 
is cell-based (pixel-based), and each cell has a set of n attributes (spatial variables) as the inputs to the 
neural network. The spatial variables can be represented by X = 𝑥 , 𝑥 , 𝑥 , … , 𝑥 , (1)

where xi is the i-th attribute, and T is transposition. 
The initial (1990) and final (2000) LULC maps, as well as the five exploratory maps, are loaded 

as input data. Since we use five criteria from exploratory maps and 12 categories in LULC maps, 17 
attributes (spatial variables) for each cell are used for modelling and simulating LULC changes. All 
datasets are processed to retrieve the attributes and have the same spatial extent and resolution (30 
arc seconds) in raster format. 

 

Figure 2. Artificial-neural-network-based cellular automaton (ANN-CA) model structure for 
simulating LULC changes. 
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Figure 3. Procedure for land use change analysis. The altitude and distance from the road are chosen 
for the exploratory map after the experiments by comparing the values of the Kappa coefficient and 
the percent of correctness from the other categories. 

Step 2: Each correlation between spatial variables is evaluated in a two-way raster comparison by 
selecting the first raster from one variable and the second raster from another variable. Then, the 
LULC area and changes for each category are computed between the initial (1990) and final (2000) 
time periods. The transition matrix showing the proportions of pixels changing from one category to 
another is also obtained from the computation. 

Step 3: In this step, the transition probability is modelled by ANN. The neural network structure 
consists of three layers, namely, the input, hidden, and output layers (Figure 2). Each spatial variable 
is associated with a neuron in the input layer after scaling within the range of [0, 1]. Therefore, the 17 
neurons corresponding to the 17 attributes are used in the input layer. 

In the hidden layer, the signal received by the j-th neuron, netj(k,t), from the input layer for the 
k-th cell at time t was computed by 𝑛𝑒𝑡 (𝑘, 𝑡) = ∑ 𝑤 , 𝑥 (𝑘, 𝑡), (2)

where 𝑤 ,  is the weight between the input and the hidden layers, and 𝑥 (𝑘, 𝑡) is the i-th scaled 
attribute associated with the i-th neuron in the input layer with respect to the k-th cell at time t. In 
terms of the number of neurons in the hidden layer, the use of 2n + 1 is recommended to guarantee 
the perfect fit of any continuous functions, and reduction of the number of neurons may lead to lower 
accuracy. However, based on Wang [25], 2n/3 hidden neurons can generate results of almost similar 
accuracy while requiring much less time to train. Therefore, we used 12 hidden neurons in this study. 

The output layer includes 12 neurons corresponding to the 12 classifications in LULC maps 
(Table 2). The l-th neuron in the output layer generates a value that represents the transition 
probability from the initial type to the l-th (target) type of LULC. The transition probability is 
obtained by the following equation according to the output function of a neural network. 𝑃(𝑘, 𝑡, 𝑙) = ∑ 𝑤 , ( , ), (3)

where 𝑃(𝑘, 𝑡, 𝑙) is the probability of conversion from the existing to the l-th type of LULC for the k-
th cell at time t, and 𝑤 ,  is the weight between the hidden and the output layers. A higher value 
indicates that the transition probability from the initial type to the lth type is larger. 

LULC maps 
(1990 and 2000)

Transition Matrix

ANN learning process

CA Simulation

Validation of 
LULC map for 2010
(real vs predicted)

Prediction of LULC maps 
(2050 and 2070)

Explanatory maps 
(Altitude, slope, aspect, soil type 

and distance from road)

accurate

inaccurate
Transition probability
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An iterative neural network based on the back-propagation learning algorithm is designed to 
simulate land uses in this study. At each iteration, each neuron in the output layer generates a 
transition probability from an existing type to another type of land use. In this simulation, LULC 
change is determined by comparing the values of transition probability such that LULC will convert 
from the existing type to the type with the highest value of transition probability. If the same type of 
LULC has the highest transition probability, the state of the corresponding cell remains unchanged. 

