Article

Hypersound-Enhanced Intracellular Delivery of Drug-Loaded Mesoporous Silica Nanoparticles in a Non-Endosomal Pathway

Authors:
If you want to read the PDF, try requesting it from the authors.

Abstract

The intracellular delivery efficiency of drug-loaded nanocarriers is often limited by biological barriers arising from the plasma membrane and the cell interior. In this work, the entering of doxorubicin (Dox)-loaded mesoporous silica nanoparticles (MSNs) into cytoplasm was acoustically enhanced through direct penetration with the assistance of hypersound of gigahertz (GHz) frequency. Both fluorescence and cell viability measurements revealed that the therapeutic efficacy of Dox-loaded MSNs were significantly improved by tuning the power and duration of hypersound on demand with a nanoelectromechanical (NEMS) resonator. Mechanism studies with inhibitors illustrated that the membrane defects induced by the hypersound-triggered GHz acoustic streaming facilitated the Dox-loaded MSNs of 100-200 nm to directly penetrate through the cell membrane instead of via the traditional endocytosis, which highly increased the delivery efficiency by avoiding the formation of endosomes. This acoustic method enables the drug carriers to overcome biological barriers of the cell membrane and the endosomes without the limitation of carrier materials, which provides a versatile way of enhanced drug delivery for biomedical applications.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... Following this work, polymer-wrapped mesoporous silica NPs encapsulated with DOX were successfully delivered. 113 This research showed that hypersound could promote drug carriers of 100-200 nm to penetrate the cell membrane directly, avoiding the slow release of endocytosis and the formation of endosomes. 114,115 This acoustic method is fast and efficient for cell or tissue treatment, showing great potential for further delivery of larger molecules or cargo. ...
Article
Full-text available
Intracellular delivery enables the efficient drug delivery into various types of cells and has been a long-term studied topics in modern biotechnology. Targeted delivery with improved delivery efficacy requires considerable requirements. This process is a critical step in many cellular-level studies, such as cellular drug therapy, gene editing delivery, and a series of biomedical research applications. The emergence of micro- and nanotechnology has enabled the more accurate and dedicated intracellular delivery, and it is expected to be the next generation of controlled delivery with unprecedented flexibility. This review focuses on several represented micro- and nanoscale physical approaches for cell membrane disruption-based intracellular delivery and discusses the mechanisms, advantages, and challenges of each approach. We believe that the deeper understanding of intracellular delivery at such low dimension would help the research community to develop more powerful delivery technologies for biomedical applications. Keywords: Drug delivery, Physical approaches, Cell membrane disruption, Low dimension
Article
The hydrodynamic method mimics the in vivo environment of the mechanical effect on cell stimulation, which not only modulates cell physiology but also shows excellent intracellular delivery ability. Herein, a hydrodynamic intracellular delivery system based on the gigahertz acoustic streaming (AS) effect is proposed, which presents powerful targeted delivery capabilities with high efficiency and universality. Results indicate that the range of cells with AuNR introduction is related to that of AS, enabling a tunable delivery range due to the adjustability of the AS radius. Moreover, with the assistance of AS, the organelle localization delivery of AuNRs with different modifications is enhanced. AuNRs@RGD is inclined to accumulate in the nucleus, while AuNRs@BSA tend to enter the mitochondria and AuNRs@PEGnK tend to accumulate in the lysosome. Finally, the photothermal effect is proved based on the large quantities of AuNRs introduced via AS. The abundant introduction of AuNRs under the action of AS can achieve rapid cell heating with the irradiation of a 785 nm laser, which has great potential in shortening the treatment cycle of photothermal therapy (PTT). Thereby, an efficient hydrodynamic technology in AuNR introduction based on AS has been demonstrated. The outstanding location delivery and organelle targeting of this method provides a new idea for precise medical treatment.
Article
Cell mechanical motion is a key physiological process that relies on the dynamics of actin filaments. Herein, a localized shear-force system based on gigahertz acoustic streaming (AS) is proposed, which can simultaneously realize intracellular delivery and cellular mechanical regulation. The results demonstrate that gold nanorods (AuNRs) can be delivered into the cytoplasm and even the nuclei of cancer and normal cells within a few minutes by AS stimulation. The delivery efficiency of AS stimulation is four times higher than that of endocytosis. Moreover, AS can effectively promote cytoskeleton assembly, regulate cell stiffness and change cell morphology. Since the inhibitory effect of AuNRs on cytoskeleton assembly, this AuNRs-AS system is able to inhibit or promote cell mechanical motion in a controlled manner by regulating the mechanical properties of cells. The bidirectional regulation of cell motion is further verified via scratch experiments, in which AuNRs-treated cells recover their motion ability through AS stimulation. In particular, the results of AuNRs-AS mechanical regulation on cell are related to the intrinsic properties of cell lines, revealing to more obvious effects on the cells with higher motor capacities. In summary, this acoustic technology has shown superiorities in controllable cell-motion manipulation, indicating its potential in building a multifunctional, integrated cytomechanics regulation platform.
