Article

Insolation contrast of the Earth and changes in the sea ice extent in the Northern hemisphere

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
On the basis of theoretical calculations of insolation and Earth remote sensing data on the dynamics of the sea ice area in the Arctic Ocean, a close relationship between long-term changes in the sea ice area and annual insolation contrast in the Northern hemisphere was determined. The change in insolation contrast was generalized (in terms of the source and sink of heat) reflects the change in the meridional insolation gradient that regulates the meridional heat transfer in the ocean - atmosphere system. The regression model was used to make an estimated forecast of changes in the area of sea ice in the Arctic Ocean. According to our estimates, the reduction of the average annual sea ice extent in the Arctic Ocean in 2050 will be 18.3% relative to 2018. The Maximum area (March) will be reduced by 10.1%, and the Minimum area (September) by 60.3%. The decrease in the area of sea ice is associated with an increase in the meridional gradient of insolation and meridional heat transfer resulting from a decrease in the inclination of the Earth's rotation axis in the present epoch.
Article
Full-text available
The results of studying the spatial–temporal variability of the solar climate of the Earth in the present epoch are given with account for periodic perturbations of its orbital motion and the inclination of its axis of rotation due to precession and nutation. Based on the calculations carried out, specific features of temporal variability of the solar radiation coming to the Earth (in the absence of atmosphere) and peculiarities of its spatial distribution over the surface of the Earth’s ellipsoid are determined.
Article
Full-text available
This paper addresses the specter of a September ice-free Arctic in the 21st century using newly available simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5). We find that large spread in the projected timing of the September ice-free Arctic in 30 CMIP5 models is associated at least as much with different atmospheric model components as with initial conditions. Here we reduce the spread in the timing of an ice-free state using two different approaches for the 30 CMIP5 models: (i) model selection based on the ability to reproduce the observed sea ice climatology and variability since 1979 and (ii) constrained estimation based on the strong and persistent relationship between present and future sea ice conditions. Results from the two approaches show good agreement. Under a high-emission scenario both approaches project that September ice extent will drop to ∼1.7 million km(2) in the mid 2040s and reach the ice-free state (defined as 1 million km(2)) in 2054-2058. Under a medium-mitigation scenario, both approaches project a decrease to ∼1.7 million km(2) in the early 2060s, followed by a leveling off in the ice extent.
Article
Full-text available
Numerous data products from the JPL ephemeris team are being made available via an interactive telnet computer service and separate web page. For over 15,000 comets and asteroids, 60 natural satellites, and 9 planets, users with an Internet connection can easily create and download information 24 hours a day, 7 days a week. These data include customized, high precision ephemerides, orbital and physical characteristics, and search-lists of comets and asteroids that match combinations of up to 39 different parameters. For each body, the user can request computation of more than 70 orbital and physical quantities. Ephemerides output can be generated in ICRF/J2000.0 and FK4/1950.0 reference frames with TDB, TT, or UTC timescales, as appropriate, at user specified intervals. Computed tables are derived from the same ephemerides used at JPL for radar astronomy and spacecraft navigation. The dynamics and computed observables include relativistic effects. Available ephemeris time spans currently range from A.D. 1599-2200 for the planets to a few decades for the satellites, comets and asteroids. Information on the interference from sunlight and moonlight is available. As an example of a few of the features available, we note that a user could easily generate information on satellite and planetary magnitudes, illuminated fractions, and the planetographic longitudes and latitudes of their centers and sub-solar points as seen from a particular observatory location on Earth. Satellite transits, occultations and eclipses are available as well. The resulting ASCII tables can be transferred to the user's host computer via e-mail, ftp, or kermit protocols. For those who have WWW access, the telnet solar system ephemeris service will be one feature of the JPL solar system web page. This page will provide up-to-date physical and orbital characteristics as well as current and predicted observing opportunities for all solar system bodies. Close Earth approaches and radar observations will be provided for comets and asteroids.
Article
The most accurate value of total solar irradiance during the 2008 solar minimum period is 1360.8 ± 0.5 W m−2 according to measurements from the Total Irradiance Monitor (TIM) on NASA's Solar Radiation and Climate Experiment (SORCE) and a series of new radiometric laboratory tests. This value is significantly lower than the canonical value of 1365.4 ± 1.3 W m−2 established in the 1990s, which energy balance calculations and climate models currently use. Scattered light is a primary cause of the higher irradiance values measured by the earlier generation of solar radiometers in which the precision aperture defining the measured solar beam is located behind a larger, view-limiting aperture. In the TIM, the opposite order of these apertures precludes this spurious signal by limiting the light entering the instrument. We assess the accuracy and stability of irradiance measurements made since 1978 and the implications of instrument uncertainties and instabilities for climate research in comparison with the new TIM data. TIM's lower solar irradiance value is not a change in the Sun's output, whose variations it detects with stability comparable or superior to prior measurements; instead, its significance is in advancing the capability of monitoring solar irradiance variations on climate-relevant time scales and in improving estimates of Earth energy balance, which the Sun initiates.
Article
In order to extend diagnoses of recent sea-ice variations beyond the past few decades, a century-scale digital dataset of Arctic sea-ice coverage has been compiled. For recent decades, the compilation utilizes satellite-derived hemispheric datasets. Regional datasets based primarily on ship reports and aerial reconnaissance are the primary inputs for the earlier part of the 20th century. While the various datasets contain some discrepancies, they capture the same general variations during their period of overlap. The outstanding feature of the time series of total hemispheric ice extent is a decrease that has accelerated during the past several decades. The decrease is greatest in summer and weakest in winter, contrary to the seasonality of the greenhouse changes projected by most global climate models. The primary spatial modes of sea-ice variability, diagnosed in terms of empirical orthogonal functions, also show a strong seasonality. The first winter mode is dominated by an opposition of anomalies in the western and eastern North Atlantic, corresponding to the well-documented North Atlantic Oscillation. The primary summer mode depicts an anomaly of the same sign over nearly the entire Arctic and captures the recent trend of sea-ice coverage.
