BookPDF Available

AHEAD -Internationales Horizon-Scanning: Trendanalyse zu einer Hochschullandschaft in 2030

Authors:

Abstract

Das Projekt „(A) Higher Education Digital (AHEAD) - Internationales Horizon-Scanning / Trendanaly- se zur digitalen Hochschulbildung“ hat von Februar 2018 bis Januar 2019 eine systematische Ana- lyse der aktuellen Trends und Anforderungen in den Bereichen Wissens- und Kompetenzanforde- rungen unternommen und die neuesten Entwicklungen in der Lerntheorie, Didaktik sowie in der digitalen Bildungstechnologie vor dem Hintergrund einer (zunehmend) digitalisierten Hochschulbil- dung untersucht. Die Analyse bildete die Grundlage für ein Horizon-Scanning für die Hochschulbil- dung im Jahr 2030, das Zukunftsszenarien entwickelt, die sich soziale und digitale Innovationen zunutze machen, um künftige Anforderungen an das Hochschulwesen erfüllen zu können. Die Studie wurde im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) vom FiBS Forschungsinstitut für Bildungs- und Sozialökonomie zusammen mit dem Institut für Hochschul- entwicklung (HIS-HE) durchgeführt.
NR. 42 / MAI 2019
AHEAD – Internationales
Horizon
-Scanning:
Trendanalyse zu einer
Hochschullandschaft in
2030
Dominic Orr
/ Maren Lübcke / Philipp Schmidt / Markus Ebner /
Klaus Wannemacher
/ Martin Ebner / Dieter Dohmen
NR. 42 / MAI 2019
AHEAD – Internationales
Horizon-Scanning:
Trendanalyse zu einer
Hochschullandschaft in
2030
Hauptbericht der AHEAD-Studie
Autor*innen
Dominic Orr, FiBS / Maren Lübcke, HIS-HE / Philipp Schmidt, MIT /
Markus Ebner, TU Graz / Klaus Wannemacher, HIS-HE /
Martin Ebner, TU Graz / Dieter Dohmen, FiBS
HFD AP 42 AHEADInternationales Horizon-Scanning
Inhalt
4
Inhalt
Inhalt ................................................................................................................................................................ 4
Abbildungs- und Tabellenverzeichnis ......................................................................................................... 6
Das Hochschulforum Digitalisierung ........................................................................................................... 7
Das AHEAD-Projekt ........................................................................................................................................ 8
Das FiBS Forschungsinstitut für Bildungs- und Sozialökonomie ........................................................... 9
Das HIS-Institut für Hochschulentwicklung e.V. (HIS-HE)..................................................................... 10
Die Autor*innen ............................................................................................................................................. 11
Die Autor*innen ............................................................................................................................................ 12
Zusammenfassung ...................................................................................................................................... 13
Executive Summary ......................................................................................................................................15
Kapitel 1: Eine Hochschullandschaft für die digitale Welt ..................................................................... 19
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung .............................................................. 23
2.1 Hintergrunduntersuchungen .............................................................................................................. 23
2.1.1 Literaturanalyse zur Hochschulbildung und ihrer Zukunft ............................................. 23
2.1.2 Wissens- und Kompetenzanforderungen einer digitalen Gesellschaft ........................ 26
2.1.3 Hochschuldidaktische Herausforderungen einer digitalen Gesellschaft .................... 30
2.1.4 Technologische Voraussetzungen und Möglichkeiten der Hochschulbildung in der
digitalen Gesellschaft ......................................................................................................... 34
2.1.4.1 Ansichten aus dem Mainstream-Hochschulbereich ......................................................... 35
2.1.4.2 Operativer und strategischer Nutzen von Technologie in der Hochschulbildung .......36
2.2 Entwicklung von Szenarien und Validierungsdiskussionen .......................................................... 39
2.2.1 Modellierungen, die auf Institutionen und dabei insbesondere auf Governance-
Fragen fokussieren .......................................................................................................... 39
2.2.2 Modellierungen, die auf Technologie fokussieren ........................................................... 39
2.2.3 Modellierungen, die auf gesellschaftliche Entwicklungen fokussieren ...................... 40
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030 ................................................................. 44
3.1 Kurzbeschreibungen der Lernwege ................................................................................................... 45
3.1.1 Tamagotchi: Hochschulbildung für einen guten Start ins Leben .................................. 45
3.1.2 Jenga: Hochschulbildung als solides Fundament zur Weiterentwicklung .................. 47
3.1.3 Lego: Hochschulbildung als Bausatz ..................................................................................51
3.1.4 Transformer: Hochschulbildung als Chance zur Veränderung ...................................... 53
3.2 Detailanalyse der Modelle der Hochschulbildung im Jahr 2030 .................................................. 55
3.2.1 Umweltanforderungen und Modelle .................................................................................. 55
HFD AP 42 AHEADInternationales Horizon-Scanning
Inhalt
5
3.2.2 Didaktische und technologische Besonderheiten der Modelle ..................................... 57
Kapitel 4: Ausblick auf eine neue Hochschullandschaft 2030 ............................................................. 62
4.1 Ein neuer Fokus auf Lernwege in Zeiten der Digitalisierung ......................................................... 62
4.2 Zukünftige Relevanz der Lernwege für die Hochschullandschaft 2030 ..................................... 63
Kapitel 5: Bibliographie ............................................................................................................................... 66
Kapitel 6: Anhang ......................................................................................................................................... 73
6.1 Methodische Anmerkungen ................................................................................................................ 73
6.1.1 Zusammenarbeit mit dem Advisory Board ........................................................................ 73
6.1.2 Veranstaltung „Zersplitterte Welten“ ................................................................................ 75
6.1.3 Hintergrundinformationen zur anonymen internationalen Umfrage ........................... 76
6.2 A1 Literaturanalyse zur Hochschulbildung und ihrer Zukunft ....................................................... 77
6.3 A2 Wissens- und Kompetenzanforderungen einer digitalen Gesellschaft ................................... 77
6.4 A3 Hochschuldidaktische Herausforderungen einer digitalen Gesellschaft ............................... 77
6.5 A4.1 Technologische Voraussetzungen der Hochschulbildung ..................................................... 77
6.6 A4.2 Digital Technologie Der Blick nach Außen ............................................................................ 77
Impressum .................................................................................................................................................... 78
HFD AP 42 AHEADInternationales Horizon-Scanning
Abbildungs- und Tabellenverzeichnis
6
Abbildungs- und
Tabellenverzeichnis
Abbildung 1: Häufigkeit der Nennung der Schlagwörter im untersuchten Literaturkorpus................. 25
Abbildung 2: Gefühl des Unterqualifiziertseins von Hochschulabsolvent*innen bei der Einstellung
nach Fachbereichen (ausgewählte Bereiche), Anteil 2014 (EU-28) .......................................................... 28
Abbildung 3: Literaturanalyse Auswertung der Häufigkeiten in der Kategorie „Learning” ............. 30
Abbildung 4: Neue Lernräume, die analog und digital integrieren............................................................34
Abbildung 5: Die Anforderungen an die Hochschulbildung aus Sicht der*s Studierenden ................. 42
Abbildung 6: Vier Lernwege für die Hochschullandschaft 2030.. ............................................................ 44
Abbildung 7: Absolvent*innenquote in Altersgruppe 25-34 (Länderauswahl), 1990 2016. ............. 55
Abbildung 8: Einschätzungen zur aktuellen und zukünftigen Bedeutung der vier Lernwege. ........... 64
Tabelle 1: Verschiedene Lernarrangements. .................................................................................................. 31
Tabelle 2: Unterschiede in didaktischer und technologischer Hinsicht der vier Modelle. ................... 60
HFD AP 42 AHEADInternationales Horizon-Scanning
Das Hochschulforum Digitalisierung
7
Das Hochschulforum
Digitalisierung
Das Hochschulforum Digitalisierung (HFD) orchestriert den Diskurs zur Hochschulbildung im digita-
len Zeitalter. Als zentraler Impulsgeber informiert, berät und vernetzt es Akteure aus Hochschulen,
Politik, Wirtschaft und Gesellschaft.
Das HFD wurde 2014 gegründet. Es ist eine gemeinsame Initiative des Stifterverbandes für die
Deutsche Wissenschaft mit dem CHE Centrum für Hochschulentwicklung und der Hochschulrekto-
renkonferenz (HRK). Gefördert wird es vom Bundesministerium für Bildung und Forschung.
Weitere Informationen zum HFD finden Sie unter:
https://hochschulforumdigitalisierung.de.
HFD AP 42 AHEADInternationales Horizon-Scanning
Das AHEAD-Projekt
8
Das AHEAD-Projekt
Das Projekt „(A) Higher Education Digital (AHEAD) - Internationales Horizon-Scanning / Trendanaly-
se zur digitalen Hochschulbildung“ hat von Februar 2018 bis Januar 2019 eine systematische Ana-
lyse der aktuellen Trends und Anforderungen in den Bereichen Wissens- und Kompetenzanforde-
rungen unternommen und die neuesten Entwicklungen in der Lerntheorie, Didaktik sowie in der
digitalen Bildungstechnologie vor dem Hintergrund einer (zunehmend) digitalisierten Hochschulbil-
dung untersucht. Die Analyse bildete die Grundlage für ein Horizon-Scanning für die Hochschulbil-
dung im Jahr 2030, das Zukunftsszenarien entwickelt, die sich soziale und digitale Innovationen
zunutze machen, um künftige Anforderungen an das Hochschulwesen erfüllen zu können.
Die Studie wurde im Auftrag des Bundesministeriums für Bildung und Forschung (BMBF) vom FiBS
Forschungsinstitut für Bildungs- und Sozialökonomie zusammen mit dem Institut für Hochschul-
entwicklung (HIS-HE) durchgeführt.
HFD AP 42 AHEADInternationales Horizon-Scanning
Das FiBS Forschungsinstitut für Bildungs- und Sozialökonomie
9
Das FiBS Forschungsinstitut für
Bildungs- und Sozialökonomie
Das FiBS ist eine unabhängige Einrichtung für anwendungsorientierte Forschung und Beratung zum
lebenslangen Lernen von der frühkindlichen Bildung bis zur Weiterbildung mit seinen Schnittstellen
zu Arbeitsmarkt, Innovation, Digitalisierung, sozialen Fragen und demografischer Entwicklung mit
Sitz in Berlin. Wir sind in Deutschland, Europa und weltweit tätig. Unser Mission Statement lautet
„Enhancing Lifelong Learning for All“.
Das FiBS wurde 1993 von Dr. Dieter Dohmen, dem Inhaber und Direktor, als interdisziplinäre For-
schungs- und Beratungseinrichtung sowie Think Tank mit dem Fokus auf wissenschaftlich basierte
Politikberatung gegründet. Seit über 15 Jahren zählen die Auswirkungen der Digitalisierung auf
Bildung, Lernen und Arbeitsmarkt zu den wesentlichen Schwerpunkten des FiBS. In diesem Zu-
sammenhang haben wir neben der vorliegenden Studie zu den Implikationen der Digitalisierung auf
die Hochschulen, z.B. zu den Auswirkungen der Digitalisierung auf die Berufsbildung (u.a. mit
Schwerpunkt Entwicklungsländer), bereits frühzeitig Marktpotenziale und Geschäftsmodelle für den
Hochschulbereich entwickelt. Aktuell beschäftigen wir uns auch mit der Einbindung und Berück-
sichtigung in Curricula.
HFD AP 42 AHEADInternationales Horizon-Scanning
Das HIS-Institut für Hochschulentwicklung e.V. (HIS-HE)
10
Das HIS-Institut für
Hochschulentwicklung e.V.
(HIS-HE)
Das HIS-Institut für Hochschulentwicklung e. V. (HIS-HE) dient in Ausrichtung und Selbstverständ-
nis der Förderung von Wissenschaft, Forschung und Lehre. Aufgaben des forschungsbasierten
unabhängigen Kompetenzzentrums sind Beratung und Know-how-Transfer zu Themen der Hoch-
schulentwicklung und der Organisation von Forschung und Lehre. Mitglieder des Vereins HIS-
Institut für Hochschulentwicklung e. V. sind die Länder der Bundesrepublik Deutschland. Die Länder
unterhalten mit dem HIS-Institut für Hochschulentwicklung eine Einrichtung, deren Profil im Kon-
text der institutionellen Förderung vorsieht, Grundlagen für Bau, Nutzung und Organisation von
Hochschul-, Forschungs- und Bildungseinrichtungen zu erarbeiten sowie in Fragen der Strategie,
des Managements, der Organisation und Prozessgestaltung sowie der technischen und baulichen
Ausstattung Planungshilfe und Politikberatung zu leisten. Zum Themenfeld des digitalen Wandels
an den Hochschulen legte HIS-HE zuletzt u. a. die Schwerpunktstudien „Digitalisierung der Hoch-
schulen“ (im Auftrag der Expertenkommission Forschung und Innovation), „Ingenieurausbildung für
die Digitale Transformation. Zukunft durch Veränderung“ (im Auftrag des VDI Verein Deutscher
Ingenieure) und „Digitale Lernszenarien im Hochschulbereich“ (im Auftrag des Hochschulforums
Digitalisierung) vor.
HFD AP 42 AHEADInternationales Horizon-Scanning
Die Autor*innen
11
Die Autor*innen
Dominic Orr
Dr. Dominic Orr hat an der Technischen Universität Dresden in Verglei-
chender Erziehungswissenschaft promoviert und ist Professor für
Bildungsmanagement an der Universität Nova Gorica. Von 2015 bis An-
fang 2019 war er Projektleiter und Senior Researcher beim FiBS For-
schungsinstitut für Bildungs- und Sozialökonomie und ist derzeit Senior
Researcher am Kiron Open Higher Education. Darüber hinaus hat er sich
mit dem Zusammenhang zwischen Forschung, Politik und Praxis in vielen
internationalen Kontexten beschäftigt, u.a. als Consultant für die OECD,
die UNESCO und die Weltbank. Neben der Leitung des vorliegenden
AHEAD-Projekts ist er Mitglied im MIRVA-Projekt, das sich dafür einsetzt, die Anerkennung von Fä-
higkeiten und Kompetenzen durch digitale Badge-Technologien sichtbar und wertvoll zu machen.
Maren Lübke
Dr. Maren Lübcke ist wissenschaftliche Mitarbeiterin im Geschäftsbereich
Hochschulmanagement des HIS-Instituts für Hochschulentwicklung (HIS-HE)
in Hannover. Ihr Beratungs- und Forschungsschwerpunkt bei HIS-HE ist die
Digitalisierung von Forschung und Lehre an Hochschulen. Maren Lübcke hat
im Bereich Kommunikations- und Internetsoziologie promoviert und verfügt
über einen Master of Higher Education. Sie hat in verschiedenen, auch inter-
nationalen Forschungsprojekten zu E-Learning und E-Democracy gearbeitet
und ist Autorin verschiedenster Publikationen in diesem Bereich.
Philipp Schmidt
J. Philipp Schmidt ist Director of Learning Innovation im MIT Media Lab wo
er die ML Learning initative leitet, unterrichtet und ausarbeitet. Darüber
hinaus ist er Mitgründer und Vorstandsmitglied der Peer 2 Peer University
(P2PU), einer gemeinnützigen Organisation, die Zugang zu Hochschulbil-
dung durch öffentliche Bibliotheken ermöglicht.
Markus Ebner
Markus Ebner ist Junior Researcher in der Organisationseinheit Lehr- und
Lerntechnologien der Technischen Universität Graz und beschäftigt sich im
Rahmen seiner Promotion mit den Themenbereichen E-Learning, Mobile
Learning, Technology Enhanced Learning und Open Educational Resources.
Sein Schwerpunkt liegt im Bereich Learning Analytics im Umfeld der Primar-
und Sekundarstufe und im Themenbereich Bildungsinformatik.
HFD AP 42 AHEADInternationales Horizon-Scanning
Die Autor*innen
12
Die Autor*innen
Klaus Wannemacher
Dr. Klaus Wannemacher ist Seniorberater und Projektleiter im Geschäfts-
bereich Hochschulmanagement des HIS-Instituts für Hochschulentwick-
lung (HIS-HE) in Hannover. Als Organisationsberater unterstützt er seit
2002 Hochschulen, außeruniversitäre Forschungseinrichtungen und Mini-
sterien mit Beratungsleistungen, Forschungsprojekten und Angeboten
zum Wissens- und Methodentransfer mit Schwerpunkten in den Bereichen
digitaler Wandel an den Hochschulen in Forschung, Lehre und Verwaltung,
zur Qualitätsentwicklung in Studium und Lehre und zur Ausarbeitung von Monitoringansätzen für
die Hochschulbildung. 2016 ernannte ihn die Gesellschaft für Medien in der Wissenschaft (GMW)
zum „Fellow“. 2017 nominierte ihn die HRK für eine Mitwirkung in der Schwerpunktinitiative „Digitale
Information“ der Allianz der deutschen Wissenschaftsorganisationen.
Martin Ebner
Priv.-Doz. Dr. Martin Ebner ist Leiter der Abteilung Lehr- und Lerntechnologien
an der Technischen Universität Graz und ist dort für sämtliche E-Learning-
Belange zuständig. Weiters forscht und lehrt er als habilitierter Medieninfor-
matiker (Spezialgebiet: Bildungsinformatik) am Institut für Interactive Sys-
tems and Data Science rund um technologiegestütztes Lernen. Seine Schwer-
punkte sind Seamless Learning, Learning Analytics, Open Educational Re-
sources, Maker Education und informatische Grundbildung. Er bloggt unter
http://elearningblog.tugraz.at und weitere Details finden Sie unter
http://www.martinebner.at
Dieter Dohmen
Dr. Dieter Dohmen ist Gründer, Inhaber und Direktor des FiBS Forschungs-
institut für Bildungs- und Sozialökonomie und als Wissenschaftler und
Berater tätig, derzeit neben Deutschland auch in verschiedenen anderen
europäischen und außereuropäischen Ländern. Er hat die wissenschaftli-
che Leitung aller Projekte inne. Nach seinem Studium in Sport- und Sozi-
alwissenschaften an der Deutschen Sporthochschule Köln und der Uni-
versität zu Köln erwarb er das Diplom in Volkswirtschaftslehre sozialwis-
senschaftlicher Richtung an der Universität zu Köln und promovierte an-
schließend an der Technischen Universität Berlin.
HFD AP 42 AHEADInternationales Horizon-Scanning
Zusammenfassung
13
Zusammenfassung
Die vorliegende AHEAD-Studie hatte zum Auftrag, einen Blick in die Zukunft zu wagen, um Hinweise
darauf zu erhalten, wie die Hochschullandschaft in Deutschland im Jahr 2030 aussehen könnte.
Dabei folgt sie der Vorgabe des Auftraggebers, die technologischen Entwicklungen in Wirtschaft
und Gesellschaft zu berücksichtigen, ohne diese als die einzige Triebfeder für die zukünftige Ent-
wicklung der Hochschulen zu sehen. Dementsprechend geht die Studie davon aus, dass sich die
Hochschulbildung bis 2030 aufgrund der Entwicklungen in den folgenden Bereichen verändern
wird:
Wissens- und Kompetenzanforderungen aus der Wirtschaft sowie durch gesellschaftliche Veränderungen in einer zunehmend digitalisierten Welt.
Neue Entwicklungen in der Didaktik, die auf Basis der fachdidaktischen Diskussion zu er-warten sind.
Digitale Technologien und neue Einsatzmöglichkeiten, die neue Lernformen und Lernum-gebungen wahrscheinlich machen.
Die Studie wurde in zwei Phasen durchgeführt. Zunächst wurden zu drei Bereichen Wissens- und
Kompetenzanforderungen, Didaktik und technologische Entwicklungen Voruntersuchungen mit-
tels Literaturauswertungen, Befragungen und Interviews sowie anschließend Diskussionen mit dem
international besetzten ‚Advisory Board‘ von AHEAD durchgeführt.
Die vergleichende Literaturanalyse zu Beginn der Studie zeigte klare thematische Schwerpunkte pro
Disziplin und lässt sich in drei Kernaussagen zusammenfassen, die für den gewählten Ansatz in
dieser Studie wichtig sind:
Sie zeigt, dass die wirtschaftliche Sicht auf die Zukunft der Hochschule eine klare Fokus-sierung auf Studierende im Kontext des Arbeitsmarkts bzw. der Arbeitsmarktanfor-
derungen aufweist.