Article
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell‐based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high‐throughput delivery that is critical for providing the desired cell quantity for cell‐based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and demonstrates to deliver a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble‐based sonoporation methods usually require special contrast agents. Bubble‐based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non‐bubble‐based sonoporation mechanisms are under development. This review will cover both the bubble‐based and non‐bubble‐based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications. This review presents a comprehensive evaluation of the current state of sonoporation research and its advantages and limitations. Particularly, this review covers the current bubble‐based sonoporation mechanisms and the novel upcoming non‐bubble‐based sonoporation mechanisms and their respective technologies that are utilized to enhance intracellular delivery. This review concludes with a perspective on how the field of sonoporation can advance.
Article
Rapid and personalized single-cell drug screening testing plays an essential role in acute myeloid leukemia drug combination chemotherapy. Conventional chemotherapeutic drug screening is a time-consuming process because of the natural resistance of cell membranes to drugs, and there are still great challenges related to using technologies that change membrane permeability such as sonoporation in high-throughput and precise single-cell drug screening with minimal damage. In this study, we proposed an acoustic streaming-based non-invasive single-cell drug screening acceleration method, using high-frequency acoustic waves (>10 MHz) in a concentration gradient microfluidic device. High-frequency acoustics leads to increased difficulties in inducing cavitation and generates acoustic streaming around each single cell. Therefore, single-cell membrane permeability is non-invasively increased by the acoustic pressure and acoustic streaming-induced shear force, which significantly improves the drug uptake process. In the experiment, single human myeloid leukemia mononuclear (THP-1) cells were trapped by triangle cell traps in concentration gradient chips with different cytarabine (Ara-C) drug concentrations. Due to this dual acoustic effect, the drugs affect cell viability in less than 30 min, which is faster than traditional methods (usually more than 24 h). This dual acoustic effect-based drug delivery strategy has the potential to save time and reduce the cost of drug screening, when combined with microfluidic technology for multi-concentration drug screening. This strategy offers enormous potential for use in multiple drug screening or efficient drug combination screening in individualized/personalized treatments, which can greatly improve efficiency and reduce costs.
Article
Drug delivery with the help of nanoparticles could transport more payloads to tumour site. Owing to their limited accumulation and penetration in the tumour tissues, to increase delivery efficiency is currently still required for applying nanomedicine to treat tumour. Here, we initially report a pressure-driven accumulation of drug-loaded nanoparticles to tumours for efficient tumour therapy with a dry cupping device. The mesoporous Mn-doped silica based nanoparticles delivering 5-aza-2-deoxycytidine and docetaxel were prepared, characterised and used as a model nanomedicine to investigate the potential of dry cupping treatment. For this system, the Mn doping not only endowed the mesoporous silica nanoparticles biodegradability, but also made it much easier to bind a tumour targeting group, which is a G-quadruplex-forming aptamer AS1411. On tumour-bearing mice, the in vivo results demonstrated that the dry cupping treatment could substantially improve the distribution of nanomedicines at tumour site, resulting in enhanced treatment efficacy. Overall, this method enables the therapeutical nanoparticles accumulate to tumour through increasing the blood perfusion as well as altering the biological barrier, which opened up possibilities for the development of pressure-driven nanomedicine accumulation at tumour site.
Article
Antibody-functionalized targeted nanocarriers to deliver chemotherapeutics have been widely explored. However, it still remains highly desired to understand and apply the antitumor potential of the antibody integrated in hybrid composite nanoplatform. Herein, mesoporous silica nanoparticle, supported lipid bilayer and Cetuximab were integrated to fabricate a hybrid nanoplatform for effective encapsulating and selective delivering 5-fluorouracil (5-FU) against colorectal cancer (CRC) cells. The specially designed nanoplatform exhibited superior properties such as satisfying size distribution, dispersity and stability, drug encapsulation, controlled release, and cellular uptake. Interestingly, the modification of Cetuximab onto nanoplatform without drug loading can significantly inhibit the migration and invasion of CRC cells through suppressing the epidermal growth factor receptor (EGFR) associated signaling pathway. Furthermore, delivery of 5-FU by using this nanoplatform can remarkably induce cytotoxicity, cell cycle arrest, and cell apoptosis for CRC cells with high EGFR expression. Overall, this nanostructured platform can dramatically improve the tumor killing effect of encapsulated chemotherapeutics and present antimigration effect derived from antibody modified on it. Moreover, in vivo biodistribution experiments demonstrated that the greatest tumor targeting ability of targeted nanoparticles. Thus, this targeted nanoplatform has a substantial potential in combinational therapy of antibody and chemotherapy agent against colorectal cancer.