Step 4: Once the transition probability is obtained, then modelling of LULC change is carried out by 
the CA simulation. The CA consists of regular spatial lattices of cells, each of which can have any one 
of a finite number of states, depending on the states of neighboring cells [27]. CA considers the 
composition of associations of cells around one cell [36]. CA simulation usually involves many 
iterations to decide whether a cell is changed or not. A predetermined threshold value should be used 
to control the rate of change so that land use conversions occur step-by-step. If the highest transition 
probability is lower than the threshold value, which is 0.9 in this study based on Li and Yeh [2], then 
the cell remains unchanged. The threshold value varies from 0 to 1, and the large value of 0.9 is used 
to keep the LULC changes stable in each iteration, thus obtaining fine patterns of simulation [2]. The 
CA in urban areas in this study only divides the classification into urban and non-urban areas for 
simplicity, because, if multiple land uses are presented, the transition rules of urban CA models 
become substantially more complicated, since the simulation involves the use of a much larger set of 
spatial variables and weights and more complex model structures. 

Step 5: Validation of the LULC simulation using values of the Kappa coefficient to evaluate and 
compare the real (reference) and predicted (simulated) LULC maps for 2010 is described in Section 
3.2. 

Step 6: After the validation, the predictions of the future LULC maps in 2050 and 2070 are computed, 
assuming the continuation of the current trends and dynamics of the LULC changes. The same weight 
values are utilized for the neural network in the simulation of future LULC changes. 

3.2. Validation 

The validation is carried out by comparing the predicted and the real LULC maps for 2010. The 
true agreement from this validation is measured by the Kappa coefficient. 

The Kappa coefficient is widely used in LULC assessments for accuracy [37] to measure the true 
agreement between the observed agreement and chance agreement [38]. The Kappa coefficient is 
calculated by Kappa = 𝑝 − 𝑝1 − 𝑝  (4)

where po is the proportion of observed agreements, and pe is the proportion of agreements expected 
by chance. 

𝑝 =  𝑝  (5)

𝑝 =  𝑝 T𝑝T  (6)

where pij is the i-th and j-th cell of the contingency table, piT is the sum of all cells in i-th row, pTj is 
the sum of all cells in j-th column, and c is the count of the raster category. The contingency table is a 
matrix form that illustrates the frequency distribution of the variables and is used to show the 
interrelation between i-th and j-th cells in this study. The interaction of every cell is tabulated into a 
matrix and calculated. The result explains the agreement of every criterion of each cell. Finally, the 
contingency table is used to express the percent agreement as a Kappa coefficient. 

To determine the exploratory map using the five criteria, a number of simulations to predict the 
LULC changes for 2010 were conducted by using each criterion, alone and in combinations of two to 
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five, for the exploratory data in the LULC simulation. The result of explanatory map analysis from 
the seven simulations with different combinations of variables is presented in Table 3. 

As displayed in Table 3, the overall correctness and Kappa coefficients are high and similar. 
Among these values, the exploratory data with altitude and distance from the road and their 
combination produced the highest Kappa score of 0.83 and the highest percent of correctness of 
87.28%. The highest Kappa value indicates that the two criteria, altitude and distance from the road, 
have greater impacts on LULC changes than the other criteria. The two criteria are illustrated in 
Figure 4. Table 4 demonstrates the transition matrix of the 12 LULC categories between 1990 and 
2000. Then, the result is employed to simulate the prediction of LULC for the years 2050 and 2070. 

Table 3. Simulation results in terms of the percent of correctness and Kappa coefficient for 
explanatory data validation with difference combination of criteria. 

No Criteria/Combination % of Correctness Kappa 
1 Alt, road, urban 86.59 0.83 
2 Alt, urban 87.48 0.83 
3 Alt, road 87.82 0.83 
4 Urban, road, 85.8 0.81 
5 Alt, urban, road, soil type, aspect 86.85 0.82 
6 Alt, urban, road, soil type, slope, aspect 87.4 0.83 
7 Aspect, urban, slope 87.28 0.83 

 

  
(a) (b) 

Figure 4. (a) The altitude and (b) distance from road as the explanatory map for ANN-CA model. 
Altitude and distance from road are chosen as the explanatory map, since they and their combination 
result in higher scores for percent of correctness and Kappa index than the other criteria, such as slope, 
aspect, and urban density. 