Die bildungswissenschaftliche Betrachtung hingegen betont die Rolle des Lernens bzw. der Fähigkeiten und Kompetenzen, die Studierende für den Arbeitsmarkt erwerben müssen.
Technologie und Digitalisierung sind nur für die Informatik ein Hauptthema.
Der Befund, dass es disziplinspezifische Sichtweisen bzw. Schwerpunkte gibt, führt zur Schlussfol-
gerung, dass eine umfassende Sicht auf die Hochschulbildung im Jahr 2030 alle Sichtweisen in
einem Zukunftsbild vereinen muss.
Die Durchsicht und Auswertung anderer Zukunftsstudien im Hochschulbereich zeigt außerdem,
dass viele Zukunftsszenarien einen Fokus auf die Institution Hochschule legen und der Fragestel-
lung nachgehen, wie diese Institution im Jahr 2030 aussehen könnte. Diese Frage ist aber im Grun-
de nicht allein von der Nachfrage abhängig, sondern auch vom Gestaltungsraum, der für die Hoch-
schule durch Governance-Regularieren wie Gesetze, Hochschulfinanzierung und Qualitätssicherung
festgelegt wird.
HFD AP 42 AHEADInternationales Horizon-Scanning
Zusammenfassung
14
Daher wurde im Rahmen der AHEAD-Studie eine andere Perspektive eingenommen. Das Projekt-
team hat sich in Zusammenarbeit mit dem ‚Advisory Board‘ und nach Gesprächen mit Expert*innen
und Stakeholdern dafür entschieden, Lernende ins Zentrum des Konzepts zu rücken. Denn die
Hochschulbildung ist für die Lernenden da. Sie orientiert sich an den Anforderungen des Arbeits-
marktes und der Gesellschaft und steht im Zentrum guter didaktischer Konzepte. Die Anforderun-
gen des Arbeitsmarkts sowie der Gesellschaft wirken auf sie. Digitale Technologien erlauben ein
flexibleres Lernen und ein Lernen in sehr unterschiedlichen Lernräumen, welche die Grenze zwi-
schen physischer und virtueller Präsenz verschwimmen lassen.
In der zweiten Projektphase wurden vier Lernwege für die Hochschulbildung im Jahr 2030 entwi-
ckelt, die wie beschrieben vom Individuum ausgehen, und daraus die Folgen für die Hochschu-
len bzw. das Hochschulsystem abgeleitet. Diese Lernwege und deren Ausarbeitung basieren auf
Interviews mit Expert*innen und Initiator*innen von innovativen Bildungsangeboten sowie auf
Gruppengesprächen und einer internationalen Umfrage, die das Team im Projektverlauf durchge-
führt hat. Zudem wurden innovative Praxisfälle recherchiert, die diese Lernwege illustrieren. Davon
ausgehend wurden folgende vier Lernwege entwickelt (benannt nach Spielzeugen zur einfachen
Erinnerung):
„Tamagotchi“: Hier dient das Studium wie derzeit der grundlegenden und umfassen-den Vorbereitung auf die anschließende Erwerbstätigkeit, wodurch die Hochschule als ein
geschlossenes Ökosystem fungiert, dass Studierende beim Absolvieren eines Studien-
gangs unterstützt und fördert. Dieses Modell ist besonders geeignet für Menschen, die
(quasi) direkt von der Schule in die Hochschule übergehen.
„Jenga“: Bei diesem Modell umfasst das „Erst“-Studium ein solides Fundament an Wissen und Kompetenzen und kann ggf. als verkürztes Studium erfolgen. Auf dieses Fundament
wird im weiteren Lebenslauf immer weiter gebaut, und es wird stetig durch den*die Ler-
nende*n (Studierende*n) durch neue Lernblöcke erweitert. Diese weiteren Blöcke werden
durch verschiedene Bildungsanbieter zur Verfügung gestellt.
„Lego“: Das Studium wird nicht mehr wie bisher als eine kompakte Einheit an einer Hoch-schule absolviert, sondern besteht aus individuell kombinierbaren Bausteinen unter-
schiedlicher Größe bei unterschiedlichen Bildungsanbietern. Die Lernenden selbst ent-
scheiden, welche Lernphasen bzw. Lerneinheiten sie durchlaufen wollen. Die Aufgabe der
Hochschule besteht neben der Bereitstellung der Lerneinheiten auch darin, die durchlau-
fenen Lernphasen in Form von Zertifikaten bzw. Zeugnissen formal anzuerkennen.
„Transformer“: Die Studierenden in diesem Modell wechseln nicht direkt als Schulabgän-ger*innen an die Hochschule, sondern haben bereits eine eigene Berufsidentität und Le-
benserfahrung erworben. Sie kommen später im Lebenslauf an die Hochschule, wo sie die-
se Lebenserfahrung auch in das Studium einbringen wollen. Sie brauchen ein flexibles
Studium, das zwischen didaktischer Fremd- und Selbstbestimmung alterniert.
Es wurde festgestellt, dass diese Vision einer Hochschullandschaft, die vom Lernenden ausgeht, die
Diskussion sehr konstruktiv beförderte. Fragen nach der institutionellen Unterstützung, nach
Governance und Qualitätssicherung sowie nach der institutionellen Finanzierung für Umstrukturie-
rung und Infrastruktur, welche die Debatte um die künftige Form der Hochschulbildung bzw. der
Hochschulen sonst sehr prägen, rücken durch diesen Perspektivwechsel an zweite Stelle. Gleich-
HFD AP 42 AHEADInternationales Horizon-Scanning
Executive Summary
15
wohl haben die skizzierten Lernmodelle erhebliche Auswirkungen auf die Hochschulen sowie deren
Steuerung durch die Politik, die in der vorliegenden Studie jedoch nicht weiter elaboriert werden
konnten.
Executive Summary
The AHEAD study was commissioned to look into the future on what the higher education landscape
could look like in 2030. In doing so, it takes account of technological developments in society with-
out seeing them as the sole driving force for future higher education. Rather, the study assumes
that higher education will change by 2030 as a result of developments in the following areas:
Knowledge and competence requirements from industry and social changes in an increas-ingly digitalised world.
New developments in didactics, which are expected based on current discussions in the field of didactics and learning theory.
Digital technologies and new uses of these technologies that make new forms and new environments of learning likely.
The study was conducted in two phases. First, preliminary studies were carried out on the three
areas mentioned above through literature evaluations, surveys and interviews, and subsequent
discussions held with the AHEAD International Advisory Board.
A comparative literature analysis at the beginning of the study clearly showed thematic focuses by
discipline and can be summarised in three core statements that are important for the approach
chosen in this study:
It shows that the economic view of the future of higher education has a clear focus on stu-dents in the context of the labour market and labour market requirements.
The educational science perspective, on the other hand, emphasises the role of learning and the skills and competences that students have to acquire for the labour market.
Technology and digitisation only become a main topic for computer science.
This realization leads to the conclusion that a comprehensive view of higher education in 2030
must merge all perspectives into one picture for the future. An examination of other foresight stud-
ies on higher education showed that many future scenarios focus on the institution of higher edu-
cation and examine the question of what this institution could look like in 2030. However, it should
be noted that this question is not only dependent on demand, but also on the scope for shaping and
re-forming higher education, which is determined by governance regulations such as laws, financ-
ing methods and quality assurance.
Therefore, the AHEAD study has taken a different perspective. The project team, in cooperation with
the Advisory Board and after discussions with many experts and stakeholders, decided to put
HFD AP 42 AHEADInternationales Horizon-Scanning
Executive Summary
16
learners at the centre of the concept – because higher education is there for learners. The demands
of the labour market and society have an impact on them; they are at the centre of good didactic
concepts. Digital technologies allow more flexible learning and learning in very different learning
spaces, blurring the boundary between physical and virtual presence.
In the second phase of the project, four learning pathways were developed in a view of higher edu-
cation in 2030. These learning pathways and their elaboration are based on interviews with experts
and initiators of innovative learning opportunities, group discussions and an international survey
conducted by the team during the project. In addition, innovative practice cases were researched to
illustrate these learning paths. The learning pathways are briefly described below (named after toy
names for simplicity of recall):
“Tamagotchi”: Here, as currently, the study programme serves as a basic and compre-hensive preparation for subsequent employment, whereby the university functions as a
closed ecosystem that supports and guides students in their pursuit of a course of study.
This model is particularly suitable for people who go (almost) directly from school to uni-
versity or college.
“Jenga”: In this model, the ‘first degree’ programme comprises a solid foundation of knowledge and competences and can take the form of a shortened study programme. This
foundation is built on as the curriculum progresses and is constantly expanded by the
learner (student) through new learning blocks. These additional blocks are made available
by various training providers.
“Lego”: The course of study is no longer completed as a compact unit at a university or college but consists of individually combined modules of different sizes from different
training providers. The learners themselves decide which learning phases or units they
want to complete. In addition to providing the learning units, the university's task is also to
recognise the learning phases completed through formal certificates or attestations.
“Transformer”: The students in this model do not transfer directly to higher education as school-leavers but have already acquired their own professional identity and life experi-
ences. They come later in their life to the university or college, where they also want to in-
tegrate this life experience into their studies. They need a flexible course of study that al-
ternates between didactical control by teachers and advisors, and their own self-
determination.
This vision of a higher education landscape emanating from the learner was found to foster open
discussion. Questions about institutional support, governance and quality assurance as well as
about institutional financing for restructuring and infrastructure, which otherwise have a major
impact on the debate about the future form of higher education or higher education institutions,
move to second place as a result of this change in perspective. Albeit the sketched learning path-
ways will have substantial impacts on the organisation and activities of universities and colleges,
as well as on higher education policy and governance, which are not further elaborated in this
study.
The practical cases described in this study show how technology can be fully-embedded into edu-
cation initiatives. The practical examples show a new strategic approach that is not only additional
HFD AP 42 AHEADInternationales Horizon-Scanning
Executive Summary
17
and avoids the less promising approach of placing the new technology in the old structures, instead
of more daring reform efforts. Innovation is therefore not based on technology, but rather on tech-
nology being used to achieve (higher) education goals better and more effectively for all.
HFD AP 42 AHEADInternationales Horizon-Scanning
Executive Summary
18
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 1: Eine Hochschullandschaft für die digitale Welt
19
Kapitel 1: Eine
Hochschullandschaft für die
digitale Welt
Hochschulen und Hochschulbildung werden noch stärker als bisher ein wesentlicher Schlüssel zur
Bewältigung und Gestaltung des digitalen Wandels sein.
Dabei erfüllt die Hochschulbildung mehrere Ziele für die Gesellschaft. In Forschung und Lehre
schafft sie vor allem einen Bildungsraum zur Vorbereitung auf die Zukunft. Sie bereitet die
Studierenden auf ihre weitere persönliche und berufliche Entwicklung vor, die einer erheblichen
Dynamik unterliegen wird. Sie bietet einen Raum für reflexives Denken darüber, wie es ist,
Weltbürger*in einer globalisierten, digitalisierten Welt zu sein, und bietet schließlich Studierenden
die Möglichkeit, Charakter und Haltung zu entwickeln.
Zudem muss sich das Hochschulsystem in Zukunft noch weiter öffnen, und jeder Person, die davon
profitieren kann, einen Zugang zu einem hochwertigen Bildungsangebot bieten.1 Damit wird das
Verhältnis zwischen Hochschulbildung und beruflicher Erst- und Weiterbildung angesprochen, die in
den meisten Bildungssystemen der Welt (und vor allem in Deutschland) noch stark voneinander
getrennt sind.
Das Potential der Digitalisierung für Hochschulen besteht nicht allein in ihrer additiven Funktion im
Sinne von E-Learning, sondern in einer integrativen Kraft, die die Hochschulbildung insgesamt
verbessern kann, wie das Positionspapier ‚Bologna Digital‘ von 2018 verdeutlicht (Gibb, Hofer, &
Klofsten, 2018; Orr, van der Hijden, Rampelt, Röwert, & Suter, 2018b, 2018a). Die vorliegende Studie
folgt derselben Idee.
Die Digitalisierung wird zu Veränderungen in der Hochschullandschaft führen, und es werden
Anzeichen für solche Veränderungen vorgestellt. Dabei geht die Studie nicht von der Annahme aus,
dass die Hochschullandschaft insgesamt Opfer einer destruktiven Innovation (‚Disruption‘) sein
wird. Die hohen Erwartungen an Innnovationen aus dem Umfeld des Silicon Valley (Stichwort:
MOOCs) haben die Hochschulbildung bisher nicht revolutioniert; vielmehr haben die Hochschulen
sich diese Innovation zu eigen gemacht und in ihre bisherigen Studiengänge integriert (Jansen &
Konings, 2017; Reich & Ruipérez-Valiente, 2019). Digitale Entwicklungen können aber auch dazu
führen, dass die Hochschulen ihre Rolle neu definieren und besser erfüllen und innovative, neue
Modelle und Organisationen entstehen können, welche die Hochschullandschaft bereichern werden.
Dabei geht es nicht nur um ein Nachrüsten (Retrofitting) bekannter Ansätze (Kelly & Hess, 2013),
sondern um eine Erweiterung, die zu nachhaltigen Veränderungen führen kann.
1 Sowohl unter den OE CD-Ländern als auch unter den Ländern des europäischen Hochschulraums zeigt sich Hochschulbildung weiterhin als
sozial selektiv (Blossfeld et al., 2017; Eu ropean Commission/EACEA/Eurydice, 2018).
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 1: Eine Hochschullandschaft für die digitale Welt
20
Die vorliegende Studie hat zum Ziel, die Entwicklungen, die die Umwelt der Hochschulbildung stark
beeinflussen, näher zu analysieren, um auf dieser Grundlage Szenarien für eine Hochschulbildung
im Jahr 2030 zu entwickeln. Damit erfüllt die Studie eine zentrale Forderung des Positionspapiers
von Baumgartner et al. zur zukünftigen Rolle der Hochschulbildung: „Wir benötigen mehr kreative
Szenarien, mit Hilfe derer wir über die Zukunft gesellschaftlicher Entwicklungen und ihre möglichen
Konsequenzen für unsere Institutionen (wie z. B. Hochschulen) nachdenken können“ (Baumgartner,
2018).
Die Organisation, die die Hochschulen in Großbritannien vertritt, hat sich jüngst in einer Studie mit
den Anforderungen einer digitalen, vernetzten Welt für die Hochschulbildung befasst (Universities
UK, 2018). Das Fazit dieser Studie bietet einen passenden Ausgangspunkt für die AHEAD-Studie:
„Das lineare Modell der Bildungs- und Beschäftigungskarriere wird nicht mehr ausrei-
chen. Das Tempo des Wandels nimmt zu und erfordert flexiblere Partnerschaften,
schnellere Reaktionen, verschiedene Formen der Umsetzung und neue Kombinatio-
nen von Fähigkeiten und Erfahrungen. Bildungseinrichtungen und Arbeitgeber müs-
sen enger zusammenarbeiten und neue und innovative Partnerschaften und flexible
Lernansätze entwickeln“ (ebenda).
So werden Konzepte für die Hochschulbildung der Zukunft gesucht, die perspektivisch immer stär-
ker werden, die aber gleichzeitig auf der heutigen Gestalt der Hochschulbildung aufbauen. Sie kön-
nen sowohl evolutiv als auch transformativ auf das heutige System der Hochschulbildung wirken.
Diese Suche gründet auf den folgenden fünf Prämissen:
Keine naive Innovationssicht: Es ist davon auszugehen, dass einige Teile des (institutio-nalisierten) Systems dem jetzigen ähneln werden, während Innovationen sowohl innerhalb
dieses Systems als auch durch neue Organisationen zustande kommen werden.
Transfer und Erneuerung durch Digitalisierung: Es wird davon ausgegangen, dass sich die Digitalisierung auf viele Bereiche des Hochschulangebots auswirken wird und darüber
Was mit ‚Digitalisierung‘ als Prozess gemeint ist
Laut dem Oxford Dictionary steht Digitalisierung für die Umwandlung von Text, Bild oder Ton
in eine digitale Form, die von einem Computer verarbeitet werden kann. Dieser Materialpro-
zess an sich hätte keinen großen Einfluss. Digitalisierung muss demnach in einen weitrei-
chenden Prozess und ein entsprechendes Ökosystem eingebunden werden, welches
digitale Materialien für die digitale Transformation (kurz: Digitalisierung) nutzt (Brennen &
Kreiss, 2016). Das Internet und die digitalen Netzwerke sind Mittel, um unterschiedliche
Informationen zu verbinden, neue Datenflüsse zu erzeugen und Kommunikationskanäle für
eine verbesserte Interaktion zwischen Menschen sowie Prozessen zu strukturieren. Die neu-
en Informationsknoten und Vernetzungen ermöglichen eine neue Form der Prozessorgani-
sation (Castells, 2010; Cerwal, 2017). Die Anwendung neuer digitaler Technologien ist daher
nicht nur eine Frage dessen, was Technologie leisten kann, sondern auch, wie sie mit ande-
ren etablierten Praktiken und Routinen von Menschen und Organisationen interagiert. Die
besondere Herausforderung des 21. Jahrhunderts besteht darin sicherzustellen, dass alle
Bereiche von der zunehmenden digitalen Transformation der Gesellschaft profitieren.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 1: Eine Hochschullandschaft für die digitale Welt
21
hinaus neue Formen des Hochschulangebots zunehmend zukunftsfähiger und skalierbarer
sein werden.
Realitätsnah: Die Szenarien sollen möglichst Anknüpfungspunkte in aktuellen Hochschul-systemen haben, damit anhand beispielhafter Entwicklungen die Potentiale, einschließlich
der den Modellen innewohnenden Spannungen, aufgezeigt werden können. Der Blick wird
ungefähr auf das Jahr 2030 gerichtet, um eine Kopplung zur gegenwärtigen Situation zu
haben und den Blick nicht zu sehr ins Spekulative gleiten zu lassen.
Perspektive des*der Lernenden: Im Mittelpunkt steht der Weg des*der Lernenden durch das Bildungssystem. Die Organisation des Bildungsangebots von Hochschulen wird in Ab-
hängigkeit davon aufgezeigt.
Diversität der Hochschulbildung: Im Unterschied zu anderen Zukunftsstudien geht die vorliegende Arbeit nicht davon aus, dass es zukünftig ein Modell von Hochschule geben
wird. Stattdessen gehen wir davon aus, dass sich die Hochschullandschaft weiter ausdif-
ferenzieren wird und verschiedene alternative Lern- und Hochschulwege nebeneinander
Bestand haben werden, da sie auf unterschiedliche Herausforderungen reagieren. Daher
spricht die Studie in der Regel von Hochschulbildung und nicht nur der Institution Hoch-
schule.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 1: Eine Hochschullandschaft für die digitale Welt
22
02
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
23
Kapitel 2: Von
Entwicklungslinien zur
Szenarienentwicklung
Die Studie geht davon aus, dass sich die Hochschulbildung bis 2030 aufgrund der Entwicklungen in
den folgenden Bereichen verändern wird:
Wissens- und Kompetenzanforderungen aus der Wirtschaft sowie durch gesellschaftliche Veränderungen in einer zunehmend digitalisierten Welt
Neue Entwicklungen in der Didaktik, die auf Basis der fachdidaktischen Diskussion zu er-warten sind
Digitale Technologien und neue Einsatzmöglichkeiten, die neue Lernformen und Lernum-gebungen wahrscheinlich machen.
So wurden in einem ersten Schritt der Studie die Methoden der systematischen Analyse auf Basis
von Literaturrecherche, Datenanalysen, Interviews und Expertengesprächen angewandt, um die
Konsequenzen für eine zukünftige Hochschullandschaft zu erkennen. Im Sinne eines Horizon-
Scanning (Amanatidou et al., 2012) wurden diese Analysen in einem zweiten Schritt zu Zukunfts-
szenarien verdichtet und in einer breiten Diskussion mit Expert*innen aus dem Hochschulbereich,
der Politik, und Studierenden validiert und weiterentwickelt. Zudem wurde weltweit nach innovati-
ven Beispielen aus der Praxis gesucht, die als mögliche Zukunftsmodelle in die Szenarienentwick-
lung einfließen.
Zu den genannten Bereichen finden sich ausführliche Darstellungen im Anhang. Im Folgenden wer-
den die wichtigsten Ergebnisse der durchgeführten Untersuchungen mit einem maßgeblichen Ein-
fluss auf die Szenarienentwicklung vorgestellt.