Article
Mesoporous silica nanoparticles (MSNs) with remarkable structural features have been proven to be an excellent platform for the delivery of therapeutic molecules. Biological barriers in various forms (e.g., mucosal barrier, cellular barrier, gastrointestinal barrier, blood-brain barrier, and blood-tumor barrier) present substantial obstacles for MSNs. The physicochemical parameters of MSNs are known to be effective and tunable not only for load and release of therapeutic molecules but also for their biological responsiveness that is beneficial for cells and tissues. This review innovatively provides a description of how and why physicochemical properties (e.g., particle size, morphology, surface charge, hydrophilic-hydrophobic property, and surface modification) of MSNs influence their ability to cross the biological barriers prior to reaching targeted sites. First, the structural and physiological features of biological barriers are outlined. Next, the recent progresses in the critical physicochemical parameters of MSNs are highlighted from physicochemical and biological aspects. Surface modification, as an important strategy for achieving rapid transport, is also reviewed with special attention to the latest findings of bioactive groups and molecular mechanisms. Furthermore, advanced designs of multifunction intelligent MSNs to surmount the blood-tumor barrier and to actively target tumor sites are demonstrated in detail. Lastly, the biodegradability and toxicity of MSNs are evaluated. With perspectives for their potential application and biosafety, the clues in summary might lead to drug delivery with high efficiency and provide useful knowledge for rational design of nanomaterials.
Article
Intracellular delivery is essential to therapeutic applications such as genome engineering and disease diagnosis. Current methods lack simple, non-invasive strategies, and are often hindered by long incubation time or high toxicity. Hydrodynamic approaches offer rapid and controllable delivery of small molecules, but thus far have not been demonstrated for delivering functional proteins. In this work, we developed a robust hydrodynamic approach based on gigahertz (GHz) acoustics to achieve rapid and non-invasive cytosolic delivery of biologically active proteins. With this method, GHz-based acoustic devices trigger oscillations through a liquid medium (acoustic streaming) generating shear stress on the cell membrane and inducing transient nanoporation. This mechanical effect enhances membrane permeability and enables cytosolic access to cationic proteins without disturbing their bioactivity. We evaluated the versatility of this approach through delivery of cationic fluorescent proteins to a range of cell lines, all of which displayed equally efficient delivery speed (≤ 20 minutes). Delivery of multiple enzymatically active proteins with functionality related to apoptosis or genetic recombination further demonstrated the relevance of this method.
Article
Full-text available
Controllable exchange of molecules between the interior and the external environment of vesicles is critical in drug delivery and micro/nano‐reactors. While many approaches exist to trigger release from vesicles, controlled loading remains a challenge. Here, we show that gigahertz acoustic streaming generated by a nanoelectromechanical resonator can control the loading and release of cargo into/from vesicles. Polymer‐shelled vesicles showed loading and release of molecules both in solution and on a solid substrate. We observed deformation of individual giant unilamellar vesicles and propose that the shear stress generated by gigahertz acoustic streaming induces the formation of transient nanopores in the vesicle membranes. The size of these pores was estimated to be on the order of 100 nm by loading nanoparticles of different sizes into the vesicles. Forming such pores with gigahertz acoustic streaming provides a non‐invasive method to control materials exchange across membranes of different types of vesicles. This method could allow site‐specific release of therapeutics and controlled loading into cells, as well as tunable microreactors.
Article
Full-text available
We present an acoustic microfluidic mixing approach via acousto-mechanically induced micro-vortices sustained by localized ultrahigh frequency (UHF) acoustic fields. A micro-fabricated solid-mounted thin-film piezoelectric resonator (SMR) with a frequency of 1.54 GHz has been integrated into microfluidic systems. Experimental and simulation results show that UHF-SMR triggers strong acoustic field gradients to produce efficient and highly localized acoustic streaming vortices, providing a powerful source for microfluidic mixing. Homogeneous mixing with 87% mixing efficiency at a Peclet number of 35520 within 1 ms has been achieved. The proposed strategy shows a great potential for microfluidic mixing and enhanced molecule transportation in minimized analytical systems.
Article
Full-text available
Intracellular delivery of materials has become a critical component of genome-editing approaches, ex vivo cell-based therapies, and a diversity of fundamental research applications. Limitations of current technologies motivate development of next-generation systems that can deliver a broad variety of cargo to diverse cell types. Here we review in vitro and ex vivo intracellular delivery approaches with a focus on mechanisms, challenges and opportunities. In particular, we emphasize membrane-disruption-based delivery methods and the transformative role of nanotechnology, microfluidics and laboratory-on-chip technology in advancing the field. © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
Article
Full-text available
Formation of both mechanically durable and programmably degradable layer-by-layer (LbL) films in a biocompatible fashion has potential applications in cell therapy, tissue engineering, and drug-delivery systems, where the films are interfaced with living cells. In this work, we developed a simple but versatile method for generating in situ cross-linked and responsively degradable LbL films, based on thiol-exchange reaction, under highly cytocompatible conditions (aqueous solution at pH 7.4 and room temperature). The cytocompatibility of the processes was confirmed by coating individual yeast cells with the cross-linked LbL films and breaking the films on demand, while maintaining the cell viability. In addition, the processes were applied to the controlled release of an anticancer drug in the HeLa cells.