 

.
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.
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Table 4. Transition matrix of LULC classifications from 1990 to 2000 showing the changes in LULC for each classification. The values in the table vary from 0 to 1, 
with higher values indicating larger changes, except for the diagonal cells with high values, which depict no changes by remaining as the same category. 

Classification 
2000 

Sum 
Airport Crop Forest Lake Mangrove Open Area Garden Plantation Pond Residential Shrub Swamp 

1990 

Airport 1 0 0 0 0 0 0 0 0 0 0 0 1 
Crop 0 0.96143 0.00046 0 0 0.00210 0.00631 0.02882 0.00018 0.00063 0.00004 0.00004 1 

Forest 0 0.00908 0.92400 0 0 0.01547 0.00013 0.04580 0 0 0.00493 0.00060 1 
Lake 0 0.00252 0 0.99748 0 0 0 0 0 0 0 0 1 

Mangrove 0 0.00521 0 0 0.81250 0.04167 0 0.00521 0.11458 0 0 0.02083 1 
Open Area 0 0.00417 0 0 0.00139 0.97153 0 0.02292 0 0 0 0 1 

Garden 0 0.02036 0 0 0 0.00750 0.93283 0.03108 0 0.00822 0 0 1 
Plantation 0 0.09766 0 0 0 0.01163 0 0.88856 0.00017 0.00009 0.00190 0 1 

Pond 0 0 0 0 0 0 0 0 1 0 0 0 1 
Residential 0 0 0 0 0 0 0.00571 0 0 0.99429 0 0 1 

Shrub 0 0.11184 0.00144 0 0 0.00497 0 0.05318 0 0 0.82833 0.00026 1 
Swamp 0 0.03147 0.00305 0 0.00025 0.05279 0.00685 0.15685 0.00812 0 0.03325 0.70736 1 

Sum 1.0 1.24374 0.92894 0.99748 0.81414 1.10765 0.95184 1.23242 1.12305 1.00322 0.86843 0.72909 12.0 
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4. Results and Discussion 

The percentage of area changes is presented by a transformation matrix that is used as the input 
for the neural network to obtain the transition probability for every input and to produce the LULC 
output layer. The LULC transition matrix is produced by comparing the area percentages of the 
LULC categories between the years 1990 and 2000, as shown in Table 4. 

The ANN-CA model shows the prediction of LULC for the year 2010 by calculating the transition 
probability of every cell in the layer between two different LULC raster maps by considering altitude 
and distance from the road as the explanatory variables. The validation was implemented by 
comparing the factual LULC in the year of 2010 with the predicted LULC of the same year. The 
simulation shows a percentage of correctness of 87.28% and a Kappa value of 0.83 by using altitude 
and distance from road as the explanatory map. The percentage of correctness shows the percentage 
of the predicted area that is precisely the same as the real area in the same year. The Kappa value 
shows the degree of accuracy and reliability in a statistical classification. The value of 0.83 shows high 
agreement between the two different LULC maps from the same year [39]. 

The difference between the predicted and the real LULC maps of 2010 is described in Table 5. A 
positive value in the second column shows the overestimation of the prediction over the real 
condition, while a negative value indicates the opposite. A value of zero occurs when the real and 
predicted maps are equal or have the same value. The third and fourth columns explain the changes 
of every classification from the initial year of 2000 to the predicted and the real maps in 2010, 
respectively. Furthermore, the deviation between the predicted and the real maps of the LULC 
classifications are displayed in Figure 5. 

LULC prediction maps show the projected land use changes in 2050 and 2070 (Figure 6). The 
classifications in 2050 and 2070 are based on the classifications in 2000. To predict a species’ 
distribution, the land use change represents the percentage change in suitable land cover 
classification required for the species to survive in the future prediction. The percentages of these 
changes are presented in Table 6. 

 
(a) (b) 

Figure 5. Comparison between (a) the real and (b) the predicted LULC maps for 2010. The percentage 
of correctness is 87.28%, and the Kappa index is 0.83. 
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Table 5. Comparison of changes between the predicted and the real maps in 2010 from the initial year 
in 2000. A positive value indicates the increase in the classification, whereas the negative values 
illustrate the decrease in the corresponding classifications. The differences between the predicted and 
the real maps in 2010 show the deviation values. The positive values indicate overestimations, while 
the negative values illustrate the underestimations of the changes. 