2.1 Hintergrunduntersuchungen
2.1.1 Literaturanalyse zur Hochschulbildung und ihrer Zukunft
Zunächst wurde eine Literatur- und Zitationsanalyse nach dem Big-Data-Ansatz durchgeführt. Zur
Identifikation der geeigneten Fachliteratur wurde die Datenbank Web of Science verwendet.2 Zent-
rale Begriffe, die für die Suche herangezogen wurden, waren: higher education / universit[y/ies],
futur[e], digital, work, competenc[y/ies] und labo[u]r [market / force]. So konnte insgesamt ein
Datensatz von 15.249 überwiegend englischsprachigen Literaturbeiträgen aus den letzten 40 Jah-
ren in die Analyse aufgenommen werden (83% davon aus den letzten zehn Jahren).
2 Diese Datenbank umfasst und indexiert veröffentlichte Literatur (v.a. Beiträge aus wissenschaftlichen Zeitschriften) aus einem breiten
Fächerspektrum von Medizin, Natur-, Geiste s-, Sozial- und Wirtschaftswissenschaften.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
24
Dieser Datensatz wurde thematisch analysiert, um die Bedeutung bestimmter Themen in der Litera-
tur zu erkennen. Dazu wurden insgesamt zehn Themenbegriffe für die Analyse herangezogen, nach
denen in Titel, Abstract sowie in den Schlagwörtern gesucht wurde. Diese umfassten folgende Be-
reiche: Lernen, Kenntnisse und Fähigkeiten (competency, skills, learning); Lehren (teaching), Stu-
dierende (students); Arbeitsmarkt (labour market, work); Technologie (technology, digital), weitere
Aspekte der Digitalisierung (digital divide; data security) und den Bereich Hochschulbildung (higher
education). Eine erste Einsicht in die Diskussion um die Zukunft der Hochschule bietet die Metaana-
lyse der Schwerpunktthemen pro Disziplinbereich. Für diese Analyse wurden allerdings nur Beiträge
ausgewählt, in denen die Wörter ‚future‘ und ‚university‘ gemeinsam vorkommen (n=8359). Abbil-
dung 1 zeigt einen Vergleich der Schwerpunktsetzung für die Disziplinen Bildungswissenschaften
(educational sciences), Psychologie, Wirtschaft (business studies) und Informatik (computer sci-
ences).3
Die vergleichende Analyse zeigt klar die thematischen Schwerpunkte der Beiträge pro Disziplin, und
das Ergebnis lässt sich in drei Kernaussagen zusammenfassen:
1. Die wirtschaftliche Sicht auf die Zukunft der Hochschule hat eine klare Fokussierung auf
Studierende im Kontext des Arbeitsmarkts bzw. der Arbeitsmarktanforderungen.
2. Die bildungswissenschaftliche Betrachtung hingegen betont die Rolle des Lernens bzw.
der Fähigkeiten und Kompetenzen, die Studierende für den Arbeitsmarkt erwerben müs-
sen.
3. Technologie und Digitalisierung sind nur für die Informatik thematische Schwerpunkte.
Literatur aus dem Bereich Informatik (computer sciences, n=441)
3 Einzelne Beiträge konnten auch mehreren Disziplinen zugeordnet werden.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
25
Literatur aus dem Bereich Bildungswissenschaften (educational sciences, n=2686)
Literatur aus dem Bereich Bildungswissenschaften (educational sciences, n=2686)
Literatur aus dem Bereich Wirtschaftswissenschaften (business studies, n=629)
Abbildung 1: Häufigkeit d er Nennung der Sch lagwörter im untersuchten Literaturkorpus4
4 Die Begriffe ‚digital divide‘ und ‚data security‘ sind nicht in allen Abbildungen aufgeführt, da sie so selten vorkamen.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
26
Diese Erkenntnis führt zu der Schlussfolgerung, dass eine umfassende Sicht auf die Hochschulbil-
dung im Jahr 2030 alle Sichtweisen in einem Zukunftsbild vereinen muss. In den folgenden Ab-
schnitten werden die Erkenntnisse und Erwartungen für die künftige Hochschulbildung dargelegt,
wie sie aus den Literatur- und Datenanalyse sowie aus den Expert*innengesprächen zu den drei
genannten Perspektiven gewonnen wurden.
2.1.2 Wissens- und Kompetenzanforderungen einer digitalen Gesellschaft
Laut Hochschulrektorenkonferenz sind „Hochschulen die ‚Motoren‘ der ökonomischen und sozialen
Innovation in Deutschland und ein Schlüsselsektor für den Weg in die ‚Industrie 4.0‘“ (HRK, 2018).
Sie zeichnen sich durch die Förderung der beruflichen Entwicklung, den Transfer des Wissens und
eine praxisnahe Bildung aus. Demnach ist es eine Priorität für die Hochschulbildung, sich auf die
zentralen Trends und Bewegungen der Gesellschaft vorzubereiten, aber auch, solche Entwicklungen
zu prägen. Es reicht hierzu nicht aus, den Fokus allein auf die neue Generation der Hochschulabsol-
vent*innen zu richten. Der technische Fortschritt in Zeiten der digitalen Welt gekoppelt mit dem
demographischen Wandel bedeutet, dass die
Hochschulbildung endgültig für alle
geöffnet
werden muss. So schreibt der Aktionsrat Bildung in Bezug auf 2030: „Angesichts des sich zuneh-
mend beschleunigenden technischen Fortschritts wird es aber in Zukunft immer weniger ausrei-
chen, den berufsstrukturellen Wandel durch das Eintreten von Absolventinnen und Absolventen mit
neuen Qualifikationen zu bewältigen“ (Blossfeld et al., 2017). Auch ältere Arbeitnehmende werden
neue Fähigkeiten benötigen.
Die besondere Herausforderung des 21. Jahrhunderts besteht darin, sicherzustellen, dass alle Teile
der Gesellschaft von der zunehmenden Integration der Digitalisierung in die Gesellschaft profitieren.
Diskussionen über zukünftige Anforderungen des Arbeitsmarkts aufgrund der Auswirkungen von
Automatisierung, künstlicher Intelligenz und Big-Data-basierten Algorithmen deuten hier auf mas-
sive Veränderungen hin. Es wird erwartet, dass diese Dynamik dazu führen wird, dass die Mehrheit
der Absolvent*innen während ihres
Lebens mehrmals ihren Karriereweg wechseln
(Manyika et
al., 2017; OECD, 2017a). Viele Sektoren des Arbeitsmarkts werden von Beschäftigten Umschulungen
und neues Lernen erfordern, um sich bei der Umsetzung der technologisch verbesserten Prozesse,
die zunehmend ihren Arbeitsplatz ausmachen werden, neu zu positionieren. Es ist Aufgabe der
Wirtschaft, der Interessenvertreteungen und Politik, diesen Veränderungsprozess zu fördern und zu
erleichtern.
Viele aktuelle Studien zu Entwicklungen auf dem Arbeitsmarkt adressieren die Polarisierung, die als
Folge der zunehmenden Digitalisierung zu erwarten ist. Der Trend gehe zu Aufgaben hin, die höhere
Fachkompetenzen gepaart mit sozialen und emotionalen Kompetenzen erfordern (Nedelkoska &
Quintini, 2018). Daneben kommt es zu einer Aushöhlung des Arbeitsmarktes, wie die Untersuchung
von ausgewählten OECD-Ländern zeigt. So sind es die Berufe von Personen mit mittleren Qualifika-
tionen (d.h. hohe technische Ausbildung, aber kein Studium) mit mittleren Routineaufgaben, die
rückläufig zu sein scheinen d.h. es sind diejenigen, die teuer genug sind, um Investitionen in ihre
Ersetzung zu rechtfertigen und diejenigen, die routinemäßig genug sind, um anfällig zu sein für eine
Ersetzung durch Automatisierung (OECD, 2016; Zenhäusern & Vaterlaus, 2017).
Eine weitere OECD-Analyse zeigt jedoch, dass in den meisten Wirtschaftszweigen der Beschäfti-
gungsrückgang auf dem Niveau der mittleren Qualifikation durch das Wachstum auf dem Niveau
der hohen Qualifikation vollständig ausgeglichen wird (OECD, 2017b). Die beiden Sektoren mit den
größten Veränderungen in dieser Richtung sind bisher die Papier- und Verlagsindustrie sowie der
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
27
Finanz- und Versicherungssektor. In den Sektoren Groß- und Einzelhandel und Gastgewerbe ist die
Beschäftigung nach Qualifikationsniveau entgegen dem allgemeinen Trend zurückgegangen (d.h.
Arbeitsplätze werden in diesen Sektoren abgebaut). Auch wenn solche Umwandlungen nicht zum
Verlust des Jobs führen, zeigt eine Analyse für Deutschland und Österreich, dass sich das Gehalts-
niveau für diejenigen, die diesen Wandel nicht vollziehen können, rückläufig entwickelt (Südekum,
2018).
Sofern diese Analysen jedoch eher breit angelegt sind, verdecken sie die Unterschiede zwischen
den Berufen innerhalb dieses mittleren Qualifikationsniveaus. Eine Analyse auf der Grundlage von
US-Daten zeigt, dass der gleiche Rückgang bei den Arbeitsplätzen mittlerer Qualifikation zu ver-
zeichnen ist, doch in einigen Sektoren zeigt sich ein schwaches Wachstum. Holzer sieht hier „neue
mittlere Arbeitsplätze“, die aktuell auf dem Arbeitsmarkt entstehen (Holzer, 2015). Zu diesen Beru-
fen gehören eine Reihe von Gesundheitstechniker*innen mit Spezialgebieten (z.B. Phlebotomi-
ker*innen, Röntgentechniker*innen), Rechtsanwaltsfachangestellte, Schutzdienste, Köch*innen
und Manager*innen von Lebensmittel- und Getränkeunternehmen, Einzelhandelsmanager*innen
und Außendienstmitarbeiter*innen). Im Gegensatz zur „alten Mitte“ erfordern die meisten dieser
Arbeitsplätze die Erfüllung von fachlich komplexeren, technischen, administrativen bzw. kommuni-
kativen Aufgaben. Daher erfordert eine expandierende und sich ausdifferenzierende Erwerbsbevöl-
kerung auch mehr Möglichkeiten, in verschiedenen Lebensphasen und mit sehr unterschiedlichen
bisherigen Bildungsbiographien eine Hochschulausbildung zu beginnen.
Die zentrale Rolle der Wirtschaftsakteure ist es, neue Organisationsformen sowie Produktions- und
Bereitstellungsprozesse zu finden, um ihr wirtschaftliches Überleben und ihren Erfolg zu sichern.
Lernen findet auch innerhalb der Wirtschaftsunternehmen statt
, sodass eine bessere Integrati-
on von Lernerfahrungen im Austausch zwischen Firmen und Hochschulen sinnvoll ist.
Es ist Aufgabe des Bildungssystems,
zukünftige und aktuelle Arbeitskräfte mit angemessenen
Kenntnissen und Kompetenzen zu bilden bzw. auszubilden
, damit sie von diesen Entwicklungen
profitieren können, aber auch, um es neuen Generationen von Unternehmer*innen zu ermöglichen,
reflektierend und innovativ zu sein und neue Wirtschaftsunternehmen zu gründen, die in einer glo-
balen Welt nachhaltig agieren.
Arbeitskräfte müssen widerstandsfähig genug sein, um Veränderungen zu bewältigen und sich im
Laufe ihrer Karriere neu zu positionieren. Sie müssen zudem kreativ genug sein, um Probleme zu
lösen und neue Ideen für künftige Fortschritte zu entwickeln. Es wird erwartet, dass viele Menschen
in Jobs arbeiten werden, die es heute noch nicht gibt. In einem Arbeitsbericht wurden 21 solcher
Jobs vorgeschlagen, darunter Mensch-Maschine-Teaming-Manager*innen, Big-Data-Detektiv*in,
KI-gestützte persönliche Gesundheitstechniker*innen, digitale Schneider*innen und Personal Data
Broker (Pring, Brown, Davis, Bahl, & Cook, 2017). Aber auch wenn derlei Arbeitsplätze 2030 keine
großen Teile des zukünftigen Arbeitsmarkts ausmachen, wird die Notwendigkeit bestehen, tech-
nisch versiert zu sein. Ein zentraler Bestandteil vieler Arbeitsplätze wird beinhalten zu verstehen,
wie Menschen (mit unterschiedlichen Hintergründen und Spezialisierungen) und Maschinen in
Teams zusammenarbeiten können und wie man die Möglichkeiten personenbezogener Daten sicher
nutzt und die persönliche Identität schützt. Sicher ist daher, dass die
Mischung aus standardisier-
tem Wissen, neuem Wissen und transversalen Fähigkeiten
in allen Ausbildungsprogrammen in
Zukunft regelmäßig überprüft werden muss (OECD, 2018b; Universities UK, 2018).
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
28
Die Nachfrage nach Hochschulabsolvent*innen auf dem Arbeitsmarkt wie sie in Bezug auf Beschäf-
tigungsniveau und relative Lohnprämie zu sehen ist (European Commission/EACEA/Eurydice,
2018), belegt zum Teil, dass schon heute Hochschulabsolvent*innen einen Teil dieser Kompetenzen
im Studium bzw. als Studierende erwerben. Das stellt jedoch nicht die ganze Wahrheit dar. Eine
europäische Umfrage von Neueingestellten ergab zwar, dass die Wahrscheinlichkeit, dass sie sich
in ihrem neuen Job unterqualifiziert fühlen (d.h. dass ihre derzeitigen Fähigkeiten nach ihrer Selbst-
einschätzung unter den Anforderungen ihrer Arbeit liegen), für Hochschulabsolvent*innen viel ge-
ringer war als für Absolvent*innen mit einer formalen Ausbildung unterhalb des Hochschulniveaus
(CEDEFOP, 2018). Dennoch belegte die gleiche Studie auch, dass mehr als ein Fünftel aller Hoch-
schulabsolvent*innen das Gefühl hatten, schlecht auf ihre neue Arbeit vorbereitet zu sein.
Abbildung 2: Gefühl des Unterqualifiziertseins von Hochschulabsolvent*innen bei der E instellung nach Fa chbereichen (ausgewäh lte Bereiche),
Anteil 2014 (EU-28 ). Quelle: Cedefop Europ ean skills and jobs su rvey (ESJS)
Die höchsten Anteile an Unterqualifizierung finden sich in den Bereichen Ingenieurwissenschaften,
Medizin und Landwirtschaft. Die Autor*innen der Studie gehen davon aus, dass dies u.a. durch einen
sich ständig verändernden Qualifikationskontext aufgrund der Weiterentwicklung neuer Technolo-
gien, Arbeitsmethoden und Techniken erklärt werden kann (CEDEFOP, 2018). Eine weitere Studie,
die auf dem gleichen Datensatz basiert, stellt hierbei fest, dass es sich weniger um das fehlende
Standardwissen für diese spezifischen Bereiche handelt, sondern um Defizite bei Soft Skills wie
bessere Kommunikationsfähigkeiten mit Patient*innen und bei der Vorbereitung auf Teamarbeit
(Livanos & Nunez, 2015). Diese Defizite in der Vorbereitung und Unterstützung der Medizin werden in
Deutschland schon breit diskutiert (Kuhn, Jungmann, Deutsch, Drees, & Rommens, 2018).
Bei diesen Daten geht es zunächst um den Übergang vom Studium in das Arbeitsleben. In einem
innovativen Umfeld ist es zudem wahrscheinlich, dass Lernkurven wiederholt werden, wenn Ar-
beitsplätze neu organisiert und die Praktiken geändert werden, um digitale Möglichkeiten im Laufe
der Karriere optimal zu nutzen (Bessen, 2015). Da sich immer wieder
die Frage des optimalen
Kenntnis- und Kompetenzprofils für Beschäftigte stellt
, erscheinen neue Lernoptionen notwen-
dig.
0 5 10 15 20 25 30
Landwirtschaftliche und tierärztliche
Dienstleistungen
Medizin und Gesundheitswesen
Ingenieurwesen
Andere Sozialwissenschaften
Durchschnitt
Geistewissenschaften und Sprachen
Computerwissenschaften
Wirtschaftswissenschaften und
Betriebswirtschaftslehre
Anteil der Befragten (in Prozent)
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
29
FAZIT: Anforderungen an die Hochschulbildung im Jahr 2030
Die Hochschulbildung kann zur Bewältigung der Herausforderungen aufgrund der Verände-
rungen am Arbeitsmarkt durch die folgenden Maßnahmen beitragen:
Alle Hochschulprogramme sollten ihre Lernziele überprüfen, um sicherzustellen, dass sie sich explizit mit dem Lernen befassen, das disziplinäres Wissen, grundle-
gende Fähigkeiten, transversale Fähigkeiten und digitale Fähigkeiten kombiniert.
Da es eine zentrale Herausforderung sein wird, alle Fähigkeiten gemeinsam in ei-nem (häufig internationalen) Teamarbeitsumfeld einzusetzen, sollte authentisches
Lernen, das in der Lage ist, eine starke Verbindung zwischen dem zukünftigen Ar-
beitsplatz herzustellen, zu einem wichtigen didaktischen Instrument werden.
Veränderungen auf dem Arbeitsmarkt werden häufiger. Damit werden häufige Lernprozesse notwendig. Dies bedeutet, dass die Organisation der Ein- und Aus-
stiegsmöglichkeiten in Studiengänge flexibler gestaltet werden sollte (z.B. durch
Module und Studienleistungen), ebenso wie das Angebot des Lernens, damit die
Menschen einen Teil ihres Lernens parallel zu ihrer Karriere absolvieren können.
Zukünftig werden Beschäftigte ohne Hochschulabschluss eher in Berufen tätig sein, in denen ein hoher Automatisierungsgrad zu erwarten ist. Ihr Qualifikations-
profil weist eher Defizite im Bereich grundlegender, transversaler und digitaler Fä-
higkeiten auf, und die Wahrscheinlichkeit, dass im Laufe ihrer Karriere eine Weiter-
bildung erfolgt, ist geringer. Die Anbieter von Hochschulbildung können einen Teil
dazu beitragen, diese Beschäftigten wieder in die formale Bildung zu integrieren.
Da (zumindest) informelles Lernen im Laufe des Lebens der meisten Menschen kontinuierlich stattfindet, besteht eine Methode zur Aktivierung weiterer Lernpfade
darin, nach neuen Wegen zu suchen, um das, was die Menschen informell gelernt
haben, als Teil eines formalen Lernweges in und vielleicht durch die Hochschulbil-
dung zu erkennen. Die Hochschulen könnten sich als wichtige Akteure der Akkredi-
tierung und Lernunterstützung für die gesamte Bevölkerung etablieren.
Ein Teil der Verwirklichung eines reaktionsschnellen Hochschulsektors wird darin bestehen, die Zusammenarbeit zwischen Weiterbildung und Hochschulbildung zu
verstärken, da klare lineare Wege von der Hochschulbildung bis zur Karriere bislang
fehlen und nur Ergänzungen aus der Weiterbildung zukünftig wahrscheinlich nicht
ausreichen werden.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
30
2.1.3 Hochschuldidaktische Herausforderungen einer digitalen Gesellschaft
In diesem Abschnitt wird der Blick auf die Innensicht der Hochschule gerichtet und geschaut, wel-
che Trends für die Hochschuldidaktik im Jahr 2030 zu erwarten sind. Didaktik beschreibt das Ver-
hältnis von Inhalten (Was soll vermittelt werden?), Aktivierung/Motivation (Wie gelingt es, Lernende
zum Lernen zu motivieren?) und Betreuung (Wie werden Lernende beim Lernen begleitet?) (Rein-
mann, 2015). Für den Zeitraum bis 2030 ist sicher abzusehen, dass der Fokus der Didaktik auf die
Aktivierung von Lernenden anstatt auf das Lehrangebot gelegt wird. Dieser sogenannte „shift from
teaching to learning“ ist zwar nicht neu (Barr & Tagg, 1995; Cedefop, 2009), dürfte aber ein domi-
nierendes Paradigma im Kontext von digital unterstützten Lernarrangements, die heterogenen
Lernendengruppen effektive Lernszenarien anbieten, bleiben.