Article
Full-text available
Spurred by recent progress in materials chemistry and drug delivery, stimuli-responsive devices that deliver a drug in spatial-, temporal- and dosage-controlled fashions have become possible. Implementation of such devices requires the use of biocompatible materials that are susceptible to a specific physical incitement or that, in response to a specific stimulus, undergo a protonation, a hydrolytic cleavage or a (supra)molecular conformational change. In this Review, we discuss recent advances in the design of nanoscale stimuli-responsive systems that are able to control drug biodistribution in response to specific stimuli, either exogenous (variations in temperature, magnetic field, ultrasound intensity, light or electric pulses) or endogenous (changes in pH, enzyme concentration or redox gradients).
Article
Full-text available
Mesoporous silica nanoparticles (MSNs) are experiencing rapid development in the biomedical field for imaging and for use in heterogeneous catalysis. Although the synthesis of MSNs with various morphologies and particle sizes has been reported, synthesis of a pore network with monodispersion control below 200 nm is still challenging. We achieved this goal using mild conditions. The reaction occurred at atmospheric pressure with a templating sol-gel technique using cetyltrimethylammonium (CTA+) as templating surfactant and small organic amines (SOAs) as the mineralizing agent. Production of small pore sizes was performed for the first time, using pure and re-dispersible monodispersed porous nanophases with either stellate (ST) or raspberry-like (RB) channel morphologies. Tosylate (Tos-) counterions favored ST and bromide (Br-) RB morphologies at ultra-low SOA concentrations. Both anions yielded worm-like (WO) morphology at high SOA concentrations. A three step formation mechanism based on self-assembly and ion competition at the electrical palisade of micelles is proposed. Facile recovery and re-dispersion using specific SOAs allowed a high yield production at the kilogram scale. This novel technique has practical applications in industry.
Article
Full-text available
Polycations such as polyethylenimine (PEI) are used in many novel nonviral vector designs and there are continuous efforts to increase our mechanistic understanding of their interactions with cells. Even so, the mechanism of polyplex escape from the endosomal/lysosomal pathway after internalization is still elusive. The "proton sponge " hypothesis remains the most generally accepted mechanism, although it is heavily debated. This hypothesis is associated with the large buffering capacity of PEI and other polycations, which has been interpreted to cause an increase in lysosomal pH even though no conclusive proof has been provided. In the present study, we have used a nanoparticle pH sensor that was developed for pH measurements in the endosomal/lysosomal pathway. We have carried out quantitative measurements of lysosomal pH as a function of PEI content and correlate the results to the "proton sponge " hypothesis. Our measurements show that PEI does not induce change in lysosomal pH as previously suggested and quantification of PEI concentrations in lysosomes makes it uncertain that the "proton sponge " effect is the dominant mechanism of polyplex escape.Molecular Therapy (2012); doi:10.1038/mt.2012.185.
Article
Full-text available
In the past decade, mesoporous silica nanoparticles (MSNs) have attracted more and more attention for their potential biomedical applications. With their tailored mesoporous structure and high surface area, MSNs as drug delivery systems (DDSs) show significant advantages over traditional drug nanocarriers. In this review, we overview the recent progress in the synthesis of MSNs for drug delivery applications. First, we provide an overview of synthesis strategies for fabricating ordered MSNs and hollow/rattle-type MSNs. Then, the in vitro and in vivo biocompatibility and biotranslocation of MSNs are discussed in relation to their chemophysical properties including particle size, surface properties, shape, and structure. The review also highlights the significant achievements in drug delivery using mesoporous silica nanoparticles and their multifunctional counterparts as drug carriers. In particular, the biological barriers for nano-based targeted cancer therapy and MSN-based targeting strategies are discussed. We conclude with our personal perspectives on the directions in which future work in this field might be focused.
Article
Full-text available
Nanotechnology has the potential to revolutionize cancer diagnosis and therapy. Advances in protein engineering and materials science have contributed to novel nanoscale targeting approaches that may bring new hope to cancer patients. Several therapeutic nanocarriers have been approved for clinical use. However, to date, there are only a few clinically approved nanocarriers that incorporate molecules to selectively bind and target cancer cells. This review examines some of the approved formulations and discusses the challenges in translating basic research to the clinic. We detail the arsenal of nanocarriers and molecules available for selective tumour targeting, and emphasize the challenges in cancer treatment.
Article
Full-text available
The enhanced permeability and retention (EPR) effect is a unique phenomenon of solid tumors related to their anatomical and pathophysiological differences from normal tissues. For example, angiogenesis leads to high vascular density in solid tumors, large gaps exist between endothelial cells in tumor blood vessels, and tumor tissues show selective extravasation and retention of macromolecular drugs. This EPR effect served as a basis for development of macromolecular anticancer therapy. We demonstrated methods to enhance this effect artificially in clinical settings. Of great importance was increasing systolic blood pressure via slow angiotensin II infusion. Another strategy involved utilization of NO-releasing agents such as topical nitroglycerin, which releases nitrite. Nitrite is converted to NO more selectively in the tumor tissues, which leads to a significantly increased EPR effect and enhanced antitumor drug effects as well. This review discusses molecular mechanisms of factors related to the EPR effect, the unique anatomy of tumor vessels, limitations and techniques to avoid such limitations, augmenting tumor drug delivery, and experimental and clinical findings.