Classification 
LULC Change Ratio 

The Predicted (2010) 
 – The Real (2010) 

The Predicted (2010) 
– The Real (2000) 

The Real (2010) 
– The Real (2000) 

Airport 0.0001 0.0000 −0.0001 
Crop 1.1763 0.1986 −0.9777 
Forest 0.9279 −0.5885 −1.5164 
Lake −0.0133 −0.0173 −0.0040 

Mangrove 0.0740 −0.0222 −0.0962 
Open area −0.8128 −0.2665 0.5464 

Garden −0.6965 −0.0864 0.6102 
Plantation −1.8071 1.1732 2.9804 

Ponds −0.0438 −0.0234 0.0203 
Residential −0.0621 −0.0456 0.0165 

Shrub −0.2222 −0.1752 0.0471 
Swamp 1.4796 −0.1468 −1.6264 

Table 6. Percentage of land use land cover changes. A positive value indicates the increase in the 
classification, whereas the negative values illustrate the decrease in corresponding classifications. 

Classifications 
LULC Changes (%) 

2070 – 2050 2070 – 2000 2050 – 2000 2000 – 1990 2010 – 2000 
Airport 0.0000 −0.0001 −0.0001 0.0001 −0.0001 

Crop −0.0012 −1.2860 −1.2848 1.3730 −0.9777 
Forest −0.0477 −1.7256 −1.6779 −1.9777 −1.5164 
Lake 0.0000 −0.0444 −0.0444 0.0023 −0.0040 

Mangrove 0.0000 −0.1084 −0.1084 −0.0817 −0.0962 
Open area −0.0098 0.3616 0.3714 0.9826 0.5464 

Garden field 0.0073 0.3606 0.3532 0.0485 0.6102 
Plantation 0.0330 4.1709 4.1379 2.1559 2.9804 

Pond 0.0000 0.0081 0.0081 0.1031 0.0203 
Residential −0.0012 −0.1218 −0.1206 0.0534 0.0165 

Shrub 0.0220 0.1768 0.1547 −1.2761 0.0471 
Swamp −0.0024 −1.7916 −1.7891 −1.3834 −1.6264 

The percentages of shrub and garden fields are projected to increase by approximately 0.1547% 
and 0.3532% from 2000 to 2050 and 0.1768% and 0.3606% from 2000 to 2070, respectively. However, 
the crop and forest areas are projected to decrease by 1.24848% and 1.6779% from 2000 to 2050, 
followed by 1.2860% and 1.7256% from 2000 to 2070, respectively. Moreover, most of the classification 
will change to plantation. In 2050, the percentage of changes to plantation area are projected to 
increase to 4.1379% by 2050 and 4.1709% by 2070, respectively. 

Land use change between 1990 and 2000 in the transition matrix shows that most of the area 
changed from forest and shrubland into plantations. Two areas with significant changes are forest by 
0.045% and shrubland by 0.053% into plantation. However, the highest change was shrubland to crop 
area at 0.11%. This transition shows that human activities in forest and shrubland are high. The 
demands of land for human activities change LULC classifications from less profitable (the non-
valuable classification: forest and shrubland, which are allotted lower economic profits) to a more 
profitable classification (valuable classification: plantation such as palm oil and rubber, which 
provide annual or seasonal income). This condition threatens the species in forest and shrubland by 
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reducing the suitable area for species to survive. Other studies have demonstrated that changes in 
forest and crop area into oil palm plantation is higher in Indonesia, in particular on Sumatra Island 
[40,41]. 

(a) (b) 

 

 

(c) 

Figure 6. The LULC classifications based on the suitable land use for Styrax sumatrana. (a) LULC for 
the year 2000, (b) the predicted LULC in the year 2050, and (c) the predicted LULC in the year 2070. 
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The differences between the land use map from 2000 and those of 2050 and 2070 illustrate the 
high increases in plantation area of more than 4%, while the other classifications show changes of 
approximately 0%–1.8%. An increase in one classification indicates a decrease in other classifications. 
Higher changes of the categories into plantation indicate that the probability for plantation is higher 
than for the other categories. The changes were acquired by the ANN to weight the categories 
proportionally for use in the model. 