Eine Analyse der einschlägigen erziehungswissenschaftlichen und pädagogischen Literatur, die für
die Studie durchgeführt wurde, belegt die Prominenz der Frage nach dem Lernen in der Hochschul-
bildung.5 Es geht um das studentische Lernen, das studentische Engagement, die studentische
Fähigkeit zur Selbstwirksamkeit und Selbstregulierung. Selbst die Bewertung der Lernleistungen
wird den Studierenden selbst bzw. in ihrer Rolle als ‚peer‘ angetragen. Die Lehrenden und die Lehre
verschwinden dahinter fast vollständig.
Die textliche Auswertung der Artikel zeigt für das Thema ‚learning‘ eine große Begriffsvielfalt, die
das neue didaktische Dreieck zwischen aktivem Lernen, Technologie und Netzwerkstrukturen wie-
dergibt (siehe Abbildung 3). Neue Technologien, gekoppelt mit hoher Nutzerkompetenz und Akzep-
tanz und den Netzwerkeffekten sozialer Plattformen können eine induktivere und kollaborativere
Form von Lernen unterstützen.
Abbildung 3: Literaturanalyse Auswertung der Häufigkeiten in d er Kategorie „Learni ng”
5 Es wurden di e Artikel der folgend en Zeitschriften im Z eitraum 2017-2018 ausg ewertet (n=509): Inter net and Higher Educa tion, Research in
Higher Education, Journal of Higher Education, Studies in Higher Education, Revi ew of Higher Education, Community College Review, Assess-
ment & Evaluation in Higher Education, Active Learning in Higher Education, High er Education Research and Development, Journal of Compu-
ting in Higher Education, Perspectives: Policy and Practice in Higher Education.
2
4
4
5
7
8
10
11
12
16
20
21
28
010 20 30
Lerngemeinschaft
Lernnetzwerke
Interdisziplinäres Lernen
Lernen durch Engagement
Interaktionsformen
Selbst-reguliertes Lernen
Lernaktivität, Lernziele, Lernstrategien, Lernstile
aktives Lernen
Lernumgebung
Lernergebnisse
kollaboratives/kooperatives/kollegiales Lernen
Engagement von Studierenden
Technologie-gestütztes Lernen
Häufigkeit
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
31
Auch die Expert*innenbefragungen und -interviews, die während der Studie zu diesem Themen-
komplex durchgeführt worden sind, bringen die Vielfalt zukünftiger Lernformen zum Ausdruck. Aus
Sicht der Expert*innen wird bis zum Jahr 2030 die Frage relevant sein, wie Lernräume gestaltet
sein können, die mal kollaborativ, mal autonom strukturiert sind (Schön, Ebner, & Schön, 2016).
Lernarrangement
Darbietendes
Erarbeitendes
Exploratives
Das Lehrverfahren ist ... Lehrer*innen gelei-
tet, induktiv
Lehrer*innen gelei-
tet, deduktiv Lerner*innen gelei-
tet, induktiv
Die Rolle der Lehrenden
ist ...
führend, vorgebend entwickelnd, anlei-
tend anregend, beratend
Die Rolle der Lernenden
ist... aufnehmend, nach-
vollziehend teilnehmend, mit-
denkend, anleitend
bearbeitend
eigentätig, selb-
ständig bearbei-
tend
Die Lerninhalte... geben die Lehrenden
vor und die Lernen-
den nehmen sie
rezeptiv auf
werden gemein-
sam bestimmt und
von den Lernenden
unter Anleitung
bearbeitet
werden von den
Lernenden selb-
ständig bearbeitet
Tabelle 1: Vers chiedene Lernarrangem ents (Quelle: Schön et al., 2016).
Sie verdrängt die Frage, ob digital unterstützte Methoden zum Lernen eingesetzt werden sollen oder
nicht. Stattdessen kann eine „Verschmelzung“ von Lernformen beobachtet werden, die mehr auf
dem Campus und online durchgeführt werden. Dies erfordert eine Flexibilität in den Rollen von
Lehrenden und Studierenden und in der Konfiguration ihrer Beziehung zueinander sowie zum
Lerninhalt (Miyazoe & Anderson, 2013; Moore, 1993) (siehe Tabelle 1). Dies stellt eine erhebliche
Herausforderung für die Zukunft dar.
Dabei wurde in der Expert*innenbefragung insbesondere die Notwendigkeit einer Neuausrichtung
der Didaktik im Zeichen der Digitalisierung betont. Das Standardmodell der Präsenzlehre müsse
weiterentwickelt werden. Präsenzlernen wird mit webbasierten Lernprozessen verschränkt werden.
Zudem werden neue institutionelle Formate der didaktischen Selbstreflexion und eine Weiter-
entwicklung der Lehr- und Lernkulturen angesichts des zunehmenden und zukünftigen Wandels
notwendig werden. Dabei müssten verstärkt auch Bottom-Up-Entwicklungen die sich aus der akti-
ven Praxis von Lehrenden und Lernenden ergeben, aufgegriffen werden.
Eine Auswertung wichtiger Trendreports zu diesem Thema betont demgegenüber stark den qualita-
tiven Wandel der Nachfrage nach Studienangeboten: Verstärkt würden Lifelong-Learning Angebote,
Online- und Blended-Learning-Angebote, wie auch kleinteilige Leistungsnachweise („Unbundling of
Credentials“) sowie Angebote mit dem größten Mehrwert für die berufliche Laufbahn nachgefragt
werden. Dies führt letztlich zu neuen Formen und Angeboten im Bereich der Hochschulbildung.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
32
Insbesondere im Hinblick auf die Lerninhalte werden eine besondere Sensibilität und Offenheit in
der Hochschulbildung notwendig sein. Die Forschung zeigt, dass die Entwicklung von ‚Studierfä-
higkeit‘ einen längeren Prozess darstellt, der normalerweise in der Schule beginnt, aber in der Ein-
gangsphase des Studiums fortgeführt wird. In Deutschland wie auch in anderen Ländern wurden zu
diesem Zweck an den meisten Hochschulen Unterstützungs- und Brückenkurse eingeführt. In den
Expert*inneninterviews wurde die zentrale Bedeutung solcher Unterstützungsmaßnahmen betont,
die auf die unterschiedlichen Bedürfnisse der Lernenden eingehen können. Insbesondere muss in
Zukunft auf den Aufbau und die Unterstützung der Lernbefähigung der Studierenden geachtet wer-
den, d.h. auf die Kompetenz der Studierenden zum selbstregulierten Lernen, das für ‚erarbeitende‘
und ‚explorative‘ Lernarrangements zentral ist. Darüber hinaus gilt es zu bedenken, dass Studieren-
de aus unterrepräsentierten Gruppen ohnehin häufig unsicher hinsichtlich ihrer Studienwahl sind
(Hauschildt, Vögtle, & Gwosć, 2018) und ein großer Spielraum bei der Gestaltung des Studiums diese
Unsicherheit verstärken kann.
Hier bietet die Digitalisierung aber auch Lösungsansätze an. Es zeigt sich, dass digital basierte
Brücken- und Förderprogramme helfen, diese Sorge zu reduzieren und eine bessere Studienorien-
tierung bieten können (Bidarra & Rusman, 2017; Ubachs, Konings, & Brown, 2017). Dabei werden
entsprechend der Einschätzung der Expert*innen Lernprozesse in der Hochschulbildung durch
Ansätze im Bereich von Learning Analytics, bei dem bspw. die in Lernmanagementsystemen ent-
stehenden Daten ausgewertet und für die Optimierung von Lernprozessen genutzt werden, indivi-
dualisiert und eine höhere Lernwirksamkeit erzielt. Dies bedeutet aber auch, dass im Hochschulsys-
tem verstärkt auf den Kompetenzaufbau des Lehrpersonals gesetzt werden muss, das verstehen
muss, wie diese Information zur Förderung des Lernens verwendet werden kann.
Die Offenheit der Hochschulbildung ist darüber hinaus ebenfalls für das Angebot von Lernplänen,
Curricula und Lernzielen notwendig. Das Studium bietet neben dem Erwerb allgemeiner Fähigkeiten
(wie soft skills und Lernfähigkeit) auch spezifische Kenntnisse und Fähigkeiten, die für ein be-
stimmtes Arbeits- oder Fachgebiet (z.B. Ingenieurwesen oder Rechtswesen) erforderlich sind und
eine Grundlage für Effektivität am Arbeitsplatz bilden. Die Identifizierung und Weitergabe solcher
Kenntnisse und Fähigkeiten hängen davon ab, dass ein Konsens darüber besteht, was in einem
bestimmten Bereich erforderlich ist und in Zeiten der Digitalisierung dass dieser Konsens stän-
dig geprüft wird (Eckert et al., 2018). Analog zur ‚Industrie 4.0‘ (siehe Abschnitt 2.1.2 Wissens- und
Kompetenzanforderungen einer digitalen Gesellschaft) bedarf es eines ‚Curriculums 4.0‘:
„Als ein Curriculum 4.0 verstehen wir ein Curriculum, das den Prozess der digitalen
Transformation zielgerichtet inhaltlich wie auf Ebene der zu vermittelten Fertigkeiten
und Kompetenzen aufgreift. (...) [Wir] betrachten den digitalen Wandel im Kontext der
Curriculumentwicklung ganzheitlich als technische, didaktische und inhaltliche Her-
ausforderung" (Michel et al., 2018).
Darüber hinaus setzt eine effektive und individualisierte Hochschuldidaktik eine Bildungsforschung
voraus, die Lern- und Bildungsprozesse sowie die Wirkung von Lernarrangements prüfen und ver-
bessern kann. Sowohl die Literaturrecherche zu diesen Themen als auch die Expert*innengespräche
deckten in diesem Bereich Defizite auf, die es bis 2030 zu lösen gilt, sofern die Hochschulbildung
effektiver und inklusiver werden soll. Zudem ist der Bildungsauftrag in Bezug auf die Gesellschaft
verstärkt zu reflektieren.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
33
Eine pointierte Darstellung der Sachlage wurde Anfang 2019 von Michael Feldstein, einem bekann-
ten Experten aus dem amerikanischen Bildungstechnologie-Bereich veröffentlicht. Er urteilt, dass
neue technische Entwicklungen das Lernen nur dann verbessern werden, wenn die Bildungsfor-
schung es schaffe, einen Grundkonsens zu zentralen Dimensionen des Lernarrangements herzu-
stellen:
„Das ist nicht etwas, das durch die Magie des maschinellen Lernens ‚Uberisiert‘ wer-
den könnte. (…) Wir untersuchen komplexe Prozesse, die wir weitgehend nicht sehen
können. Wenn wir Werkzeuge entwickeln, die uns Sichtbarkeit verschaffen, fehlt uns
oft der theoretischen [sic!] Unterbau (…), um das, was wir sehen, zu verstehen. Bei
vielen Dingen, die wir lernen, wissen wir noch nicht, wie wir sie anwenden sollen, und
vieles von dem, was wir anwenden können, ist von unserem immer noch ver-
schwommenen Bild davon, wie Lernen funktioniert, getrennt(Feldstein, 2019).
FAZIT: Didaktische Anforderungen an die Hochschulbildung 2030
Die Weiterentwicklung der Hochschuldidaktik spielt eine zentrale Rolle für die Schaffung
einer effektiven und inklusiven Hochschulbildung für alle. Sie sollte folgenden Faktoren
besonderes Gewicht beimessen:
Ein flexibles Hochschulbildungsangebot lebt von einer Didaktik, die sensibel auf die Bedürfnisse der Lernenden eingeht, und ist ein Angebot, das offen für die Bedürf-
nisse der Gesellschaft und des Arbeitsmarkts ist.
Dabei stützt sich die Hochschulbildung auf das didaktische Dreieck zwischen akti-vem Lernen, Technologie und Netzwerkstrukturen, das der Vermittlung, Aneignung
und Exploration von Lernstoffen dient. So können digitalisierte Lösungen eingesetzt
werden, um Lernprozesse und die Interaktion zwischen Lernenden zu unterstützen.
Eine für die Hochschulbildung 2030 zeitgemäße Didaktik beinhaltet neue instituti-onelle Formate der didaktischen Selbstreflexion und nimmt verstärkt Bottom-Up-
Entwicklungen aus der zukünftigen Lehr- und Lernpraxis auf.
Die meisten Lernenden benötigen zumindest zu Beginn ihrer Studienlaufbahn star-ke Unterstützung, v.a. wenn der Schulabschluss schon länger zurückliegt. Daher
sollten Lernarrangements eine Mischung aus darbietenden, erarbeitenden und ex-
plorativen Lehr- und Lernsituationen darstellen, die den Lernenden mehr oder we-
niger unterstützen, abhängig von der beruflichen Laufbahn und Bildungsbiogra-
phie. Dabei kommen sowohl digitale als auch Präsenzphasen zum Einsatz, die in
der Lernstrategie bzw. im Curriculum verschränkt sind.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
34
2.1.4 Technologische Voraussetzungen und Möglichkeiten der Hochschulbildung in der digitalen
Gesellschaft
In seinen Empfehlungen zur Differenzierung der Hochschulen aus dem Jahr 2010 betont der Wis-
senschaftsrat die Wichtigkeit der Hochschule als physischen Ort und das Studium als soziale Pra-
xis. Dabei wird die Digitalisierung nur als Randthema von E-Learning gesehen (Wissenschaftsrat,
2010). Für die Zukunft kann man feststellen, dass der Gegensatz zwischen physischem und vir-
tuellem Raum immer weniger Bedeutung haben wird er wird „verschmelzen“ (Schön et al.,
2016) (siehe Abbildung 4).
Abbildung 4: Neue Lernräume, die analog und digital integrieren (Quell e: Schön et al., 2016 ).
Das bedeutet, dass die Hochschulbildung im Jahr 2030 sowohl von den digitalen Möglichkeiten
geprägt sein wird als auch von digitalen Techniken, Infrastrukturen und Unterstützungsstrukturen
abhängen wird. Um die Chancen und Herausforderungen besser zu verstehen, wurden Interviews
auf Basis von Leitfäden mit zwei Gruppen von Expert*innen geführt: Bei der ersten Gruppe handelte
es sich um technische Expert*innen aus ‚klassischen‘ Hochschulen in den Ländern Deutschland,
Österreich und der Schweiz (elf Interviews). Die Ergebnisse dieser Gespräche sind im Abschnitt
„Ansichten aus dem Mainstream-Hochschulbereich“ zusammengefasst. Bei der zweiten Gruppe
handelte es sich um Programmleiter*innen von innovativen Initiativen im oder angrenzend an den
Hochschulbereich (elf Interviews in sechs Ländern), welche im Abschnitt „Operativer und Strategi-
scher Nutzen von Technologie in der Hochschulbildung“ behandelt werden.
Eine offene Hochschulbildung beobachtet und reagiert schon während der Lern-phase auf Entwicklungen außerhalb der Hochschule sowie außerhalb des formalen
Lernsettings. Eine besondere Herausforderung liegt darin, didaktische Methoden zu
finden, die dieser Offenheit trotzdem Struktur und Steuerbarkeit verleihen, damit
der Lernweg sowohl für Studierende als auch für Lehrende transparent bleibt. Lear-
ning Analytics und andere Methoden der Beobachtung des Lernens können hier Ab-
hilfe bieten.
Es bedarf einer Hochschul- und Bildungsforschung, die diese Prozesse effektiv be-gleiten, kritisch hinterfragen und verbessern können.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
35
2.1.4.1 Ansichten aus dem Mainstream-Hochschulbereich
Die Mehrheit der befragten Expert*innen war sich einig, dass videobasierte Kurse zusätzlich oder
ausschließlich in Online-Formaten angeboten werden können. Durch Kontrollfragen und Tracking
kann der individuelle Lernfortschritt beobachtet und mittels Learning Analytics auf die Bedürfnisse
der Lernenden angepasst werden. Die Nutzung von unterschiedlichen Online-Kanälen und Online-
Materialien ermöglicht, Studierende außerhalb der traditionellen Unterrichtseinheiten zu erreichen.
Dadurch wird ein zeit- und ortsunabhängiges Lernen ermöglicht. Das individuelle Studium (
studium
irregulare
) könnte hier zum Normalfall werden.
Digital gestützte Szenarien, die bisher durch textbasierte Bedienung und begrenzte Lernumgebun-
gen geprägt waren, werden aktuell offener. So ermöglicht die Sprachsteuerung völlig neue Möglich-
keiten im Umgang mit Lernumgebungen. Zukünftig wird der Austausch mit Lehrenden und Lernen-
den dadurch für die Studierenden fließender und natürlicher. Auch können Personen mit physischen
Behinderungen, für die textbasierte Bedienungen schwierig sind, von diesem Format profitieren.
Big-Data-Ansätze, die Learning Analytics und Künstliche Intelligenz (KI) verbinden, können auch
Chatbots und E-Tutor*innen einsetzen, die Studierende über den gesamten Lernpfad hinweg beglei-
ten. Die Gestaltung der Lernumgebung kann auf diese Weise individuell an die Bedürfnisse der Stu-
dierenden angepasst werden. Im Hintergrund geschieht das mittels von der KI entwickelter Modelle
zur Vorhersage von Lernleistungen und bietet so verbessertes adaptives Lernen an.
Neue Technologien können auch Räume durch
Virtual Reality
(virtuelle Realität) und
Augmented
Reality
(erweiterte Realität) öffnen und plastisch machen. Im dreidimensionalen Raum können
Produkte, Maschinen und Abläufe erlebt und manipuliert werden, auch wenn sie noch gar nicht
existieren. So kann z.B. forschendes Lernen praktisch und mit allen Sinnen im Studium umgesetzt
werden (vgl. DeYoung & Eberhart, 2018).
Es fällt auf, dass die Vorstellung eines solchen Lernarrangements nichts Neues ist. Die Technologie
hierfür existiert auch zum großen Teil bereits (Altieri, 2018; Zick & Heinrich, 2018). Diese Praxis
scheint sich jedoch gerade erst in der Phase des praktischen Prüfens und der Umsetzung von Pro-
totypen (proof-of-concept) zu befinden.
Für den effektiven Einsatz der verschiedenen Möglichkeiten der Online-Lehre, Augmented und Vir-
tual Reality sowie Künstlicher Intelligenz, ist das
Zusammenspiel von technischer Infrastruktur
und Organisationsprozessen notwendig
. Zusätzlich braucht das Lehrpersonal Schulungen und
Support. Aktuell sehen die Befragten hier Engpässe bei der Zurverfügungstellung von notwendigen
Ressourcen und dem Willen zur Planung, Entwicklung und in weiterer Folge zur Etablierung von
geänderten Verwaltungs-, Raum- und Lernszenarien in der Hochschule.
Beispielsweise werden die traditionellen Vorlesungssäle in den Hintergrund treten und durch neue
Konzepte der Raumplanung ersetzt, welche den neuen Bedürfnissen der Studierenden und Lehren-
den entsprechen. Dabei wird es sich um multifunktionelle Räume mit flexiblen Nutzungsmöglich-
keiten handeln, die neue Lernszenarien ermöglichen. Auch Räume außerhalb des universitären
Geländes sind vorstellbar, in denen sich Studierende treffen können, wie „Lerncafes“ und „Fablabs“
(vgl. Taddei, 2018).
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
36
Digitale Plattformen, Algorithmen und Inhalte können dabei die Chance der nationalen und interna-
tionalen Vernetzung nutzen und gemeinsam getrieben werden. Die Verwendung von offenen Lizen-
zen bei den Produkten und Dienstleistungen können den Austausch und das Teilen der Leistungen
fördern, was für die Umsetzung der neuen Lernszenarien förderlich sein wird (Ebner & Schön, 2018).
Dennoch werden erste institutionelle Initiativen zumindest in der ersten Phase der Umstellung und
Umsetzung teurer als bisher. Der Aufwand für die technische Infrastruktur wird sich naturgemäß
erhöhen und somit auch die Technologie-Kosten pro Studierenden, die institutionell anfallen. Wich-
tig ist dabei, dass den Digitalisierungsstrategien frühzeitig ein entsprechender Stellenwert beige-
messen und damit auch ein innovationsfreundliches Umfeld an der Hochschule etabliert wird, wel-
ches Experimente in der Umsetzung von neuen Lehrszenarien ermöglicht und den Aufbau von neu-
en Lernpfaden für die Studierenden unterstützt.