Article
Full-text available
Understanding how size and shape can affect the biodistribution of intravascularly injected particles is of fundamental importance both for the rational design of delivery systems and from a standardization and regulatory view point. In this work, uncoated silica spherical beads, with a diameter ranging from 700 nm to 3 microm, and uncoated non-spherical silicon-based particles, with quasi-hemispherical, cylindrical and discoidal shapes, have been injected into tumor bearing mice. The number of particles accumulating in the major organs and within the tumor mass has been measured through elemental silicon (Si) analysis. For the spherical beads, it has been found that the number of particles accumulating in the non-RES organs reduces monotonically as the diameter d increases, suggesting the use of smaller particles to provide a more uniform tissue distribution. However, discoidal particles have been observed to accumulate more than others in most of the organs but the liver, where cylindrical particles are deposited at a larger extent. These preliminary results support the notion of using sub-micrometer discoidal particles as intravascular carriers to maximize accumulation in the target organ whilst reducing sequestration by the liver.
Article
Full-text available
The ability to safely and efficiently transfer foreign DNA into cells is a fundamental goal in biotechnology. Toward this end, rapid advances have recently been made in our understanding of mechanisms for DNA stability and transport within cells. Current synthetic DNA delivery systems are versatile and safe, but substantially less efficient than viruses. Indeed, most current systems address only one of the obstacles to DNA delivery by enhancing DNA uptake. In fact, the effectiveness of gene expression is also dependent on several additional factors, including the release of intracellular DNA, stability of DNA in the cytoplasm, unpackaging of the DNA-vector complex, and the targeting of DNA to the nucleus. Delivery systems of the future must fully accommodate all these processes to effectively shepherd DNA across the plasma membrane, through the hostile intracellular environment, and into the nucleus.
Article
Full-text available
Supramolecular self assembly techniques have provided a versatile means by which to selectively assemble polymer molecules into well-defined three dimensional core-shell nanostructures. The covalent stabilisation and tailoring of these dynamic nanostructures can be achieved using a range of chemistries within the assembly to afford robust functional nanoparticles. Many examples of the stabilisation, functionalisation and decoration of these nanoparticles have been reported in the literature and this tutorial review will focus on these recent developments and highlight their potential applications.
Article
Full-text available
What could be a better way to study virus trafficking than 'miniaturizing oneself' and 'taking a ride with the virus particle' on its journey into the cell? Single-virus tracking in living cells potentially provides us with the means to visualize the virus journey. This approach allows us to follow the fate of individual virus particles and monitor dynamic interactions between viruses and cellular structures, revealing previously unobservable infection steps. The entry, trafficking and egress mechanisms of various animal viruses have been elucidated using this method. The combination of single-virus trafficking with systems approaches and state-of-the-art imaging technologies should prove exciting in the future.
Article
Hypersound (ultrasound of gigahertz (GHz) frequency) has been recently introduced as a new type of membrane-disruption method for cells, vesicles and supported lipid bilayers (SLBs), with the potential to improve the efficiency of drug and gene delivery for biomedical applications. Here, we fabricated an integrated microchip, composed of a nano-electromechanical system (NEMS) resonator and a gold electrode as the extended gate of a field effect transistor (EGFET), to study the effects of hypersonic poration on an SLB in real time. The current recordings revealed that hypersound enabled ion conduction through the SLB by inducing transient nanopores in the membrane, which act as the equivalent of ion channels and show gating behavior. The mechanism of pore formation was studied by cyclic voltammetry (CV), atomic force microscopy (AFM) and laser scanning microscopy (LSM), which support the causality between hypersound-triggered deformation and the reversible membrane disruption of the SLB. This finding contributes to the development of an approach to reversibly control membrane permeability by hypersound.
Article
Efficient delivery of genes and therapeutic agents to the interior of the cell is critical for modern biotechnology. Herein, a new type of chemical-free cell poration method— hypersonic poration—is developed to improve the cellular uptake, especially the nucleus uptake. The hypersound (≈GHz) is generated by a designed piezoelectric nano-electromechanical resonator, which directly induces normal/shear stress and “molecular bombardment” effects on the bilayer membranes, and creates reversible temporal nanopores improving the membrane permeability. Both theory analysis and cellular uptake experiments of exogenous compounds prove the high delivery efficiency of hypersonic poration. Since target molecules in cells are accumulated with the treatment, the delivered amount can be controlled by tuning the treatment time. Furthermore, owing to the intrinsic miniature of the resonator, localized drug delivery at a confined spatial location and tunable arrays of the resonators that are compatible with multiwell plate can be achieved. The hypersonic poration method shows great delivery efficacy combined with advantage of scalability, tunable throughput, and simplification in operation and provides a potentially powerful strategy in the field of molecule delivery, cell transfection, and gene therapy.
