The chronic pain of knee osteoarthritis in the elderly is investigated in detail in this paper, as well as the complexity of chronic pain utilising neuroimaging recognition techniques. Chronic pain in knee osteoarthritis (KOA) has a major effect on patients’ quality of life and functional activities; therefore, understanding the causes of KOA pain and the analgesic advantages of different therapies is important. In recent years, neuroimaging techniques have become increasingly important in basic and clinical pain research. Thanks to the application and development of neuroimaging techniques in the study of chronic pain in KOA, researchers have found that chronic pain in KOA contains both injury-receptive and neuropathic pain components. The neuropathic pain mechanism that causes KOA pain is complicated, and it may be produced by peripheral or central sensitization, but it has not gotten enough attention in clinical practice, and there is no agreement on how to treat combination neuropathic pain KOA. As a result, using neuroimaging techniques such as magnetic resonance imaging (MRI), electroencephalography (EEG), magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS), this review examines the changes in brain pathophysiology-related regions caused by KOA pain, compares the latest results in pain assessment and prediction, and clarifies the central brain analgesic mechanistic. The capsule network model is introduced in this paper from the perspective of deep learning network structure to construct an information-complete and reversible image low-level feature bridge using isotropic representation, predict the corresponding capsule features from MRI voxel responses, and then, complete the accurate reconstruction of simple images using inverse transformation. The proposed model improves the structural similarity index by about 10%, improves the reconstruction performance of low-level feature content in simple images by about 10%, and achieves feature interpretation and analysis of low-level visual cortical fMRI voxels by visualising capsule features, according to the experimental results.
1. Introduction
Approximately 80% of the information that humans obtain from the outside world comes from vision; therefore, vision plays an irreplaceable and crucial role in the process of knowing, understanding, and transforming the external world. The eye, retina, optic nerve, lateral geniculate body, and visual cortex of the brain make up the human visual system, which is an essential component of the nervous system. The eye projects visible picture information onto the retina, which is translated into electrical impulses and transferred from the optic nerve to the brain’s visual cortex through the lateral geniculate body [1]. The visual cortex is the core of the human visual system and is mainly responsible for the advanced processing of visual information; through the hierarchical processing and processing of visual information, humans can understand the visual scene seen [2]. The processing and management of visual information in the visual cortex, which is made up of numerous nerve cells, is based on very complicated neural activity. Exploring the information processing mechanism of visual scene content in the visual cortex of the brain, analysing the characteristics of the representation of visual scene content by the neural activity of the visual cortex, and parsing the visual scene content in the neural activity of the visual cortex have been a hotspot in brain science, and it is a very important topic in the study of human visual function. In the absence of a full cure for KOA, nonpharmacological and pharmacological therapy focuses on alleviating joint discomfort and maintaining or enhancing joint function, with partial/total joint replacement surgery done only if normal joint function cannot be maintained by these techniques [3]. The lack of large-scale, standardised, cross-population epidemiologic surveys of bone and joint health, as well as the social perception of osteoarthritis as a “normal part of ageing,” the lack of medication durability and the high prevalence of complications, and the lack of large-scale, standardised, cross-population epidemiologic surveys of bone and joint health all pose challenges [4]. The absence of a large-scale, systematic, cross-population epidemiological study of bone and joint health has posed a number of difficulties to disease’s treatment. As a result, it is critical to address the disease burden issues based on patient requirements, so that more patients may benefit from standardised therapy, enhance bone and joint health, and improve their quality of life.