Einige der Expert*innen erinnerten kritisch an die häufig vorausgesetzte Selbstverständlichkeit des
Besitzes von notwendiger Hardware wie z.B. eines Laptops, Mobiltelefons usw. auf Seiten der Stu-
dierenden. So sollten entsprechende Förderprogramme etabliert werden, um sicherzustellen, dass
auch finanziell weniger gut ausgestattete Personen die Möglichkeit erhalten, Teil der Bildungsland-
schaft zu werden. Barrieren können durch die Verfügbarkeit oder Nichtverfügbarkeit von Internet
(Stichwort „Breitbandausbau“), notwendiger Hardware (z.B. technische Ausstattung von Studieren-
den) und geeigneten Plattformen (z.B. „Richtlinien für barrierefreie Webinhalte“, WCAG) entstehen.
Damit sprachen die Expert*innen das wichtige Thema „digital divide“ an (Hess et al., 2016), welches
auf die Gefahr hinweist, dass Digitalisierung zu einer neuen sozialen Benachteiligung führen könn-
te, sofern derlei Fragen vernachlässigt werden.
Mit Blick auf die Zukunft betonten die Expert*innen schließlich, dass wenngleich die Online-Lehre
und der virtuelle Raum einen viel stärkeren Platz in der Hochschule der Zukunft einnehmen werden,
Präsenzphasen wichtig bleiben
. Sie gehen davon aus, dass es weiterhin Hochschulen geben wird,
die sich im Jahr 2030 vor allem auf das Lernen auf dem Campus konzentrieren. Daneben werden
sich auch reine Online-Hochschulen etablieren. Dabei können sich aber Kooperationen zwischen
diesen Hochschulen ergeben, um ihre Ziele möglichst ökonomisch zu erreichen. Solche Entwicklun-
gen stellen Herausforderungen für die Anerkennung von Lernleistungen dar, v.a. wenn ein Teil des
Lernprozesses außerhalb des Hochschulsektors erfolgt.
2.1.4.2 Operativer und strategischer Nutzen von Technologie in der Hochschulbildung
In den Expert*innengesprächen kristallisierte sich schnell heraus, dass die wahre Innovation oft
nicht in der Technologie selber liegt
, sondern in der Art und Weise, wie die Technologie genutzt
wird, um Bildungserfahrungen konsequent neu zu gestalten. So verwendet die Programmierschule
42 ein klassisches Intranet, um Bildungsinhalte bereitzustellen, was für sich genommen nicht be-
sonders innovativ wäre. Das Neuartige an 42 ist, dass die Aufnahmeprüfung auch ohne vorherige
Qualifikation zugänglich ist und dass während des „Studiums“ jede Prüfung so oft wiederholt wer-
den kann, bis ein*e Studierende*r das jeweilige Lernziel erreicht hat. Dieser Ansatz ist nur mit Tech-
nologie umsetzbar, aber Technologie allein reicht dazu nicht aus. Dazu kommt eine Offenheit, Neu-
es auszuprobieren und Altes in Frage zu stellen.
In der vorliegenden Analyse der Hochschulbildung im Jahr 2030 ist der Einfluss digitaler Technolo-
gie auf zwei Ebenen zu betrachten. Einerseits werden traditionelle Hochschulen in zunehmendem
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
37
Maße digitale Technologie in bestehende Prozesse einbauen („operativer“ Ansatz).6 Anderseits
ermöglicht Technologie auch ganz neue Modelle, die größtenteils außerhalb oder am Rande traditi-
oneller Hochschulen entstehen werden und eine digitale Transformation der Hochschulbildung
darstellen („strategischer“ Ansatz) (Evans & Wurster, 1997; vgl. Sollosy, Guidice, & Parboteeah,
2015).
Im Rahmen der operativen Nutzung von digitaler Technologie in existierenden Hochschulen bietet
die Technologie-Adoptions-Theorie einen hilfreichen Orientierungsrahmen. Darin heißt es: „Das
Wichtigste bei der Beobachtung [der Technologieübernahme] ist, dass zu jedem Zeitpunkt die ge-
troffene Wahl nicht zwischen Adoption und Nicht-Adoption getroffen wird, sondern die Entschei-
dung zwischen der sofortigen Adoption oder der Verschiebung der Entscheidung auf später gefällt
wird“ (Hall & Khan, 2003). Vielleicht war ein tiefgreifender Wandel bislang nicht notwendig, da der
Druck auf die Hochschulbildung durch die Umwelt noch nicht stark genug und die Qualität der An-
forderungen nicht heterogen genug waren. Eine Schlüsselfrage für die Zukunft der Hochschulbil-
dung ist also, ob diese Situation bestehen bleiben wird. Wie andere Bereiche mit langer Tradition ist
das System Hochschule innovationsresistent. Dies ist nicht unbedingt negativ. Es ergibt keinen
Sinn, jedem neuen Technologietrend hinterherzulaufen. Andererseits kann es jedoch auch bedeu-
ten, dass wichtige und positive Veränderungen von anderen vorangetrieben werden und eventuell
Teile der bestehenden Hochschulstrukturen unter Druck setzen werden. Hochschulen können diese
Innovationen vom Rand als Antrieb zur eigenen Transformation nutzen, aber das erfordert eine
ambitionierte strategische Neuausrichtung
.
Das Potential des strategischen Ansatzes wird deutlich, wenn der Blick auf Initiativen und Instituti-
onen außerhalb der bestehenden Institutionen gerichtet wird. Es gibt Bildungsanbieter, die außer-
halb des traditionellen Hochschulsektors entstehen (z.B. 42), als Neugründungen entwickelt werden
(z.B. Minerva), oder zumindest in neuen separaten Einheiten innerhalb der Hochschule nicht den
üblichen Planungsprozessen untergeordnet sind (z.B. MIT MicroMasters). Hier entstehen neue Mo-
delle, die vieles in Frage stellen und kreativ überdenken. Radikale Veränderungen betreffen fast alle
Aspekte der Hochschule: das Design des Campus, die Art und Weise, wie gelernt wird und wie Ge-
lerntes geprüft und akkreditiert wird, und die Beziehung zwischen Wirtschaft und Bildung. Die rele-
vantesten Fälle werden zwischen dem Fließtext in den folgenden Abschnitten dieser Studie als
explorative Beispiele dargestellt, die aufzeigen, welche Initiativen gegenwärtig ergriffen werden.
Allen Fällen gemeinsam ist, dass das Potential der Digitalisierung in ihrem Bildungsangebot einge-
bettet ist.
6 Ein Spiegelbi ld dieses Ansatzes k ann in den mehrheitli chen Antworten der U mfrage zur Digitalis ierungsstrategien de r deutschen Hochschu-
len gesehen w erden (Beise et al., 2019), wo Digitalisierung hauptsächlich zu r Verbesserung und Effizienzgewinnung in der Administration von
bestehenden Prozessen eingesetzt wird.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
38
FAZIT: Chancen für eine digital gestützte Hochschulbildung 2030
Die technologische Entwicklung bedeutet, dass neue Lernszenarien für die Zukunft möglich
sind, sie erfordert jedoch institutionelle und organisatorische Innovation, nicht nur den Ein-
satz neuer Technologien. Folgende Aspekte sind zu berücksichtigen:
Der Einfluss digitaler Technologie kann auf zwei Ebenen betrachtet werden. Einer-seits werden traditionelle Hochschulen in zunehmendem Maße digitale Technologie
in bestehende Bildungsprozesse integrieren. Andererseits wird digitale Technologie
auch zur Entwicklung fundamental neuer Bildungsanbieter und -programme ge-
nutzt werden. Diese können bis zum Jahre 2030 die Angebote traditioneller Hoch-
schulen sowohl ergänzen als auch zum Teil ersetzen.
Die technische Entwicklung bedeutet, dass der Gegensatz zwischen analogen und digitalen Lernszenarien aufgelöst werden kann. Das bietet Chancen, individualisier-
te Unterstützung von studentischen Lernwegen zur Verfügung zu stellen. Dadurch
wird ein zeit- und ortsunabhängiges Lernen ermöglicht und das individuelle Studi-
um (studium irregulare) könnte zum Normalfall für viele Studierende werden.
Bei technologiebasierten Lösungen muss darauf geachtet werden, dass alle Stu-dierenden sowohl Zugang zur Technologie als auch technische Unterstützung für
den Umgang mit dieser Technologie haben, ansonsten fördert die digitale Wende
womöglich eine neue soziale Schere (den sogenannten ‚Digital Divide‘).
Durch den Einsatz digitaler Technologie können Anbieter von Hochschulbildung zu-nehmend von Kooperation und Austausch profitieren. Dies ermöglicht die gemein-
same Entwicklung erfolgreicher Konzepte sowie passender Lernstoffe.
Der effektive Einsatz dieser Technologien innerhalb traditioneller Hochschulen hängt stark von der institutionellen Fähigkeit ab, Innovationsprozesse umzusetzen.
Dazu gehört die Bereitschaft, die notwendigen Ressourcen zur Verfügung zu stellen
und bestehende Verwaltungs-, Raum- und Lernszenarien in Frage zu stellen bzw.
durch neue Ansätze zu ersetzen.
Des Weiteren soll für neue innovationsstarke Bildungsanbieter und -modelle Unter-stützung bereitgestellt werden, welche die Rolle der traditionellen Hochschulen er-
gänzen kann.
Innovationen brauchen in der Regel Räume außerhalb der Organisations- und Pla-nungsprozesse von Hochschulen. Sie entwickeln sich dort, wo sie vor dem „Immun-
system“ von traditionellen Organisationen geschützt sind. Dies können auch sepa-
rate Einheiten innerhalb der Hochschulen sein.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
39
2.2 Entwicklung von Szenarien und Validierungsdiskussionen
Die Hochschulbildung im Jahr 2030 wird durch die in Kapitel 2.1 Hintergrunduntersuchungen auf-
geführten Parameter bestimmt: Die Anforderungen des Arbeitsmarktes hinsichtlich neuer Wissens-
und Kompetenzanforderungen wirken von außen auf die Hochschulbildung ein. Die Reaktion in der
Hochschulbildung wird durch didaktische Modelle und digital gestützte Lernszenarien geprägt.
Dieses komplexe Wirkungsgefüge führt dazu, dass es nicht eine Form der Hochschulbildung geben
wird, sondern dass die Hochschulbildung sich weiter ausdifferenziert (Davey et al., 2018). Für die
Entwicklung von Zukunftsszenarien in der Hochschulbildung zeigt die Literaturrecherche drei An-
sätze, wie im Folgenden kurz beschrieben.
2.2.1 Modellierungen, die auf Institutionen und dabei insbesondere auf Governance-Fragen
fokussieren
Die OECD untersuchte die globalen Entwicklungen im Hochschulbereich und entwickelte anschlie-
ßend eine Vier-Felder-Matrix, die auf zwei gegensätzlichen Paaren basiert: dem Ausmaß der Globa-
lisierung (global versus lokal) und dem Einfluss des Staates (Verwaltung versus Markt). Daraus
ergaben sich vier Szenarien (OECD, 2008):
Higher education inc
.eine Hochschulbildung mit einem internationalen Einzugsgebiet und marktgerechten Angeboten. Laut van der Wende galt dieses Modell damals als das
wahrscheinlichste Zukunftsmodell (van der Wende, 2017).
Open networking
fokussiert auf eine stärkere internationale Zusammenarbeit (Vernet-zung) sowie angebotsorientierte Versorgung. Dieses Konzept wurde stark durch den Bo-
logna-Prozess beeinflusst, der im europäischen Hochschulraum stattfindet und mittler-
weile 48 Länder umfasst (European Commission/EACEA/Eurydice, 2018), mit der Idee,
dass eine stärkere Harmonisierung zwischen den Systemen und eine stärkere Nutzung der
Digitalisierung diesen Prozess weiter fördern würde.
New public responsibility
eine Hochschulbildung mit Fokus auf den nationalen Markt und auf marktgerechte Versorgung, die gegenüber dem Staat Rechenschaft ablegen
muss. Dies spiegelte den damals zunehmenden Fokus auf das Neue Steuerungsmodell mit
u.a. leistungsbezogener Mittelverteilung wider (Orr & Jaeger, 2009).
Serving local communities
eine Hochschulbildung mit Schwerpunkt auf dem nationa-len Markt und der angebotsorientierten Versorgung auf lokaler Ebene. Dies wurde als
wahrscheinliches Szenario betrachtet, wenn es einen möglichen Gegenschlag gegen die
Globalisierung gibt (van der Wende, 2017).
2.2.2 Modellierungen, die auf Technologie fokussieren
Die Analyse von Holon IQ konzentrierte sich auf die (erwarteten) Auswirkungen der Technologie auf
die Hochschulbildung (Holon IQ, 2018). Es ergaben sich fünf Modelle: Education-as-usual, Global
giants, Regional rising, Peer-to-peer and Robo revolution. Dabei werden die ersten drei Modelle, die
Binnenveränderungen im Hochschulbereich voraussehen und in etwa die oben genannten Modelle
der OECD widerspiegeln, mit den letzten zwei Modellen, die ggf. auch ohne herkömmliche Hoch-
schule auskommen, kontrastiert. Es lohnt sich diese zwei Modelle kurz darzustellen:
Peer-to-peer
Dieses Szenario ist die Kehrseite des OECD-Szenarios „Open networking“, da es nicht wie bei der OECD Institutionen, sondern Menschen sind, die ihre eigenen Lern-
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
40
und Kooperationsnetzwerke aufbauen. Dies führt zu einem Modul-basierten Lernweg, bei
dem die Lernenden ‚micro credits‘ entlang ihres eigenen Weges sammeln.
Robo-Revolution
Dieses Szenario wurde im OECD-Konzept nicht berücksichtigt, da die OECD den Auswirkungen der Digitalisierung auf die Hochschulbildung wenig Beachtung
schenkte. Tatsächlich handelt es sich um eine ausgefeilte Version des Peer-to-Peer-
Modells. Durch künstliche Intelligenz und maschinelles Lernen ist eine bessere Kennzeich-
nung und Vorsortierung von Lernmaterialien möglich, die es einfacher macht, relevante
Lernressourcen zu identifizieren. Darüber hinaus kann skalierbare personalisierte Unter-
stützung durch soziale Bots ermöglicht werden.
2.2.3 Modellierungen, die auf gesellschaftliche Entwicklungen fokussieren
Die Beyond-Current-Horizons-Studie aus Großbritannien führte eine Umweltanalyse durch, um drei
vollständige Szenarien zukünftiger Gesellschaften zu entwickeln, aus denen sechs Bildungsmodelle
extrahiert wurden (Facer, 2009). Für jedes gesellschaftliche Szenario wurden also zwei alternative
Modelle für das Bildungssystem vorgeschlagen eines mit positiver und eines mit negativer Aus-
prägung. Die drei Szenarien tragen die Namen: Trust yourself, Only connect und Loyalty points. Es
lohnt sich diese Szenarien und die entsprechenden Modelle etwas ausführlicher zu präsentieren.
Trust yourself
(Vertraue dir selbst)Dies ist eine Gesellschaft, in der die Bürger*innen ih-re Rolle darin sehen, Verantwortung für sich selbst zu übernehmen. In dieser Gesellschaft
gibt es zwei Modelle für die Bildung:
informierte Wahl
oder
unabhängige*r Verbrau-
cher*in.
Im Fall der „informierten Wahl“ basiert das Bildungsmodell auf der persönlichen
Lernreise einer Person, die durch Mentor*innen unterstützt wird. Die Fokussierung auf die
Reise der*s Einzelnen im Prozess des lebenslangen Lernens bedeutet, dass die Bildungs-
ergebnisse im Kontext der vorherigen und nachfolgenden Lernerfahrungen der*s Lernen-
den bewertet werden. Im Falle der*s „unabhängigen Verbrauchers*in“ liegt der Schwer-
punkt auf der unabhängigen Auswahl standardisierter Lernmaterialien. Dies führt zu zwei
Spannungen: Es besteht die Tendenz, dass die Lernenden Materialien annehmen, die von
bekannten „Markennamen“ zur Verfügung gestellt werden. Zudem gibt es Lernende, die
nicht die gleiche Unterstützung haben, um durch dieses komplexere System zu navigieren,
insbesondere wenn ihr soziales Netzwerk mit dem System weniger vertraut ist.
Only connect
(Nur verbinden)Dies ist eine Gesellschaft, die die Bewältigung der großen Umweltherausforderungen als eine gemeinsame Aufgabe betrachtet, die nur kollektiv zu
lösen ist. In dieser Gesellschaft gibt es zwei Modelle für die Bildung:
integrierte Erfahrung
oder
Dienstleistung und Bürgerschaft.
Im Fall der „integrierten Erfahrung“ ist das Bil-
dungsmodell integrativer als bisher, wobei das Lernen als überall stattfindend angesehen
wird - in der Arbeit, in der Pflege, in der Freizeit und in Bildungseinrichtungen. Darüber hin-
aus sieht dieses Modell Bildung als integriert an; Lernen ist ein kollaborativer und kontext-
bezogener offener Prozess, der sich über das ganze Leben erstreckt. Im Fall von „Dienst
und Bürgerschaft“ dominiert die Ansicht, dass man Einzelpersonen beibringen muss, gute
Bürger*innen zu sein. Lernen wird zunehmend als etwas angesehen, das außerhalb des
sozialen Kontextes der Menschen geschieht und notwendigen Input für Beschäftigung, Ar-
beit oder Wohlbefinden liefert.
Loyalty points
(Treuepunkte): In dieser Gesellschaft wird das Verhältnis zwischen Einzel-personen und Unternehmen aller Art im Laufe der Zeit immer stärker kodifiziert und forma-
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
41
lisiert. Einzelpersonen unterliegen einem Geflecht von Mitgliedschaften und Vereinigungen.
Sie umfassen alle Lebensbereiche, die das Verhalten von Gruppen und Einzelpersonen
steuern und einschränken: Arbeit, persönliche Interessen, Gesundheitswesen, Familie,
Freizeit und Konsum. In diesem Zusammenhang konzentriert sich der Staat auf die Förde-
rung der sozialen Nachhaltigkeit und stellt sicher, dass die vielen verschiedenen Perspek-
tiven und Prioritäten innerhalb der Gesellschaft nicht so stark in verschiedene Richtungen
ziehen. In dieser Gesellschaft gibt es zwei Modelle für die Bildung:
Entdeckung
oder
Diag-
nose
. Im Fall der „Entdeckung“ besteht das Modell für die Bildung darin, dass die Lernen-
den zwischen verschiedenen Gruppen und Verbänden wandern, mit ihren Interaktionen
und Beiträgen zu den verschiedenen Wissensgemeinschaften, denen sie begegnen, ein
Portfolio von Fähigkeiten und Beiträgen aufbauen, das digital erfasst, authentifiziert und
geteilt wird. Im Falle der „Diagnose“ besteht das Bildungsmodell darin, die Fähigkeiten ei-
nes Individuums frühzeitig zu analysieren und vorherzusagen, zu welchen Verbindungen
und Verbänden sie am besten passen. Folglich unternehmen die Menschen weniger An-
strengungen bei der Entwicklung größerer Netzwerke und Zugehörigkeiten und konzentrie-
ren sich mehr darauf, sicherzustellen, dass sie in einem begrenzten Kreis von Verbänden
erfolgreich sind. Dies führt zu einer weniger dynamischen Gesellschaft mit hoher Abhän-
gigkeit von proximalen Netzwerken.
Der für die vorliegende Studie gewählte Ansatz geht auch direkt von den Lernenden und ihren Lern-
wegen aus. Die Analyse oben hat gezeigt, dass
Lernen zum zentralen Merkmal der digitalen Welt
und für unterschiedlichste Menschen der Schlüssel für gesellschaftliche Teilhabe sein wird.
Damit knüpft dieser Ansatz ebenfalls an der Idee der Hochschule von Barnett an, der sein Konzept
für eine offene Hochschulbildung als die „ökologische Universität“ bezeichnet (Barnett, 2011). Bar-
nett unterscheidet zwischen der Vision einer Forschungsuniversität die „an sich“, also für die
Wissenschaft existiert; der Vision einer unternehmerischen Universität die „für sich“, also für den
Selbsterhalt des Unternehmens existiert; und der
ökologischen Universität
die „für andere“, also
offen zu der und für die Welt, existiert.