Article
Nanoparticle size, surface charge and material composition are known to affect the uptake of nanoparticles by cells. However, whether nanoparticle shape affects transport across various barriers inside the cell remains unclear. Here we used pair correlation microscopy to show that polymeric nanoparticles with different shapes but identical surface chemistries moved across the various cellular barriers at different rates, ultimately defining the site of drug release. We measured how micelles, vesicles, rods and worms entered the cell and whether they escaped from the endosomal system and had access to the nucleus via the nuclear pore complex. Rods and worms, but not micelles and vesicles, entered the nucleus by passive diffusion. Improving nuclear access, for example with a nuclear localization signal, resulted in more doxorubicin release inside the nucleus and correlated with greater cytotoxicity. Our results therefore demonstrate that drug delivery across the major cellular barrier, the nuclear envelope, is important for doxorubicin efficiency and can be achieved with appropriately shaped nanoparticles.
Article
Advances in water-insoluble drug delivery systems are limited by selective delivery, loading capacity, and colloidal and encapsulation stability. We have developed a simple and robust hydrophobic-drug delivery platform with different types of hydrophobic chemotherapeutic agents using a noncovalent gatekeeper's technique with mesoporous silica nanoparticles (MSNs). The unmodified pores offer a large volume of drug loading capacity, and the loaded drug is stably encapsulated until it enters the cancer cells owing to the noncovalently bound polymer gatekeeper. In the presence of polymer gatekeepers, the drug-loaded mesoporous silica nanoparticles showed enhanced colloidal stability. The simplicity of drug encapsulation allows any combination of small chemotherapeutics to be coencapsulated and thus produce synergetic therapeutic effects. The disulfide moiety facilitates decoration of the nanoparticles with cysteine containing ligands through thiol-disulfide chemistry under mild conditions. To show the versatility of drug targeting to cancer cells, we decorated the surface of the shell-cross-linked nanoparticles with two types of peptide ligands, SP94 and RGD. The nanocarriers reported here can release encapsulated drugs inside the reducing microenvironment of cancer cells via degradation of the polymer shell, leading to cell death.
Article
Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery.
Article
Selective targeting of tumor cells and release of drug molecules inside the tumor microenvironment can reduce the adverse side effects of traditional chemotherapeutics because of the lower dosages required. This can be achieved by using stimuli-responsive targeted drug delivery systems. In the present work, a robust and simple one-pot route is developed to synthesize polymer-gatekeeper mesoporous silica nanoparticles by noncovalent capping of the pores of drug-loaded nanocontainers with disulfide cross-linkable polymers. The method offers very high loading efficiency because chemical modification of the mesoporous nanoparticles is not required; thus, the large empty pore volume of pristine mesoporous silica nanoparticles is entirely available to encapsulate drug molecules. Furthermore, the polymer shell can be easily decorated with a targeting ligand for selective delivery to specific cancer cells by subsequent addition of the thiol-containing ligand molecule. The drug molecules loaded in the nanocontainers can be released by the degradation of the polymer shell in the intracellular reducing microenvironment, which consequentially induces cell death.
Article
PrestoBlue (PB) is a new, simple and extremely fast live assay to monitor cell viability and cytotoxicity. Herein, we compared two in vitro cytotoxicity assays, new (PB) and classic (MTT), in the assessment of viability of human umbilical vein endothelial cells (HUVECs) in the presence of selected plant extracts. The anti-proliferative effects of two extracts from medicinal plants, i.e. walnut husk extract and spent hop extract, used at the concentration range of 1-200μg/ml of gallic acid equivalent, were compared with the effects recorded for resveratrol - a natural polyphenolic compound. Reduction of dyes by endothelial cells was determined colorimetrically (MTT and PB) and fluorometrically (PB). At higher concentrations, all tested compounds caused significant loss of cell viability. Regardless of plant compound, the PB assay, when measured colorimetrically, produced higher EC50 values compared to other modes of measurement, however, the statistically significant differences in EC50 values among the assays were revealed only for spent hop extract. Conversely, the EC50 values for each plant compound obtained in MTT (colorimetric assay) and PB (fluorometric assay) were similar. According to EC50 values, the cytotoxicity of plant compounds ranked as follows: spent hop extract>resveratrol>walnut husk extract. Furthermore, the MTT assay showed overall lower inter-assay variability and higher signal-to-noise ratio compared to PB assay. In conclusion, we recommend fluorometric PrestoBlue assay for cytotoxicity assessment in human endothelial cells. Due to substantial differences in EC50 values and S/N ratios between spectrophotometric PB and MTT or fluorometric PB assays, colorimetric quantification of HUVECs' viability with the use of PB reagent should be avoided.