Климаты земного шара, в особенности
  • А И Воейков
Воейков А. И. Климаты земного шара, в особенности России / Собр. соч. -Т. 1. -М.; Л.: АН СССР, 1948. -С. 163-671.
Klimaty zemnogo shara, v osobennosti Rossii
  • A I Voeikov
Voeikov A. I. Klimaty zemnogo shara, v osobennosti Rossii. [The climates of the Earth, especially Russia].
Корреляционный анализ инсоляции Земли и аномалии приповерхностной температуры // Уч. зап. Рос. гос. гидрометеор. ун-та
  • В М Федоров
Федоров В. М. Корреляционный анализ инсоляции Земли и аномалии приповерхностной температуры // Уч. зап. Рос. гос. гидрометеор. ун-та, 2017, № 45. -С. 151-169.
Korrelyatsionnyy analiz insolyatsii Zemli i anomalii pripoverkhnostnoy temperatury. [Correlation analysis of Earth's insolation and anomalies of near-surface air temperature
  • V M Fedorov
Fedorov V. M. Korrelyatsionnyy analiz insolyatsii Zemli i anomalii pripoverkhnostnoy temperatury. [Correlation analysis of Earth's insolation and anomalies of near-surface air temperature].
Инсоляция Земли и современные изменения климата
  • В М Федоров
Федоров В. М. Инсоляция Земли и современные изменения климата. -М.: Физматлит, 2018. -232 с.
Insolyatsiya Zemli i sovremennyye izmeneniya klimata
  • V M Fedorov
Fedorov V. M. Insolyatsiya Zemli i sovremennyye izmeneniya klimata. [Insolation of the Earth and present climate changes].
Mezhgodovyye variatsii prodolzhitelnosti tropicheskogo goda
  • V M Fedorov
Fedorov V. M. Mezhgodovyye variatsii prodolzhitelnosti tropicheskogo goda. [Interannual Variations in the Duration of the Tropical Year].
  • G K Zubakina
  • St
  • Petersburg
G. K. Zubakina. St. Petersburg, AANII, 2006, 272 p. (In Russian).
Льды Арктики и современные природные процессы. -Л.: Гидрометеоиздат, 1981. -136 с. Zakharov V. F. L'dy Arktiki i sovremennye prirodnye protsessy
  • В Ф Захаров
Захаров В. Ф. Льды Арктики и современные природные процессы. -Л.: Гидрометеоиздат, 1981. -136 с. Zakharov V. F. L'dy Arktiki i sovremennye prirodnye protsessy. [Sea Ice of the Arctic and modern natural processes].
L'dy Arktiki i sovremennye prirodnye protsessy
  • V F Zakharov
Zakharov V. F. L'dy Arktiki i sovremennye prirodnye protsessy. [Sea Ice of the Arctic and modern natural processes].
Морские льды и климат
  • В Ф Захаров
  • В Н Малинин
Захаров В. Ф., Малинин В. Н. Морские льды и климат. -СПб.: Гидрометеоиздат, 2000. -92 с.
Morskie l'dy i klimat
  • V F Zakharov
  • V N Malinin
Zakharov V. F., Malinin V. N. Morskie l'dy i klimat. [Sea ice and climate].
Marine Systems. Arctic Climate Impact Assessment
  • K Brander
  • E Carmack
  • S Denisenko
  • K Drinkwater
  • B Hansen
  • K Kovacs
  • P Livingston
  • F Mclaughlin
  • E Sakshaug
Brander K., Carmack E., Denisenko S., Drinkwater K., Hansen B., Kovacs K., Livingston P., McLaughlin F., Sakshaug E. Marine Systems. Arctic Climate Impact Assessment. Cambridge: Cambridge Univ. Press, 2005, pp. 453-538.
Contribution of Working Group I to the Fift h Assessment Report of the Intergovernmental Panel on Climate Change
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fift h Assessment Report of the Intergovernmental Panel on Climate Change. T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, P. M. Midgley (eds.)].
Ленинские горы, д. 1), e-mail: fedorov.msu@mail.ru. Гребенников Павел Борисович, инженер, географический факультет, Московский государственный уни-верситет им
  • Федоров Владимир Михайлович
  • Факультет
Федоров Владимир Михайлович, кандидат географических наук, ведущий научный сотрудник, географи-ческий факультет, Московский государственный университет им. М. В. Ломоносова (119991, Россия, Москва, Ленинские горы, д. 1), e-mail: fedorov.msu@mail.ru. Гребенников Павел Борисович, инженер, географический факультет, Московский государственный уни-верситет им. М. В. Ломоносова (119991, Россия, Москва, Ленинские горы, д. 1), е-mail: grebennikovp@list.ru. Библиографическое описание данной статьи
Инсоляционная контрастность Земли и изменение площади морских льдов в Северном полушарии // Арктика: экология и экономика
  • В М Федоров
  • П Б Гребенников
Федоров В. М., Гребенников П. Б. Инсоляционная контрастность Земли и изменение площади морских льдов в Северном полушарии // Арктика: экология и экономика. -2018. -№ 4 (32). -С. 86-94. -DOI: 10.25283/2223-4594-2018-4-86-94.
Московский государственный университет им
  • Гребенников Павел Борисович
  • Факультет
Гребенников Павел Борисович, инженер, географический факультет, Московский государственный университет им. М. В. Ломоносова (119991, Россия, Москва, Ленинские горы, д. 1), е-mail: grebennikovp@list.ru. Библиографическое описание данной статьи