Entsprechend stellt Abbildung 5 die Studierenden ins Zentrum des Systems, umringt von entspre-
chenden Angeboten der Hochschulbildung, die die Anforderungen der Lernenden erfüllen. Diese
Perspektive vermeidet auch den ‚digital first‘-Ansatz, der in Zeiten des E-Learning prominent war
nämlich die Idee, dass man von der Technik anstatt vom Nutzenden und Nutzen ausgeht (Anders-
son, Alaja & Buhr, 2016; Buhr, 2015; Howaldt & Jacobsen, 2010; Rüede & Lurtz, 2012). Stattdessen
fokussiert dieser Ansatz die Idee, dass es in sozialen Kontexten wie Bildung immer um soziale Inno-
vationen geht also darum, wie soziale Prozesse neu konfiguriert werden können, um Ziele besser
zu erreichen.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
42
Abbildung 5: Die Anforder ungen an die Hochschulbildung aus Sicht der*s Studierenden. (Q uelle: Eigene Abbildu ng.)
Nach diesem Ansatz formt sich die Hochschullandschaft in Jahr 2030 um verschiedene Lernwege,
die von Studierenden eingeschlagen werden. Wie Abbildung 6 zeigt, geht das AHEAD-Konzept von
vier idealtypischen Lernwegen in der Hochschullandschaft 2030 aus. Die Modelle der Hochschulbil-
dung, die sich daraus ergeben, sind außerdem nicht exklusiv, sondern werden nebeneinander exis-
tieren, da sie unterschiedliche Bedürfnisse adressieren.
Die AHEAD-Modelle wurden in verschiedenen Zyklen durch unterschiedliche Expertenkreise weiter-
entwickelt und validiert:7
Initiale Erarbeitung im August 2018 durch das AHEAD-Team
Vorstellung der Modelle und Diskussion im Rahmen der Themenwoche des deutschen Hochschulforums Digitalisierung, September 2018
Weiterentwicklung und Beurteilung aus einer internationalen Perspektive heraus durch das AHEAD-Advisory Board, Oktober 2018
Online-Umfrage unter internationalen Expert*innen aus dem Hochschulsektor. Ergebnisse der Umfrage sind exemplarisch als „Randnotiz“ in den Modellbeschreibungen weiter unten
aufgeführt.
Im Folgenden werden die Modelle kurz beschrieben und dann anhand der gesellschaftlichen Treiber,
denen sie folgen, der didaktischen und technologischen Lösungen, deren sie sich bedienen, und
ihres Innovationspotentials charakterisiert.
7 Siehe Method enteil im Anhang
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 2: Von Entwicklungslinien zur Szenarienentwicklung
43
03
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
44
Kapitel 3: Vier Modelle zur
Hochschulbildung im Jahr 2030
Abbildung 6 zeigt die vier Lernwege entlang der Laufbahn einer Person. Die Blöcke stehen für die
Hauptlernphasen in der Hochschulbildung. Natürlich kann es auch sein, dass Lernende gleichzeitig
arbeiten oder anderen gesellschaftlichen Verpflichtungen nachgehen.8 Die Phasen ohne Blöcke
stehen für Phasen außerhalb der Hochschulbildung, die ebenfalls durch Arbeiten oder andere ge-
sellschaftliche Verpflichtungen geprägt sind. Jeder Lernweg wird nach einem Spielzeug benannt,
das in etwa für die Haupteigenschaften dieses Lernwegs steht. Die Namen sollten aber nicht zu
ernst genommen werden. Wir hoffen, dass sie bei den folgenden Beschreibungen lediglich der Erin-
nerung an Kerneigenschaften der jeweiligen Modelle dienen.
Abbildung 6: Vier Lernwege für die Hochschullandschaft 2030. (Quelle: Eigene Darstellung).
8 Aktuell arbeitet etwa die Hälfte aller Studierenden zumindest ein paar Stun den pro Woche neben ihr em Studium (Masevičiūt ė, Šaukeckienė, &
Ozolinčiūtė, 2018).
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
45
3.1 Kurzbeschreibungen der Lernwege 9
3.1.1 Tamagotchi: Hochschulbildung für einen guten Start ins Leben
Die
Studierenden
stehen in diesem Modell am Beginn ihrer Erwerbsbiografie. Die sekundäre Schul-
bildung ist mit Erwerb der Hochschulreife abgeschlossen. Der Wechsel an die Hochschule erfolgt
direkt im Anschluss daran. Studiert wird in Vollzeit bis zum Abschluss des Studiengangs nach drei
bzw. fünf Jahren, je nachdem, ob ein Bachelor- oder ein Masterabschluss angestrebt wird. Nach
Abschluss erfolgt der Einstieg in den Beruf. Das Hochschulstudium dient dazu, berufsqualifizieren-
de Kompetenzen zu erwerben und eine Wissensbasis zu schaffen, die den Übergang in die Erwerbs-
phase gelingen lässt. Damit ist das Lernen im Kontext des Hochschulsystems praktisch abge-
schlossen. Das weitere Lernen erfolgt vor allem non-formal, informell und bedarfsorientiert, ge-
steuert von der beruflichen Situation. Weiterbildungen werden besucht, aber ohne eine explizite
Verbindung zum vorherigen Studium.
Hinter diesem Modell steht die Annahme, dass es weiterhin gelingt, Absolvent*innen eine zukunfts-
sichere Ausbildung zu bieten, indem nicht allein für die Bedarfe des aktuellen Arbeitsmarktes aus-
gebildet wird, sondern Kompetenzen vermittelt werden, die eine Mitgestaltung ihrer Umwelt erlau-
ben.10
Das
didaktische Konzept
im Tamagotchi-Modell sieht vor, Lernen und persönliche Entwicklung
durch einen Lernpfad mit klar definierten Schritten und Ergebnissen zu unterstützen. Dieser Weg ist
eine Fortsetzung des zuvor durchlaufenen Schulsystems. Sekundäre und tertiäre Bildung sind im
Idealfall gut aufeinander abgestimmt, sodass der Wechsel an die Hochschule ohne große Brüche
erfolgt. Das Konzept unterstützt einerseits die akademische Orientierung und andererseits einen
gewissen Grad der Selbstorganisation und des eigenständigen Lernens.
Die Hochschule
bleibt der zentrale Lehr- und Lernraum. Studierende werden als Teil einer Gemein-
schaft betrachtet, die die soziale Einbindung von einzelnen Studierenden fördert. Neben dem Infor-
mationsaustausch auf dem Campus wird auch mit der Unterstützung von globalen Kommunikati-
onsnetzwerken, Simulationen und Augmented-Reality-Techniken gelernt, die der Erweiterung der
physischen Lernumgebung dienen. Zukünftige Lernerfahrungen in der Berufswelt werden durch
innovative Lernräume wie Makerspace und Fablabs, aber auch durch klassische Praktika integriert.
Die
Kontrolle und Koordination
, ebenso wie die Gestaltung des Studiengangs, liegen in diesem
Modell bei der jeweiligen Hochschule. Die Studieneingangsphase und damit der Wechsel von Schule
zu Hochschule ist dabei ein wichtiger Gestaltungspunkt.
9 Im Folgenden werden in den Marginalien auch Kommentare aus der internationalen Umfrage (siehe Abschnitt 6.1.3 Hintergrundinformatio-
nen zur anonymen internationalen Umfrage) zu den jeweilig en Modellen wiedergegeb en.
10 Zudem bleibt es als etabliertes Mod ell zur Qualifikati on des eigenen wissens chaftlichen Nachw uchses weiterhin releva nt.
Tamagotchi
Ein geschlossenes Ökosystem, das um die einzelnen Studierenden herum aufgebaut ist. Der
Fokus liegt auf dem Beginn des Lernpfades.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
46
Das Tamagotchi-Modell folgt dem traditionellen Konzept der Hochschulbildung. Dieses geht davon
aus, dass die in der Hochschule erworbenen Kenntnisse und Fähigkeiten den Lernenden ein zu-
kunftssicheres Kompetenzprofil geben und sie in die Lage versetzen, sich flexibel an zukünftige
Anforderungen anzupassen.
Ein zentraler
Einflussfaktor auf den Erfolg und die Attraktivität dieses Modells
wird die Diversi-
fizierung der Studierendengruppe sein. Bisher wird hier in Kohorten (relativ altershomogenen Grup-
pen) gelernt, die indes, um erfolgreich zu sein, einen bestimmten Bildungshintergrund aufweisen.
Werben nun Hochschulen verstärkt um alternative Zielgruppen wie ältere Studierende, kann dies
jedoch zu einem grundlegenden Wandel führen, der im Grunde nicht dem Ansatz des Tamagotchi-
Modells entspricht. Hochschulen werden aber auf die wachsende Durchlässigkeit im Hochschulsys-
tem reagieren müssen. Sie werden den Anforderungen der diversifizierten, vielfach (teilweise) be-
rufstätigen Studierenden u. a. durch flexiblere Studienangebote und eine studierendenzentrierte
Lehre stärker begegnen müssen, so dass dieses Modell unter Druck gerät.
Um eine Flexibilisierung von Studiengängen zu erleichtern, werden auch die staatlichen Steue-
rungssysteme angepasst werden müssen (mittelverteilungsrelevante Kennzahlen wie Absol-
vent*innen in der Regelstudienzeit müssen überdacht und deutlich verfeinerte Steuerungsansätze
entwickelt werden).
Das Beispiel von Minerva (siehe CASE: Minerva) zeigt, wie das Tamagotchi-Modell innovativ gedacht
werden kann, indem es eine vernetzte, campus-unabhängige Hochschulbildung für das Bachelor-
studium anbietet, konsequent technologische Möglichkeiten ausschöpft und räumliche Beschrän-
kungen aufhebt. Gleichzeitig bleibt die Betreuung und Unterstützung, die das Tamagotchi-Modell
als Versprechen mitführt, erhalten.
CASE: Minerva Die Welt als Campus
Relevant für das Modell:
Tamagotchi
Auf den ersten Blick erinnert Minerva an eine ganz normale Hochschule, und das ist so
gewollt. Aber wenn man etwas unter die Oberfläche schaut, entdeckt man einen ganz neuen
Ansatz, wie eine Hochschule Bildung organisieren kann. So hat Minerva anstelle eines
traditionellen Campus ein Netzwerk von sieben Satellitenstandorten in der ganzen Welt (u.a.
in Berlin). Alle Kurse werden online angeboten, in kleinen Gruppen von zwanzig Lernenden.
Die Studierenden leben, obwohl der Unterricht online stattfindet, in gemeinschaftlichen
Wohnheimen. Minerva zeigt, welche Möglichkeiten bestehen, wenn Digitalisierung als
Transformation verstanden und genutzt wird. So lassen sich auch traditionelle Ansätze in
ganz neuen Formen umsetzen.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
47
3.1.2 Jenga: Hochschulbildung als solides Fundament zur Weiterentwicklung
Wie auch im Tamagotchi-Modell steht nach dem Erwerb der Hochschulreife der direkte Wechsel in
die Hochschule an. Studiert wird i.d.R. in Vollzeit über einen Zeitraum von wenigen Jahren.11 Gelernt
werden grundlegende Kenntnisse und Fähigkeiten. Die initiale Hochschulzeit ist damit kürzer als im
Tamagotchi-Modell und spricht damit auch
nicht-traditionelle Studierende
an, für die vier bis fünf
Jahre Studienzeit zu lange sind bzw. die eine stark anwendungsorientierte Hochschulbildung su-
chen. Das Modell sieht aber von Anfang an vor, dass die Lernenden ihr Wissens- und Kompetenz-
11 Ähnlich wie in Junior Colleges in Südkorea oder die sogenannte „accelarated degrees“ aus England.
Gegründet wurde die private Hochschule von Ben Nelson 2012 mit dem Ziel, „Ivy League“-
Qualität anbieten zu können, aber das Konzept der Lerngemeinschaft anders zu gestalten.
Trotz des zentralen Einsatzes von Video-gestützter Lehre, sträubt sich Nelson gegen die
Beschreibung, dass das Innovative an Minerva die Technologie sei. Für ihn ging es von An-
fang an um eine neue Pädagogik, die um 100 wichtige Ideen aufgebaut ist, welche gelehrt,
angewandt und bewertet werden können (die Liste umfasst sowohl kritische Denkmuster als
auch wissenschaftliche Konzepte). Technologie war nicht ausschlaggebend, aber ohne
Technologie ließe sich dieser Ansatz in der Praxis nicht umsetzen.
Innovation endete bei Minerva nicht mit einem neuen Videosystem, sondern führte zu
konsequentem Hinterfragen, welche Rolle der Campus in diesem Modell spielen kann und
sollte. Nelson, seine Kollegen und Kolleginnen wollten die soziale Erfahrung des
gemeinsamen Lebens und Lernens nicht ersetzen, sondern verbessern. Um dies zu tun,
brauchten sie keine eigene Mensa, keine Hörsäle, keine Bibliothek und keine Fitnessanlagen,
da diese in jeder größeren Stadt vorhanden sind und mitgenutzt werden können.
Studierende entwickeln eine Bindung an ihre Kohorte, aber nicht an einen bestimmten
Standort und haben so die Möglichkeit, verschiedene Kulturen und Umfelder
kennenzulernen.
Wie sieht die Lehre bei Minerva aus? Alle Kurse werden live per Video von Professor*innen
mit kleinen Gruppen von maximal zwanzig Studierenden durchgeführt. In diesem seminar-
ähnlichen Ansatz werden Instruktion, Diskussion, Gruppenarbeit, und Bewertung frei ge-
mischt Professor*innen haben Zugang zu „real time“-Informationen zum Lernfortschritt
der Studierenden und können so Tempo und Inhalte anpassen. Nelson spricht hauptsächlich
über die bessere Qualität der Lehre, welche sich so umsetzen ließe, aber ein weiterer Vorteil
ist die Flexibilität der physischen Lernräume. Man muss nicht mehr in große Hörsäle inves-
tieren Studierende können sich aus dem Café oder von zu Hause einloggen und intelli-
gente Technologien können Tutor*innen entlasten.
Jenga
Hochschulen bieten ein Fundament an Wissen und Kompetenzen an, das durch die Lernen-
den im weiteren Lebenslauf durch kürzere Studienblöcke erweitert wird.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
48
profil im weiteren Lebenslauf und nach Unterbrechungen durch zusätzliche Module erweitern. Je
nach beruflicher Situation dienen diese Module dann dem Upskilling (Kompetenzverbesserung) oder
dem Sideways Skilling (Kompetenzerwerb für einen Wechsel der fachlichen Richtung).
Die zentrale Idee ist dabei, dass das Hochschulstudium im traditionellen Modell nicht flexibel und
nicht integrativ genug ist, um sich in einem sehr dynamischen Umfeld zukunftssicher auszubilden.
Daher muss das Studium breiter und länger gedacht werden. In einer initialen Studienphase werden
die Grundlagen vermittelt, um diese später zu ergänzen. Für dieses Modell muss zunächst didak-
tisch entschieden werden, was das Fundament ist, das als Basis für den Anfang der beruflichen
Laufbahn vermittelt werden muss, und was als kürzere Fortsetzungsphasen folgen soll. Ob es sich
bei diesen Grundlagen um allgemeine oder transversale Kompetenzen handelt oder aber um spezi-
fisches Grundlagenwissen, wird von Disziplin zu Disziplin und von Hochschule zu Hochschule an-
ders beantwortet werden.
Wichtig ist jedoch, dass das
didaktische Konzept
zunächst auf eine Grundlagenphase (das grund-
ständige Studium) fokussiert, die das Selbstlernen und die Selbstorganisation unterstützt. In dieser
Phase sind Lernen und persönliche Entwicklung der Studierenden auf einen klaren Lernpfad mit
festgelegten Schritten und klaren Ergebnissen ausgerichtet. Gelernt wird in der ersten Blockphase
dieses Modells hauptsächlich auf dem Campus mit der Unterstützung von globalen Kommunikati-
onsnetzwerken, Simulationen und Augmented-Reality-Techniken zur Erweiterung der Lernumge-
bung durch Online-Erfahrungen. Durch Praktika, Makerspaces und Fablabs werden bereits früh
Verbindungen zur späteren Arbeitswelt hergestellt. Nach erfolgreichem Abschluss verlassen die
Studierenden zunächst die Hochschule und treten in die Erwerbsphase ein. Die
Hochschulen
berei-
ten diesen Übergang mit vor und legen hier im Jenga-Modell ihren Schwerpunkt. Die zweite Lern-
phase besteht aus mehreren Lerneinheiten, die die Lernenden selbst wählen, häufig unter Berück-
sichtigung des sich verändernden Kompetenzbedarfs auf dem Arbeitsmarkt. Dazu werden kurze
Lernzeiten bei
verschiedenen Bildungsanbietern
wahrgenommen, die sowohl auf dem Campus
als auch online erfolgen und miteinander kombiniert werden.
Die
formelle Anerkennung
des ersten Lernblocks ist sicher. Die Anerkennung der anderen Lernein-
heiten hängt davon ab, wie die Anerkennung innerhalb der Hochschullandschaft organisiert ist. Es
wird für Lernende die Möglichkeit geben, ergebnisbasierte Vereinbarungen mit einzelnen Hochschu-
len zu treffen, die sowohl den anfänglichen Lernblock als auch die zusätzlichen Einheiten umfas-
sen. Auf diese Weise können Lernphase 1 und Lernphase 2 zu einem einheitlichen Studienpro-
gramm integriert werden. Die beiden Phasen können aber auch unabhängig voneinander belegt
werden.
Das Jenga-Modell antwortet konsequent auf den Bedarf von Studierenden und Arbeitsmarkt nach
einer Studiengestaltung, die besser auf neue
Bedürfnisse aus der Arbeitswelt
vorbereiten und
eingehen kann, ohne die Grundstruktur eines Hochschulstudiums aufzugeben.
Das Beispiel MIT MicroMasters stellt eine innovative Variante des Jenga-Modells dar. Nach einem in
Phase 1 erworbenen Bachelorabschluss kann der MicroMasters sehr flexibel organisiert und in der
zweiten Phase erworben werden. Damit bietet das MIT eine innovative Variante innerhalb des be-
stehenden Systems.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
49
Die größere Innovation würde darin liegen, ein gesamtes Studienprogramm zu entwickeln, das in
den verschiedenen Studienphasen von unterschiedlichen Anbietern bereitgestellt wird. Die Studie-
renden würden über den gesamten Verlauf des Studienprogramms begleitet werden, auch wenn nur
der erste Teil an der eigenen Hochschule erfolgen würde. Dazu wären eine digitale Studierenden-
verwaltung sowie „stapelbare“
Digitalteilzeugnisse
an der Universität nötig, die später als Gesamt-
studium anerkannt werden könnten. Es bleibt hier die Frage, ob Kollegs und andere Anbieter auf
eine derart gestaltete Partnerschaft mit Hochschulen eingehen würden oder lieber selbst ein eige-
nes Gesamtangebot entwickeln würden.
CASE: 42 Fokus auf projektbasiertes Lernen und Peer-Bewertung
Relevant für die Modelle:
Tamagotchi und Jenga
Olivier Creuzet (Head of Pedagogy bei 42): “We actually lie to our students. We say they will
develop technical skills, but we want to develop adaption, self-learning, creativity, self-
learning, and other soft skills.”
Ein Merkmal von Jenga ist der direkte Weg in den Arbeitsmarkt. Dies war auch das Ziel von
42, einer innovativen Schule für Softwareentwickler*innen in Paris (mit Ableger in den USA),
die 2013 von Xavier Niel, einem französischen Multimillionär gegründet wurde. Der Zugang
zu 42 ist frei und wie ein Computerspiel organisiert. Interessierte Lernende müssen zuerst
das „Piscine“ (Schwimmbad) bestehen, eine Art vierwöchige Aufnahmeprüfung, in der
hauptsächlich die Fähigkeiten, mit anderen zusammenzuarbeiten und neues Wissen anzu-
wenden, getestet werden. Erfolg im Piscine ist unabhängig von bereits existierenden Pro-
grammierkenntnissen. Danach bearbeitet jede*r Studierende eine aufeinanderfolgende
Reihe von Projekten und liefert gleichzeitig Feedback zu Projekten der anderen Studierenden
ab. Wie in einem Computerspiel kann jedes Projekt so oft wie nötig verbessert werden, bevor
Studierende zum nächsten Level vordringen. Dies klingt alles sehr modern, aber Olivier
Creuzet führt es auf einen klassischen konstruktivistischen Ansatz von Piaget und Montes-
sori zurück. Das Neue an 42 ist, dass dieser Ansatz heute mit Hilfe von Technologie kosten-
günstig in größeren Gruppen umgesetzt werden kann.