Article
Trehalose was introduced into suspended primary rat hepatocytes through pathways resulting from thermally induced alterations of the cellular membrane. The hepatocytes were suspended in a diluted hepatocyte culture medium (medium:dH2O = 1:2) with 0.4 M trehalose during thermal treatments. A significant amount of cytoplasmic trehalose (0.07 M) was detected using high-performance liquid chromatography (HPLC) after heating hepatocytes to 39°C for 10 min in trehalose-supplemented medium. High cell viability (approximately 90%) was retained. The cytoplasmic trehalose concentration reached a plateau (approximately 0.16 M) after heating for 1-2 h. However, the cell viability decreased significantly after 30 min of heating (< approximately 72%). It was further found that by repetitive heating between 0°C and 39°C every 10 min for 1 h (0-39°C, 1 h), high cell viability (approximately 83%) could be maintained and a high cytoplasmic trehalose concentration (approximately 0.13 M) could be obtained. The trehalose-laden hepatocytes (0-39°C, 1 h) were cultured in a double-collagen gel sandwich system for 15 days. They retained normal morphology and produced a normal distribution of F-actin filaments. Furthermore, the hepatospecific functions of urea production and albumin synthesis were similar to those of control hepatocytes kept in fresh medium on ice for one hour. In short, trehalose can be introduced effectively into primary rat hepatocytes by challenging the cells with super-zero to mild hyperthermic (39°C) temperatures. Future studies will focus on the development of effective protocols for both cryopreservation and lyopreservation of trehalose-laden hepatocytes.
Article
The interactions between nano-sized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its 'biomolecular corona', rather than the pristine surface. Here we characterise the adhesion towards the cell membrane of nanoparticles of different material and size, and study how this is modulated by the presence or absence of a corona on the nanoparticle surface. The results are corroborated with adsorption to simple model supported lipid bilayers using a quartz crystal microbalance. We conclude that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material. Nanoparticle uptake is described as a two-step process, where the nanoparticles initially adhere to the cell membrane and subsequently are internalised by the cells via energy-dependent pathways. The lowered adhesion in the presence of proteins thereby causes a concomitant decrease in nanoparticle uptake efficiency. The presence of a biomolecular corona may confer specific interactions between the nanoparticle-corona complex and the cell surface, including triggering of regulated cell uptake. An important effect of the corona is, however, a reduction in the purely unspecific interactions between the bare material and the cell membrane, which in itself disregarding specific interactions, causes a decrease in cellular uptake. We suggest that future nanoparticle-cell studies include, together with characterisation of size, charge and dispersion stability, an evaluation of the adhesion properties of the material to relevant membranes.
Article
Recent advancements in morphology control and surface functionalization of mesoporous silica nanoparticles (MSNs) have enhanced the biocompatibility of these materials with high surface areas and pore volumes. Several recent reports have demonstrated that the MSNs can be efficiently internalized by animal and plant cells. The functionalization of MSNs with organic moieties or other nanostructures brings controlled release and molecular recognition capabilities to these mesoporous materials for drug/gene delivery and sensing applications, respectively. Herein, we review recent research progress on the design of functional MSN materials with various mechanisms of controlled release, along with the ability to achieve zero release in the absence of stimuli, and the introduction of new characteristics to enable the use of nonselective molecules as screens for the construction of highly selective sensor systems.
Article
In this review, the progress made in the last ten years concerning the synthesis of porous carbon materials is summarized. Porous carbon materials with various pore sizes and pore structures have been synthesized using several different routes. Microporous activated carbons have been synthesized through the activation process. Ordered microporous carbon materials have been synthesized using zeolites as templates. Mesoporous carbons with a disordered pore structure have been synthesized using various methods, including catalytic activation using metal species, carbonization of polymer/polymer blends, carbonization of organic aerogels, and template synthesis using silica nanoparticles. Ordered mesoporous carbons with various pore structures have been synthesized using mesoporous silica materials such as MCM-48, HMS, SBA-15, MCF, and MSU-X as templates. Ordered mesoporous carbons with graphitic pore walls have been synthesized using soft-carbon sources that can be converted to highly ordered graphite at high temperature. Hierarchically ordered mesoporous carbon materials have been synthesized using various designed silica templates. Some of these mesoporous carbon materials have successfully been used as adsorbents for bulky pollutants, as electrodes for supercapacitors and fuel cells, and as hosts for enzyme immobilization. Ordered macroporous carbon materials have been synthesized using colloidal crystals as templates. One-dimensional carbon nanostructured materials have been fabricated using anodic aluminum oxide (AAO) as a template.
Article
Nanoengineered particles that can facilitate drug formulation and passively target tumors have reached the clinic in recent years. These early successes have driven a new wave of significant innovation in the generation of advanced particles. Recent developments in enabling technologies and chemistries have led to control over key particle properties, including surface functionality, size, shape, and rigidity. Combining these advances with the rapid developments in the discovery of many disease-related characteristics now offers new opportunities for improving particle specificity for targeted therapy. In this Perspective, we summarize recent progress in particle-based therapeutic delivery and discuss important concepts in particle design and biological barriers for developing the next generation of particles.
Article
Liposomes are microparticulate lipoidal vesicles which are under extensive investigation as drug carriers for improving the delivery of therapeutic agents. Due to new developments in liposome technology, several liposome-based drug formulations are currently in clinical trial, and recently some of them have been approved for clinical use. Reformulation of drugs in liposomes has provided an opportunity to enhance the therapeutic indices of various agents mainly through alteration in their biodistribution. This review discusses the potential applications of liposomes in drug delivery with examples of formulations approved for clinical use, and the problems associated with further exploitation of this drug delivery system.