5. Conclusions 

The LULC is of critical importance and forms a baseline thematic map for monitoring, resource 
management, and planning activities. Moreover, the LULC can be used to develop strategies to 
balance conservation, conflicting uses, and development pressures. In this study, changes in LULC 
in North Sumatra, Indonesia, are simulated and predicted using the ANN-CA model. 

Five criteria, including altitude, slope, aspect, distance from road, and soil type, are derived from 
a DEM, road map and soil type map, and utilized as exploratory data for training the ANN-CA 
model. In the simulation of LULC changes between 1990 and 2000, two criteria, altitude and distance 
from road, show high impacts on LULC changes. The Kappa index also indicates high agreement 
between the predicted and real LULC maps of 2010. Then, the ANN-CA model is used to predict the 
LULC changes for the years 2050 and 2070. 

The LULC predictions for 2050 and 2070 show high increases in plantation area, which increase 
by more than 4% from the same category in 2010. Meanwhile, forest and crop areas are projected to 
decrease by approximately 1.2% and 1.6%, respectively, by 2050, and by approximately 1.2% and 
1.7%, respectively, by 2070, relative to the 2010 LULC, indicating the human influences on LULC 
changing forest and cropland to plantations. 

As described, among all regions in Indonesia, North Sumatra is one of the regions with great 
forest area that has been threatened by climate change and land use change [31]. In fact, North 
Sumatra has experienced massive development over the last three decades, as industrialization has 
changed the land use of most areas, followed by the agricultural expansion [30]. Therefore, there is 
forest degradation as the result of forest disturbance, especially from land conversion [31]. The 
human interest in land allocation lures the planning in North Sumatra to support the development 
of the region. Development changes the land to more productive uses, such as agriculture or 
industrial types, rather than preserving it as forest [30]. For instance, most of the residents choose 
crop plantations for reforestation rather than hardwood trees in the Lake Toba catchment area [42]. 
The resident corporations expand their plantations to increase profit and reduce the forest area [33]. 
This condition demands the LULC perspective to emphasize the future impact of the changes, 
especially on loss of forest biodiversity. 

The ANN-CA model in this study is based on historical information and observes changes 
supported by explanatory variables. The CA demonstrates that the change of one pixel into another 
category relies on its neighborhood. The changes will continue until every pixel undergoes the 
changing process. The ANN-CA model might be more reliable in terms of reduced subjectivity and 
uncertainty when compared to other methods such as analytic hierarchy process (AHP) and 
technique for order preference by similarity to ideal solution (TOPSIS) for weighting criteria [43,44]. 
Moreover, this study illustrates that the ANN-CA model is successfully applied to conduct multiple 
LULC change simulations within one CA model by considering the complicated interactions and 
competition among different land use categories. 

On the other hand, long-term effects altering the landscape dynamics, as exhibited in [26,45,46], 
due to climate factors, such as global warming, extreme weather events, etc., and ecological 
degradation, such as hydrological variation, soil erosion, etc., are not considered in this study. 
Moreover, this ANN-CA model does not consider planning and development factors in such a way 
as to determine demands for different land use types from the macro-scale perspective and to 
examine scenarios representing future development pathways [47,48]. Therefore, it should be noted 
that predicted future LULC changes obtained in this study are very limited in a conservative manner. 
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The forest area in North Sumatra, as described, is one of the largest in Indonesia with large 
preservation forest and conservation forest areas. However, there is forest degradation resulting from 
forest disturbance, especially from land conversion. The development of the region by human 
interests changes the land to more productive uses, such as agriculture or industrial types, rather 
than preserving it as forest. In general, the LULC changes occur as the impact of conflicts over land 
interests. For instance, the local residents choose crop plantations for reforestation, and corporations 
expand their plantations to increase profit and thus reduce forested area in the region. This condition 
demands the LULC perspective to emphasize the future impact of the change, particularly for loss of 
forest biodiversity. Therefore, the LULC changes predicted by this study can be used in sustainable 
forest management and regional planning. 

In this study, however, other variables, such as climate, policy, regulation or human 
development, affecting LULC changes are not taken into account. Therefore, future investigation will 
be improved by including those variables. 
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