Lernende haben zum größten Teil noch keinen Hochschulabschluss und finden über 42
einen direkten Pfad von der Sekundärbildung in den ersten Job; aber es gibt Ausnahmen.
Einige Studierende wechseln nach dem Abschluss eines klassischen Studiums, um bei 42
noch praktische Programmierfähigkeiten zu lernen. Andere stehen schon im Berufsleben,
möchten sich aber neu orientieren, was eventuell auch einen späteren Einstieg in die Hoch-
schule ermöglicht, den wir im Transformer-Modell skizziert haben (siehe unten). In der Di-
daktik von 42 werden Lernprozesse der Arbeitstätigkeit von Programmierer*innen nach-
empfunden. So benutzen Studierende Tools und Plattformen, die sie mit großer Wahrschein-
lichkeit auch in ihrem ersten Job antreffen werden. Die Trennung zwischen Arbeit und Stu-
dium weicht dadurch auf. 42 ist eine direkte Reaktion auf die wachsende Nachfrage nach
Softwareentwickler*innen, die von der traditionellen Hochschule nicht abgedeckt wird. Die
Technologien entwickeln sich rapide weiter, sodass spezifische Programmiersprachen
schnell veralten. Die sorgfältige und damit auch langsame Curriculumentwicklung in der
Hochschule kann mit diesen Anwendungen nicht Schritt halten. Aber für viele Stellen erwar-
ten Firmen kein abgeschlossenes Informatikstudium, sondern nur solide Grundkenntnisse
(das „Handwerk“ des Programmierens) und die Fähigkeit, mit anderen zusammenzuarbeiten
und weiter zu lernen.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
50
CASE: MIT MicroMasters Flexibilität nach der ersten Studienphase
Relevant für die Modelle:
Jenga, Lego, Transformer
Studierende, die eine Reihe von Online-Kursen erfolgreich abschließen und danach unter
Aufsicht eine Klausur bestehen, können seit 2016 für insgesamt etwas mehr als USD 1.000
einen MicroMasters vom Massachusetts Institute of Technology (MIT) erwerben. Der erste
MicroMasters wurde für den Bereich „Supply Chain Management“ entwickelt, wo es einen
wachsenden Bedarf an Expert*innen gab, der von den Hochschulen nicht gedeckt werden
konnte. So bietet das MIT pro Jahr nur ca. 30 Master-Studienplätze für das Studium vor Ort
an, und diese Anzahl lässt sich nicht einfach von einem Jahr auf das andere vergrößern
(oder wieder verkleinern). So entschlossen sich die Professor*innen, ihre Kurse online mit
einer neuen Abschlussart anzubieten.
Der MicroMasters ist kein „offizieller“ Hochschulabschluss, wird aber von einigen großen
Firmen sowie 22 Hochschulen in 16 Ländern als Lernleistung anerkannt. 40% der MicroMas-
ters Studierenden haben mehr als 5 Jahre Berufserfahrung. MicroMasters Studierende sind
im Durchschnitt Anfang 30, und etwa die Hälfte hat bereits einen Hochschulabschluss. Mehr
als 20% kommen jedoch direkt ohne vorherigen Abschluss zum MicroMasters. Um den kom-
pletten MicroMasters abzuschließen, braucht man Zeit, Initiative und Motivation. Daher ist
die Zahl derjenigen, die alle Kurse erfolgreich abschließen, recht gering: ca. 1.300 Studieren-
de haben vom MIT bisher einen MicroMasters erhalten. Allerdings sind das 20-mal mehr als
Studierende auf dem MIT Campus, die an ihrem Supply Chain Master arbeiten. Und über
30.000 Studierende haben zumindest eines der Online-Module abgeschlossen. Das Ziel des
MicroMasters war es, mehr Menschen Zugang zu Wissen zu ermöglichen und einen neuen
Zugang in das traditionelle MIT-Masters-Programm zu kreieren. Aber das Resultat war viel
interessanter. Denn heute akzeptiert nicht nur das MIT den MicroMasters in Bewerbungen
von potentiellen Studierenden, sondern auch andere Hochschulen und sogar Arbeitgeber.
Der MicroMasters hat das, was in der Theorie schwer zu organisieren war die gegenseitige
Anerkennung von Kursleistungen in die Praxis einfach umgesetzt. So kann man sich mit
einem MIT MicroMasters bei 22 Hochschulen in der ganzen Welt auf 69 verschiedene Mas-
ters-Programme bewerben und bekommt die Online-Kurse angerechnet.
42 ermöglicht es Studierenden, diese Schüsselkompetenzen zu erwerben. Neben Program-
mieren entwickeln die Studierenden im 42-Modell Fähigkeiten wie Selbstlernen und Selbst-
organisieren, welche nicht direkt mit Software zu tun haben, ihnen aber im Berufsleben und
beim weiteren Studium zugutekommen werden. Obwohl es vorrangig als eine innovative
Programmierausbildung beschrieben wird, legt 42 enormen Wert auf die weniger techni-
schen Resultate, wie Adaptionsfähigkeit, Selbstlernen, Kreativität und diverse andere sozia-
le Skills. Also genau die Fähigkeiten, die Lerner im Jenga-Modell brauchen, um ihren eigenen
Lernpfad zu kreieren.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
51
3.1.3 Lego: Hochschulbildung als Bausatz
In diesem Modell sind
Studierende
hochmotiviert und selbstständig und bevorzugen einen indivi-
duellen, nicht-standardisierten Lernweg, der ganz ihren Lernbedürfnissen und Interessen ent-
spricht.12 Dazu werden verschiedene Lerneinheiten, die von unterschiedlichen Hochschulen sowie
neuen Bildungsanbietern online und on-campus angeboten werden, kombiniert. Die Kette dieser
Lerneinheiten bildet ihren jeweils persönlichen Studienverlauf. Zudem ist der häufige Wechsel zwi-
schen Phasen der Erwerbsarbeit und des Lernens charakteristisch für dieses Modell.
Die zentrale Idee dabei ist, dass es eine Gruppe von Lernenden gibt, die aus einer starken Selbstmo-
tivation heraus studiert und die sich bedarfsgenau und individuell ein eigenes Studium zusammen-
baut. Dies wird zumindest vorerst in Berufen gelingen, in denen professionelle Qualifikationen weni-
ger gefragt sind als spezifische Fähigkeiten, z.B. Softwareentwicklung. Ziel ist in erster Linie der
Erwerb von unmittelbar für sich persönlich verwertbaren Kenntnissen und Kompetenzen. Lernende
können hierfür verschiedene Motivationen haben.
So stellen diese Studierenden ihr eigenes Studienprogramm individuell aus verschiedenen Lernein-
heiten zusammen. Sie werden dabei unterstützt von Arbeitgeber*innen, Vertreter*innen der Berufs-
gruppen (die Berufsstandards festlegen) oder (falls vorhanden) von Hochschulen (und anderen
Dienstleistern), die Lernwege gestalten, auch wenn die Lernenden selbst nicht an ihrer Hochschule
12 Derzeit best ehen bereits verschied ene Modelle, die ein em ähnlichen Ansatz fo lgen. So besteht in Ö sterreich die Möglich keit eines sogenann-
ten „Studium irregulare“. Allerdin gs muss es einem Diplo m, Bachelor oder Mas ter entsprechen und „ einem facheinschläg igen Studium gleich-
wertig sein “ siehe: https://www.uni.at/studium/individuelle-studien/ Weiterhin gibt es in Großbritannien das sogenannte „open degree“ bei
der Open University UK (Cooke, Lane, & Taylor, 2018).
In nur wenigen Jahren ist ein globales Netzwerk entstanden, welches auf diese Art MOOCs
mit traditionellen Hochschulabschlüssen verbindet. Da sich zwei der Hochschulen in Europa
befinden (eine davon in Deutschland), gibt dieses Programm Studierenden automatisch
Zugang zu dem European Credit Transfer and Accumulation System (ECTS) und Anrech-
nungsfähigkeit in vielen der 48 Länder des europäischen Hochschulraums (EHEA). Aber das
weitere Studium ist gar nicht unbedingt das Ziel aller Studierenden. Auch Firmen haben
mittlerweile den MicroMasters wahrgenommen. So garantiert General Electric, einer der
größten Arbeitgeber in den USA, allen Bewerber*innen ein Interview, sofern sie einen
MicroMasters vorweisen können. Egal, ob sie einen (regulären) Hochschulabschluss haben
oder nicht.
Im Jenga-Modell könnte ein MicroMaster einer der Studienblöcke sein, die für den aktuellen
Job notwendig sind. Aber der Fall ist auch relevant für das Lego-Modell als Einzelblock von
vielen und für Transformer als alternativer Weg in die Hochschule.
Lego
Das Studium wird nicht wie bisher als eine kompakte Einheit absolviert, sondern besteht aus
individuell kombinierten Bausteinen unterschiedlicher Größe.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
52
eingeschrieben sind. Im besten Fall berücksichtigt die
didaktische Gestaltung
der Lerneinheiten
auch die Praxiserfahrung und das informelle und non-formale Lernen der Studierenden, da die Zeit,
in der die Studierenden nicht in formalen Lernumgebungen sind, einen wesentlichen Einfluss auf ihr
Lernverhalten hat.
Die
Anerkennung
der Lerneinheiten hängt von der allgemeinen Organisation von Anerkennung
innerhalb der Hochschullandschaft ab. Die Studierenden können beispielsweise eine Lernvereinba-
rung mit einer einzigen Institution eingehen, die auf Lernergebnissen basiert und die verschiedene
Lerneinheiten miteinander kombiniert. Es ist aber auch möglich, erbrachte Lernleistungen nach-
träglich, ggf. mit gewissen Auflagen, zu einem akademischen Abschluss zusammenzufassen und
anerkennen zu lassen. Auf diese Weise können auch Personen ein Hochschulstudium absolvieren,
die eine langfristige Verpflichtung wie im Tamagotchi-Modell im Vorfeld aus familiären oder berufli-
chen Gründen nicht hätten eingehen können oder wollen.
CASE: DNB Lernkultur als zentrale Strategie des Unternehmens
Relevant für die Modelle:
Lego, Transformer
In der ambitionierten (Weiter-)Bildungsstrategie von DNB, dem führenden Finanzunterneh-
men Norwegens, spielen Hochschulen keine große Rolle. In der Vergangenheit schickte DNB
pro Jahr ein paar Hundert Angestellte zu Bachelor-Programmen in traditionelle Hochschu-
len. Heute haben DNBs mehr als 9.000 Mitarbeitende ständig kostenfreien Zugang zu einer
riesigen Menge von digitalen Bildungsinhalten, können in weiten Teilen selbst entscheiden,
welche Inhalte sie lernen wollen und wie viel Zeit sie in Weiterbildung investieren. Anstatt
relativ viel Geld in die Ausbildung einer kleinen Zahl von Mitarbeitenden zu investieren, nutzt
DNB digitale Technologien, um mit breiten Bildungsangeboten alle Angestellten zu errei-
chen. DNB ist ein Beispiel dafür, wie das Lego-Modell auch innerhalb eines großen Wirt-
schaftsunternehmens unterstützt werden kann. Gleichzeitig ermöglicht DNB auch Ange-
stellten mit langjähriger Arbeitserfahrung einen Einstig in eine neue Art von Hochschulbil-
dung (also das Modell Transformer siehe unten).
Fast alle Bereiche des traditionellen Finanzgeschäfts verändern sich rapide aufgrund des
Einsatzes von neuer digitaler Technologie. Zum Beispiel werden Vertriebsangestellte in Zu-
kunft gemeinsam mit Chatbots Kund*innen beraten können, auch sind Kund*innen grund-
sätzlich besser informiert und kommen mit klaren Vorstellungen und Wünschen. Um dies
erfolgreich zu tun, müssen Angestellte lernen, digitale Technologien in der Beratung und
Kommunikation zu nutzen. Doch mit einem einmaligen Lernabschnitt im Lebenslauf ist es
nicht mehr getan. Viele Aufgabenbereiche verändern sich kontinuierlich und schneller als
Hochschulen passende Bildungsangebote entwickeln können. Des Weiteren geht es DNB gar
nicht darum, dass Angestellte neue Hochschulabschlüsse vorweisen können, sondern da-
rum, dass sie neue Kompetenzen oder Fähigkeiten anwenden können.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
53
Das Lego-Modell schließt auch
Lücken im herkömmlichen Ausbildungsangebot
von Hochschu-
len, die auf Grund der Dynamik des gesellschaftlichen Wandels nicht über klassische Bachelor-
Programme abgedeckt werden. Die kleinteilige Kombination von unterschiedlichen Kursen erlaubt
es, auf kurzfristige Nachfrage zu reagieren und sehr individuelle Qualifikationen zu erwerben. Der
Fall DNB (siehe CASE: DNB) zeigt, wie dies aus Unternehmerperspektive gelingen kann allerdings
wird das Lernen im DNB-System bislang nicht im formalen Bildungssystem anerkannt.
3.1.4 Transformer: Hochschulbildung als Chance zur Veränderung
In diesem Modell liegen die Schulzeit sowie die Zeit in der Erstausbildung (ggf. einschließlich einer
Hochschulbildung) bereits lange zurück. Die
Lernenden
kommen entweder erstmals an die Hoch-
schule oder kehren hierher zurück, um entweder neue grundlegende Kenntnisse und Fähigkeiten zu
erwerben (side-skilling) oder das Niveau ihrer formalen Ausbildung zu verbessern (upskilling). Dies
kann durch die Notwendigkeit motiviert sein, den beruflichen Werdegang zu ändern oder höhere
Qualifikationen zu erwerben. Die Lernenden studieren dabei relativ intensiv über einen Zeitraum von
Für DNB ist Lernen deshalb eine strategische Priorität und Teil der Unternehmenskultur.
Bildungsinnovation beginnt mit Technologie einer benutzerfreundlichen mobilen Lern-
plattform, auf der alle von DNB ausgewählten Lernangebote zugänglich sind aber sie ist
strategisch in der Organisation verankert. DNBs Senior Vice President for Learning & Develo-
pment trifft sich alle sechs Wochen mit der Geschäftsleitung, um Ergebnisse zu präsentie-
ren und neue Projekte abzusegnen. Darüber hinaus werden auch Vorschläge, die aus der
Belegschaft kommen, gefördert. So wurden einige Besprechungsräume kurzerhand in
„Lounges“ umfunktioniert, wo Angestellte sich zum gemeinsamen Lernen treffen können.
Wenn solche Offenheit zur Innovation über alle Ebenen der Organisation gelebt wird, kann
sich eine neue Lernkultur entwickeln. Und der Einsatz lohnt sich, denn Unternehmen, die
ständig weiterlernen, sind besser in der Lage, von der digitalen Transformation Ihrer Indust-
rien zu profitieren.
Das Beispiel DNB zeigt, dass ein großer Antrieb für Veränderungen des Hochschulsystems in
einer immer geringeren Abgrenzung zwischen Arbeit und Hochschulbildung liegen wird.
Noch ist DNBs strategischer Fokus auf Bildung vielleicht ungewöhnlich. Aber sollte Norwe-
gens führendes Finanzinstitut mit seiner ambitionierten Bildungsstrategie erfolgreich sein,
ist zu erwarten, dass andere Großunternehmen nachziehen werden. Die traditionelle Hoch-
schule könnte diese Prozesse mit flexiblen Programmen begleiten (und dabei gleichzeitig
die neuesten Entwicklungen im Finanzbereich aus nächster Nähe betrachten und erfor-
schen), aber dies erfordert flexiblere Bildungsangebote und eine neue offene Beziehung zur
Wirtschaft.
Transformer
Die Studierenden in diesem Modell wechseln nicht direkt als Schulabgänger*innen an die
Hochschulen, sondern haben bereits eine eigene Berufsidentität und Lebenserfahrung er-
worben, die sie in das Studium einbringen.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
54
drei bis fünf Jahren und schließen ihr Hochschulstudium mit der Erwartung ab, in den Arbeitsmarkt
zurückzukehren oder neu einzusteigen. Das Transformer-Modell erfüllt die Forderung der Lernenden
nach Möglichkeiten der „Transformation“ (Umwandlung) ihres jeweiligen Wissens- und Qualifikati-
onsprofils.
Die zentrale Idee dieses Modells ist, dass es in Zukunft für alle die Möglichkeit geben muss, den
eingeschlagenen Lebensweg zu verlassen und umzusteuern. Die Möglichkeit einer Hochschulbil-
dung und die Bildungsaspiration sollen nicht am Alter bzw. an der Biographie festgemacht werden.
Das
didaktische Konzept
hinter dem Transformer-Modell sieht vor, Lernen und persönliche Ent-
wicklung mit klar definierten Schritten und Ergebnissen zu unterstützen. Da die Lernenden ihre
Hochschulbildung erst lange Zeit nach Verlassen des formalen Bildungssystems beginnen, ist in
erheblichem Maß Unterstützung erforderlich. Gleichzeitig haben die Lernenden durch ihre bisherige
Biographie Kenntnisse, Fähigkeiten und Erfahrungen erworben, die sie auf ihr Lernen anwenden
können. Daher ist eine sorgfältige Balance zwischen akademischer Unterstützung, Beratung und
eigenständigem Lernen mit individuellen Zielen erforderlich.
Die
Kontrolle und Koordination
ebenso wie die Gestaltung des Studiengangs liegen bei den jeweili-
gen Hochschulen. Die Didaktik wird aber das Wissens-, Kompetenz- und Erfahrungsprofil der Ler-
nenden vor Beginn des Studiums berücksichtigen. Allerdings sind Anrechnung und Anerkennung
bisheriger Leistungen nur in sehr geringem Umfang vorgesehen. Wäre dies möglich, wären auch
sehr viel kürzere Studienverläufe möglich. Im Laufe des Studiums wird aber immer mehr Kontrolle
über den eigenen Lernweg auf die Studierenden verlagert, sodass nach einer Anfangsphase das
Studium immer höhere Anteile an
selbstreguliertem Lernen
umfasst.
Gelernt wird hauptsächlich auf dem Campus mit der Unterstützung von globalen Kommunikations-
netzwerken, Simulationen und Augmented-Reality-Techniken zwecks Erweiterung der Lernumge-
bung durch Online-Erfahrungen. Weitere Lernräume können auch durch Praktika, Makerspaces und
Fablabs in die Lernerfahrung integriert werden. Die Vereinbarkeit mit dem Beruf wird vor allem
durch eine Verlängerung der Regelstudienzeit und durch Online-Kurseinheiten hergestellt.
Ein
wesentlicher Treiber
für das Transformer-Modell sind die Veränderungen auf dem Arbeits-
markt, die es notwendig machen, entweder das eigene Kompetenz- und Wissensprofil zu erweitern
oder aber auch sich neue Betätigungsfelder zu suchen. Letztlich wird hier ein grundständiges, be-
rufsorientiertes Studium angeboten, das auf Grund seiner flexibilisierten Vermittlung sowie seiner
speziellen Didaktik den Bedürfnissen einer älteren Zielgruppe entspricht.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
55
3.2 Detailanalyse der Modelle der Hochschulbildung im Jahr 2030
Im Folgenden werden die Modelle noch genauer im Hinblick auf die in den Vorstudien (siehe Ab-
schnitt 2.1 Hintergrunduntersuchungen) identifizierten zentralen Aspekte beschrieben.
3.2.1 Umweltanforderungen und Modelle
Tamagotchi entspricht dem aktuellen Modell von Hochschule und steht an der Stelle des Lernpfa-
des, bei dem der sekundäre Bildungsabschnitt erreicht ist und der tertiäre (Hoch-
schul)Bildungsabschnitt beginnt. Dass dieses Modell auch 2030 noch Relevanz hat, ergibt sich aus
dem steigenden Bedarf nach hochqualifizierten Beschäftigten. Damit wird ein Trend fortgeschrie-
ben, der seit 1990 zu beobachten ist: Unsere Gesellschaft weist einen immer höheren Bildungsgrad
mit einer Absolvent*innenquote von über 40% im OECD-Durchschnitt für Menschen in der Alters-
gruppe der 25- bis 34-Jährigen im Jahr 2016 aus (siehe Abbildung 7).13 Hochschulbildung bleibt
eine gute Investition für den Staat und für die Absolvent*innen, die u.a. besser verdienen und selte-
ner arbeitslos werden als Nichtakademiker*innen (European Commission/EACEA/Eurydice, 2018;
OECD, 2018a). Dies wird auch in einer digitalisierten Welt Bestand haben.