In the field of sports biomechanics, mechanical loading plays a crucial role in the development of KOA. Due to the high degree of difficulty and narrow application of direct in vivo measurement of knee joint loading, the knee joint internal retraction moment obtained from gait analysis tests performed by a motion capture system in conjunction with a force table system can be used as a valid and reliable golden proxy for dynamic loading of the intraknee, femorotibial intercompartmental compartment. In simple terms, during the gait support period, an external moment that causes the knee joint to invert, squeezing the medial femorotibial interval and separating the lateral interval, is generated as the ground reaction force vector is biased toward the medial compartment of the knee joint quality of life and functional activity in KOA patients, with 21.1% to 66.7% of KUA out of abnormal pain sensitivity or pain suppression in older adults worldwide. Neuroimaging techniques play an important role in identification [5]. The processing and management of visual information in the visual cortex, which is made up of numerous nerve cells, are based on very complicated neural activity. Exploring the information processing mechanism of visual scene content in the visual cortex of the brain, analysing the characteristics of the representation of visual scene content by the neural activity of the visual cortex, and parsing the visual scene content in the neural activity of the visual cortex have been a hotspot in brain science, and it is a very important topic in the study of human visual function. In the absence of a full cure for KOA, nonpharmacological and pharmacological therapy focuses on alleviating joint discomfort and maintaining or enhancing joint function, with partial/total joint replacement surgery done only if normal joint function cannot be maintained by these techniques [3]. The lack of large-scale, standardised, cross-population epidemiologic surveys of bone and joint health, as well as the social perception of osteoarthritis as a “normal part of ageing,” the lack of medication durability and the high prevalence of complications, and the lack of large-scale, standardised, cross-population epidemiologic surveys of bone and joint health all pose challenges [4]. The absence of a large-scale, systematic, cross-population epidemiological study of bone and joint health has posed a number of difficulties to disease’s treatment. As a result, it is critical to address the disease burden issues based on patient requirements, so that more patients may benefit from standardised therapy, enhance bone and joint health, and improve their quality of life. The visual cortex is an important part of the cerebral cortex. Visual information reaches the visual cortex through the human eye via the lateral geniculate body, where it is continuously processed and processed to form visual perception. The visual cortex plays an extremely critical role in the formation of vision. Neurons/nerve cells are the basic information processing units of the visual cortex. Nerve cells are mainly composed of cell bodies, dendrites, axons, and synapses, and the cell bodies and dendrites of visual neurons are concentrated in the gray matter to form the visual cortex. Many neurons form a complex neural circuit between them, which can realize complex visual information processing structures and functions, thus forming a complex visual system. The brain is divided into two hemispheres, the left hemisphere visual cortex receives information entering the right visual field and the right hemisphere visual cortex receives information entering the left visual field. The visual cortex of the brain is mainly situated in the occipital lobe, and the visual cortex is divided into regions according to the Brodmann subdivision of the brain. Visual information via the lateral geniculate body is first transmitted to the primary visual areas of the human visual cortex, and then, the output information from the primary visual areas is transmitted to the higher visual areas layer by layer through two pathways. Visual information in the visual cortex is continuously processed and processed hierarchically, i.e., visual information flows continuously from the lower visual areas to the higher visual areas, and the lower visual information features are gradually transformed into higher visual information features.
2. Current Status of Research
Degenerative lesions of articular cartilage, secondary osteophytes, and aseptic inflammatory lesions in KOA patients are the main causes of chronic pain, swelling, and stiffness in the knee joint U7I, and the symptoms gradually worsen as the disease progresses, and KOA patients often have limited joint function, which can lead to disability in severe cases [6]. Leroux et al. conducted a survey of 110 patients with osteoarthritis in a community in Shanghai and found that 27.4% of KOA patients had depressive symptoms [7]. A study by Vadivelu et al. found that 47.4% of KOA patients had anxiety or depression or both, and both anxiety and depression scores were higher than local normative levels [8]. 38.5% of older adults with osteoarthritis had depressive symptoms, as reported by Tracey et al. predictors of depression in patients with arthritis [8]. Depression and anxiety in patients with KOA are not encouraging. However, depression and anxiety symptoms often go unnoticed by health care providers, directly contributing to further decreases in inpatient QOL [9]. KOA fatigue symptoms are not routinely assessed in clinical evaluations, and patients often do not actively respond to health care providers about their fatigue. A recent study found that of 231 patients with knee or hip osteoarthritis, 47% of them had severe fatigue [10]. Fatigue can lead to reduced physical activity in KOA patients, which directly affects their motivation to participate in social activities and can negatively affect their QOL. Ravat et al. investigated the sleep status of 2682 patients with osteoarthritis and found that the prevalence of sleep disorders was approximately 71%, with insomnia being the most common sleep disorder in KOA patients [11].
The internal changes in the knee joint that result from the disease include cartilage destruction, subchondral bone thickening, and new bone reconstruction. These alterations result in discomfort, instability, stiffness, and edoema in the knee, necessitating arthroplasty [12]. The pain in the knee caused by OA is usually bilateral, occurring in and around the knee joint and spreading to the groin and anterior or lateral thighs. The symptoms of OA include decreased joint mobility, joint swelling/synovitis (fever, effusion, and synovial thickening), twisting, periarticular pressure, bone swelling, and deformity due to bone growth. OA patients have decreased ability to perform basic daily activities (e.g., climbing stairs, changing from a sitting to a standing position). The main symptoms of osteoarthritis of the knee are pain, stiffness, reduced range of motion, twisting pain, and swelling [13]. Pain in the early course of the disease is usually described as a dull intermittent pain, confined to one chamber. It usually worsens with increased activity and relieves with rest [14]. As the disease process worsens, all chambers of the femorotibial joint are involved, and joint pain becomes more constant and diffuse, with pain occurring at rest and night. The exact source of joint pain due to KOA is not known, and Dieppe and Lohmander suggest that it is essentially due to biological, psychological, and social factors [15]. Prolonged sitting and stair climbing pain suggest femoral pin joint involvement, and the above may be associated with mechanical symptoms, meniscal abnormalities, sparing osteochondral fragments, or significant joint surface abnormalities.
Pain, especially chronic pain, is a major symptom of KOA, and its effects on physical disability, motor function, and negative mood can significantly reduce patients’ quality of life and can even lead to cognitive impairments such as poor decision-making and abnormalities in the body’s sensory, emotional, and cognitive brain activity. Kellgren and Lawrence imaging categorization, illness duration, and body mass index are all variables that influence the physical condition of KOA patients, according to recent research (BMI), while the factors affecting the psychological status are mainly the disease duration. Although degenerative changes in the knee are the initial trigger for chronic pain in KOA, there is an inconsistency between local imaging of the knee and patient’s pain. In recent studies, factors such as central sensitization and neuroplasticity are coming into focus. The transformation of KOA pain from acute to chronic pain causes complex pathophysiological changes in the brain, and both structural and functional brain alterations may be present in chronic moderate and severe pain. The oil spill detection results of two oil spill identification models that consider environmental and characteristic factors are fused at the decision level using D-S evidence theory improved by fuzzy set theory, and the oil spill detection effects of the above two oil spill detection methods are analysed and compared to see how effective the decision analysis is.
3. Analysis of Neuroimaging Recognition Techniques for Assessing the Complexity of Chronic Pain in Elderly Knee Osteoarthritis
3.1. Design of Neuroimaging Recognition Techniques for Osteoarthritis of the Knee in the Elderly
When a natural picture stimuli is given to a person, the visual cortex of the brain is engaged in response (as illustrated in Figure 1). The response values of the voxels of interest distributed in the three-dimensional space of the visual cortex to the natural image stimulus can finally be obtained as a measure of the neural activity response in the corresponding region of the voxel by using fMRI to record the BOLD signal associated with the neural activity of the visual cortex [16]. The response values of many voxels in the cortex form the voxel response vector. Therefore, in this way, a series of visual cortex voxel response vectors can be obtained by continuously presenting images from the natural image database to the subjects, and they correspond to the images one by one so that the fMRI dataset corresponding to the natural image stimulus dataset can be constructed as the database for subsequent visual information parsing.