Das Tamagotchi-Modell fokussiert auf eine Grundversorgung an Wissens- und Kompetenzerwerb.
Aber wenn davon ausgegangen wird, dass dies der einzige Weg zu höherwertigen (akademischen)
Qualifikationen ist, ist es notwendig, dass Studiengänge und -programme, die für den Übergang in
die meisten hochrangigen Berufe erforderlichen Kenntnisse und Fähigkeiten sicher vermitteln. Da
diese Funktion nur bedingt eingelöst werden kann, wenn sich Studienprogramme langsam, die
Wirtschaft jedoch schnell verändert, werden Debatten zum „Qualifikationsdefizit“ und zur „Beschäf-
tigungsfähigkeit“ der Absolvent*innen eine prägende Rolle in der Kritik an dieser Hochschulbil-
dungsform beibehalten.
Abbildung 7: Absolvent*innenquote i n Altersgruppe 25-34 (Länderauswahl), 1990 2016; KOR = Südkorea, CAN = Kanada, GBR = Großbritanni-
en, NOR = No rwegen, NLD = Niederla nde, OAVG = OECD Du rchschnitt, DEU = Deut schland. (Quelle: OECD Datenbank, Bevölkerung mit Hoch-
schulbildung, ISCED 2011 5-8).
13 Erste Prognosen des FiBS gehen davon aus, dass der Wachstu mstrend bei Studienan fänger*innen in Deutschland bis 2030 fortgesetzt wird.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
56
Darüber hinaus zeigt ein Blick auf die wirtschaftlichen Entwicklungen und das Zusammenspiel
zwischen wirtschaftlicher Dynamik in Zeiten der Digitalisierung und demographischen Verschie-
bungen hin zu älteren Populationen, dass der Zugang zur Hochschulbildung erweitert werden muss.
Personen, die erst später im Leben zum Studienwunsch bzw. -bedarf kommen, werden in diesem
Modell nicht bedient. Dies ist keine neue Herausforderung für das Hochschulwesen, weshalb es u.a.
eine Aktionslinie des Bologna-Prozesses darstellt, aber das Tamagotchi-Modell hat sich bisher mit
einer effektiven Lösung schwergetan (Orr & Mishra, 2015). Damit unterliegt diesem Modell ein weite-
res Spannungsmoment, nämlich in der Frage, ob die Hochschulanbieter die Erwartung der Gesell-
schaft, auch hier Lernchancen zu bieten, ignorieren können. Neue innovative Formate müssen mehr
auf die Didaktik, das Engagement der Lernenden sowie auf Flexibilität der Lernwege achten (Unger
& Zaussinger, 2018).
Jenga steht zwar an derselben Stelle zwischen sekundärer und tertiärer Bildung, dennoch adres-
siert das Jenga-Modell eine etwas andere zukünftige Problemlage. Bereits jetzt ist eine Tendenz zur
Akademisierung beispielsweise im Gesundheitsbereich oder im erzieherischen Bereich zu sehen.
Diese Tendenz wird sich in Zukunft noch verstärken, indem in solchen Berufsfeldern Berufsprofile
entstehen, die einer mittleren bis höheren Qualifikationslage entsprechen. Das Jenga-Modell adres-
siert diese Problemlage, indem es zunächst eine kürzere initiale Studienzeit offeriert, aber die „Wei-
terbildung“ aus dem Beruf heraus mitdenkt. Auf diese Weise ist es möglich, von einem Bachelorab-
schluss in der Pflege später in Bausteinen und Blöcken einen zusätzlichen Master im Gesundheits-
management zu erwerben. Die Nachfrage nach Berufen mit höherer Fachkompetenz gepaart mit
sozialen und emotionalen Kompetenzen wird steigen und Jenga wird eine Antwort auf die Frage
nach der Qualifikation geben. So kann in der Gestaltung eines kompletten Studiengangs zunächst
die Basis-Fachkompetenz entwickelt werden und dann berufsbegleitend die kontextbezogenen
Kompetenzen während der Arbeitstätigkeit reflektierend vertieft werden.
Für bereits wissens- und forschungsintensive Wirtschaftszweige adressiert Jenga die wachsende
Notwendigkeit, Wissen und Kompetenzen während der Zeit der Berufstätigkeit stetig zu aktualisie-
ren. Weiterbildung findet dann in enger Kooperation mit der Alma Mater statt und hat weiterhin eine
akademische Prägung, die dieses Arbeitsmarktfeld ausmacht.
Lego antwortet auf den kleinen, aber wichtigen Teil des Arbeitsmarktes, der stark von Innovationen
und neuen Entwicklungen getrieben sein wird. Klassische Studienangebote sind hier zu langsam,
stattdessen findet der Wissens- und Kompetenzerwerb in diesem Modell bedarfsorientiert und quer
zu den Disziplinen statt. Es ist davon auszugehen, dass dieser Sektor in Zukunft an Bedeutung ge-
winnen wird. Durch additive Manufaktur (wie 3D-Printing) wird es möglich sein, sehr schlanke und
effiziente Produktionsprozesse zu haben, die es auch kleinen Unternehmen möglich machen, im
Wettbewerb zu bestehen. Gerade für diesen Typ Unternehmen, der kleiner und schneller auf dem
Markt agiert, wird die Möglichkeit der punktuellen Mitarbeiter*innenqualifikation wichtig sein. Zudem
stellt die Entwicklung von Produkten und Dienstleistungen immer spezifischere Anforderungen an
Wissen und Kompetenzen, die nicht mehr von einem einzelnen bereitgestellt werden können, son-
dern von einem Team an Mitarbeiter*innen, das zusammenarbeitet. Die in diesem Team auftreten-
den partiellen Wissens- und Kompetenzlücken können dann punktuell gefüllt werden. Auch für
Freiberufler*innen, die häufig in virtuellen Teams arbeiten, gelten die gleichen Voraussetzungen,
weshalb bereits jetzt manche Co-Working-Spaces Bildungsprogramme anbieten (Horn, 2018).
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
57
Transformer adressiert zwei wesentliche Entwicklungen. Zum einen werden Wechsel des Karriere-
wegs im Laufe des Lebens häufiger, zum anderen besteht die Notwendigkeit, aufgrund des demo-
grafischen Wandels auch älteren Mitbürger*innen neue Bildungschancen zu bieten, die dazu führen,
dass sie mit Veränderungen des Aufgabenspektrums im Beruf Schritt halten können. Transformer
ist für die Lernenden vorgesehen, die eine enge didaktische Kontrolle und Koordination im Studium
brauchen, erkennt aber gleichzeitig an, dass sie Lebens- und Berufserfahrung mitbringen.
3.2.2 Didaktische und technologische Besonderheiten der Modelle
Als didaktische Ausgangspunkte dienen bei Tamagotchi die vorgegebenen Lernziele, die das Curri-
culum definieren und die dem Studierenden vermittelt werden. Wichtig sind die Studieneingangs-
phase und der Wechsel von der Schule an die Hochschule. Die zukünftige didaktische Unterstüt-
zung des Lernprozesses kann auch in diesem Modell durch die Digitalisierung verbessert werden. In
der Zukunft erfolgt die Auswahl von Lehr- und Lernmethoden evidenzbasiert und in Kongruenz zu
den Lernzielen, ganz wie es das „constructive alignment“ vorsieht. Durch eine engmaschige Über-
wachung des Lernvorgangs der Studierenden mit vielen Guidelines, Handreichungen und einer op-
timalen Orchestrierung verschiedener Methoden werden die Abbruchquoten gesenkt und die Er-
folgsraten gesteigert. Der Unterricht ist weitgehend einheitlich und auf die*den durchschnittliche*n
Studierende*n hin ausgerichtet. Das Lernen als eine spezifische Kompetenz ist in der Schule zuvor
erworben worden.
Damit wird auf dem in den Schulen vorhandenen Lernstil aufgebaut. Neue Bildungstechnologien
werden vor allem zur Entwicklung der optimalen Lehr-/Lernprozesse genutzt. D.h. regulären Lehr-
veranstaltungen wie Vorlesungen, Seminaren und Übungen werden digitale Medien hinzugefügt.
Online-Versionen von Brückenangeboten unterstützen die Lernenden in der Studieneingangsphase.
Lernumgebungen werden zum zentralen Steuerungsinstrument. Mittels Künstlicher Intelligenz
entwickelte Modelle zur Vorhersage von Lernleistungen bieten ein verbessertes adaptives Lernen
an. Die Herausforderung bleibt aber, solche Innovationen in das bestehende Korsett der Governance
sowie der institutionellen Kultur der Hochschulen einzubetten.
Jenga zerfällt aus didaktischer Sicht in zwei Phasen. Die erste Phase unterscheidet sich nicht we-
sentlich vom Tamagotchi-Modell, ist aber stärker noch auf den Übergang in den Beruf hin ausge-
richtet. In der zweiten Phase sucht sich die*der Lernende nach erfolgreichem Studium aktiv Ange-
bote, die ihren*seinen Bedürfnissen entsprechen und zwar sowohl hinsichtlich des Inhaltes als
auch mit Blick auf die zeitliche Flexibilität. Damit können Anbieter der Hochschulbildung in der
zweiten Phase auf einen bestimmten Kenntnisstand aufbauen, zum anderen aber auch auf einen
im Erststudium erlernten Lernstil setzen.
Die Lerninhalte werden im Unterschied zur ersten Lernphase ausdifferenzierter, spezialisierter und
in immer kleinteiligeren, fragmentierten Modulen angeboten. Die Art des Lernens orientiert sich
jedoch an Phase 1 dieses Modells.
Ein Spannungsmoment in diesem Modell besteht darin, dass Hochschulen zwar gerne ihre Alumni
für das Studium in Phase 2 gewinnen würden (wie beim MIT MicroMasters), sie aber in der Lage sein
müssen, auf die besonderen Wünsche ihrer ehemaligen Studierenden bezüglich Wissens- und
Kompetenzstand sowie flexibleren Angebotsformen einzugehen. Während in Tamagotchi der ver-
mittelte Wissens- und Kompetenzstand grundsätzlicher Art ist, zählt hier verstärkt der Wunsch
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
58
nach Relevanz für die aktuelle Tätigkeit. Damit ist zu erwarten, dass didaktische Angebote von
Nicht-Hochschulen konkurrenzfähig oder sogar im Vorteil gegenüber etablierten Hochschulen sind.
Es erscheint logisch, dass die Bildungsangebote in Phase 2 aufgrund der veränderten Rahmenbe-
dingungen der Studierenden (Beruf, Familie usw.) stark in den virtuellen Raum verlagert werden. So
werden in diesen Lernphasen die Präsenzzeiten reduziert und kürzer oder auch gebündelt auftreten.
Damit steigt die technische Anforderung. Lehr- und Lerninhalte müssen für den virtuellen Raum
aufbereitet werden, sowie Systeme zur Verfügung gestellt werden, die Lernphasen mit hohen Onli-
ne-Teilen ermöglichen. Webinare, interaktive Videos und Virtual-Reality-Szenarien werden hier
ebenso alltäglich sein wie die Möglichkeit, diese Angebote virtuell zu buchen, zu konsumieren und
auch abzuschließen. Didaktisch werden sich neue Szenarien durch dieses Modell auftun und die
Bedeutung von virtuellem Tutoring oder Peer-Betreuung in ein gänzlich neues Licht gerückt. Dies
bringt auch gänzlich neue organisatorische Maßnahmen mit sich, nämlich die Frage nach digitalen
Zertifikaten, digitalen Bezahlsystemen und einer kompletten digitalen Verwaltung der Studierenden.
Das vorherrschende didaktische Prinzip im Lego-Modell ist das selbstregulierte Lernen. Die*der
Lernende sucht sich aktiv Angebote, die ihren*seinen Bedürfnissen entsprechen und zwar sowohl
hinsichtlich des Inhaltes als auch der Methodik. Die Lerninhalte werden ausdifferenzierter, speziali-
sierter und in immer kleinteiligeren, fragmentierten Modulen angeboten.
Das vorherrschende didaktische Prinzip ist in diesem Modell das „Selbst“ der Studierenden. Studie-
rende wählen ihre Lernwege selbst und stellen sich die Curricula individualisiert, ihren Bedürfnissen
entsprechend zusammen. Wie Forschungsergebnisse aus der Fern- und Weiterbildungsforschung
immer wieder zeigen, ist dieses Modell didaktisch sehr voraussetzungsvoll, da die Lernenden eine
ausgeprägte Lernkompetenz und Lernbereitschaft aufbringen müssen.
Dies stellt gleichzeitig eine Herausforderung dar, da die Institution Hochschule in diesem Modell
immer mehr in den Hintergrund rückt. Der Bildungsträger tritt vor allem als Anbieter individualisier-
ter und individualisierbarer Lernräume sowie als Bildungsberater in Erscheinung. Digitale Tools
helfen Studierenden bei der Auswahl, der Organisation ihres Studiums sowie beim Monitoring ihrer
Lernleistung, wodurch hier Learning-Analytics-Methoden in den Vordergrund rücken. Digitale Platt-
formen bieten dabei die Möglichkeit der nationalen und internationalen Vernetzung und des Austau-
sches mit anderen Studierenden.
Zertifikate und digitale Kompetenznachweise (wie open badges) sind als Ausweis der Lernleistung
wichtig (Orr & Buchem, 2019). Der Wunsch nach Sicherheit führt ggf. zur Nutzung von instituti-
onsunabhängigen Speicherplätzen wie Blockchain-Technologie für das Speichern von Dokumenten
(Grech & Camilleri, 2017).
Im Transformer-Modell haben die Studierenden unterschiedlichste Vorkenntnisse, die sie in das
Studium einbringen und für die sie Anerkennung und Wertschätzung erfahren wollen. Gleichzeitig
ist die Erfahrung des Lernens in formalen Kontexten weit weg und bei den meisten nicht mehr als
Lernpraxis verfügbar. Deshalb müssen Angebote für dieses Modell eine einheitliche Studierfähigkeit
herstellen und zum anderen stärker den individuellen Lerninteressen Rechnung tragen. Es ist
durchaus sinnvoll, Lernziele gemeinsam mit den Teilnehmenden zu definieren und aus der Gruppe
heraus anzupassen. Der Austausch und die Reflexion von anderen Erfahrungen und Erfahrungshin-
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
59
tergründen spielt dabei eine wichtige Rolle. Die einzelnen Stunden werden weniger individualisiert
auf den einzelnen, sondern auf die Interessen der Gruppe zugeschnitten. Die Didaktik muss ein
passendes Gleichgewicht zwischen Kontrolle und Selbstverantwortung finden.
An die Lehrenden stellt dieses Modell die höchsten Anforderungen an didaktischer Kompetenz, da
die Inhalte deutlich stärker an die aktuelle Studierendengruppe angepasst werden können. Die
Veränderung des Lernens im Laufe des Transformer-Modells sorgt auch dafür, dass gerade hier
multifunktionale Lernräume gefragt sind, die flexible Nutzungsmöglichkeiten bieten und als klassi-
sche Hörsäle wie auch als Werkstätten und Gruppenarbeitsräume genutzt werden können.
Aufgrund des Alters der Studierenden wird ein hoher Anteil an berufsbegleitendem Lernenden er-
wartet, der die Reduktion der Präsenzzeit im Vergleich zu Tamagotchi bedingt. Kurzum, in Bezug auf
technische Herausforderungen ist hier wohl die Kombination der Modelle Tamagotchi und Lego
prägend.
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
60
Unterscheidungs-
kriterien
Tamagotchi
Jenga
Lego
Transformer
Lernumgebung
bzw. Instructional
Design
durch den Lehren-
den vorgegeben durch den Lehren-
den vorgegeben selbst-organisiert gemischt, ange-
passt an die Stu-
dierenden, aber
durch die Lehren-
den gestaltet
Ausrichtung der
Lehrinhalte
am durch-
schnittlichen Stu-
dierenden
hochindividuell,
aber mit einer
einheitlichen Aus-
gangsbasis
hochindividuell,
ohne einheitliche
Ausgangsbasis
kollektiv, Lehrin-
halte werden der
konkreten Studie-
renden-gruppe
entsprechend
adaptiert
Studierenden-
Lehrerenden-
Verhältnis
Studierende erwar-
ten von Lehrenden,
dass diese den
Lernprozess vorge-
ben und kontrollie-
ren
Studierende erwar-
ten immer noch
viel Input von den
Lehrenden, aber
mehr in ihrer fach-
lichen Rolle als
Expert*innen denn
als Lehrbegleiten-
de. Stärkere Eigen-
verantwortung für
das Lernen selbst
Studierende
kontrollieren den
Lernprozess
selbst und su-
chen Hilfe bei
den Lehrenden,
wenn es ihnen
selbst erforder-
lich scheint
zu Beginn stärkere
Rolle des Lehren-
den für den Lern-
prozess, später
dann eher die Rolle
der Lehrenden als
Expert*innen
Studierenden-
gruppe
Homogen Heterogen Extrem hetero-
gen Extrem heterogen
Technologie
Anreicherung im
Unterricht, Educa-
tional Data Mining,
Learning Analytics
zur Evidenzbasie-
rung
Anreicherungs-
modell mit 1:1-
Spiegelung in die
virtuelle Welt
hochgradig digi-
talisiert Hybridform, hohe
Anforderung an
multifunktionale
Lernräume
Digitale Lernsze-
narien
14
Anreicherung, Spiel
und Simulation Integration, Inter-
aktion und Kollabo-
ration, Selbststudi-
um, Online Lernen
Personalisierung,
Selbststudium,
Online Lernen,
Offene Bildungs-
praxis
Interaktion und
Kollaboration,
offene Bildungs-
praxis
Tabelle 2: Unterschiede in didaktischer und technologischer Hinsicht der vier Modelle.
14 Nach Wannemacher (2016).
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 3: Vier Modelle zur Hochschulbildung im Jahr 2030
61
04
HFD AP 42 AHEADInternationales Horizon-Scanning
Kapitel 4: Ausblick auf eine neue Hochschullandschaft 2030
62
Kapitel 4: Ausblick auf eine
neue Hochschullandschaft
2030
4.1 Ein neuer Fokus auf Lernwege in Zeiten der Digitalisierung
Die vier Lernwege der AHEAD-Studie wurden im Sommer 2018 entwickelt und seitdem in verschie-
denen Gesprächskreisen unter Hochschulvertreter*innen, Studierenden, politischen Entscheidungs-
träger*innen und Geschäftsleuten diskutiert. Es war festzustellen, dass diese Vision einer Hoch-
schullandschaft, die vom Lernenden ausgeht, die Diskussion sehr konstruktiv beflügelte. Fragen
nach der institutionellen Unterstützung, nach Governance und Qualitätssicherung sowie nach der
institutionellen Finanzierung für Umstrukturierung und Infrastruktur, die die Debatte um die Zu-
kunftsform der Hochschulbildung bzw. der Hochschulen sonst sehr prägen, rücken durch diesen
Perspektivwechsel an zweite Stelle.
Auch die Fragen der Digitalisierung profitieren von diesem Perspektivenwechsel. So plädiert die
aktuelle Debatte um Digitalisierung in gesellschaftlichen Prozessen für einen Wechsel vom ‚techno-
logy-first‘-Ansatz, der tendenziell mit der Technologie beginnt und dann nach Einsatzfeldern sucht,
zu der Sichtweise, dass es sich bei Digitalisierung immer um eine soziale Innovation handelt. Daniel
Buhr hebt diese Unterscheidung in seinem Positionspapier „Soziale Innovationspolitik für die In-
dustrie 4.0“ hervor (vgl. Andersson et al., 2016; Buhr, 2015):
„Soziale Innovationen haben entscheidenden Einfluss darauf, ob eine technische In-
vention (Erfindung) zur verbreiteten Innovation wird (so die Unterscheidung von
Schumpeter), auf welchen Wegen und Kanälen sie sich ausbreitet (diffundiert) und
welche Wirkung sie dabei entfaltet. Eine soziale Innovation ist eine zielgerichtete
Neukonfiguration sozialer Praktiken, mit dem Ziel, Probleme oder Bedürfnisse besser