Article
Polymers have played an integral role in the advancement of drug delivery technology by providing controlled release of therapeutic agents in constant doses over long periods, cyclic dosage, and tunable release of both hydrophilic and hydrophobic drugs. From early beginnings using off-the-shelf materials, the field has grown tremendously, driven in part by the innovations of chemical engineers. Modern advances in drug delivery are now predicated upon the rational design of polymers tailored for specific cargo and engineered to exert distinct biological functions. In this review, we highlight the fundamental drug delivery systems and their mathematical foundations and discuss the physiological barriers to drug delivery. We review the origins and applications of stimuli-responsive polymer systems and polymer therapeutics such as polymer-protein and polymer-drug conjugates. The latest developments in polymers capable of molecular recognition or directing intracellular delivery are surveyed to illustrate areas of research advancing the frontiers of drug delivery.
Article
Despite continuous improvements in delivery systems, the development of methods for efficient and specific delivery of targeted therapeutic agents still remains an issue in biological treatments such as protein and gene therapy. The endocytic pathway is the major uptake mechanism of cells and any biological agents, such as DNA, siRNA and proteins. These agents become entrapped in endosomes and are degraded by specific enzymes in the lysosome. Thus, a limiting step in achieving an effective biological based therapy is to facilitate the endosomal escape and ensure cytosolic delivery of the therapeutics. Bacteria and viruses are pathogens which use different mechanisms to penetrate the membranes of their target cells and escape the endosomal pathway. Different mechanisms such as pore formation in the endosomal membrane, pH-buffering effect of protonable groups and fusion into the lipid bilayer of endosomes have been proposed to facilitate the endosomal escape. Several viral and bacterial proteins have been identified that are involved in this process. In addition, chemical agents and photochemical methods to rupture the endosomal membrane have been described. New synthetic biomimetic peptides and polymers with high efficacy in facilitating the endosomal escape, low pathogenicity and toxicity have been developed. Each strategy has different characteristics and challenges for designing the best agents and techniques to facilitate the endosomal escape are ongoing. In this review, several mechanisms and agents which are involved in endosomal escape are introduced.
Article
Biodegradable nanoparticles have been used frequently as drug delivery vehicles due to its grand bioavailability, better encapsulation, control release and less toxic properties. Various nanoparticulate systems, general synthesis and encapsulation process, control release and improvement of therapeutic value of nanoencapsulated drugs are covered in this review. We have highlighted the impact of nanoencapsulation of various disease related drugs on biodegradable nanoparticles such as PLGA, PLA, chitosan, gelatin, polycaprolactone and poly-alkyl-cyanoacrylates.
Article
Polyplexes assembled from poly(aspartamide) derivatives bearing 1,2-diaminoethane side chains, [PAsp(DET)] display amplified in vitro and in vivo transfection activity with minimal cytotoxicity. To elucidate the molecular mechanisms involved in this unique function of PAsp(DET) polyplexes, the physicochemical and biological properties of PAsp(DET) were thoroughly evaluated with a control bearing 1,3-diaminopropane side chains, PAsp(DPT). Between PAsp(DET) and PAsp(DPT) polyplexes, we observed negligible physicochemical differences in particle size and zeta-potential. However, the one methylene variation between 1,2-diaminoethane and 1,3-diaminopropane drastically altered the transfection profiles. In sharp contrast to the constantly high transfection efficacy of PAsp(DET) polyplexes, even in regions of excess polycation to plasmid DNA (pDNA) (high N/P ratio), PAsp(DPT) polyplexes showed a significant drop in the transfection efficacy at high N/P ratios due to the progressively increased cytotoxicity with N/P ratio. The high cytotoxicity of PAsp(DPT) was closely correlated to its strong destabilization effect on cellular membrane estimated by hemolysis, leakage assay of cytoplasmic enzyme (LDH assay), and confocal laser scanning microscopic observation. Interestingly, PAsp(DET) revealed minimal membrane destabilization at physiological pH, yet there was significant enhancement in the membrane destabilization at the acidic pH mimicking the late endosomal compartment (pH approximately 5). Apparently, the pH-selective membrane destabilization profile of PAsp(DET) corresponded to a protonation change in the flanking diamine unit, i.e., the monoprotonated gauche form at physiological pH and diprotonated anti form at acidic pH. These significant results suggest that the protonated charge state of 1,2-diaminoethane may play a substantial role in the endosomal disruption. Moreover, this novel approach for endosomal disruption neither perturbs the membranes of cytoplasmic vesicles nor organelles at physiological pH. Thus, PAsp(DET) polyplexes, residing in late endosomal or lysosomal states, smoothly exit into the cytoplasm for successful transfection without compromising cell viability.
Article
Nanoparticles--particles in the size range 1-100 nm--are emerging as a class of therapeutics for cancer. Early clinical results suggest that nanoparticle therapeutics can show enhanced efficacy, while simultaneously reducing side effects, owing to properties such as more targeted localization in tumours and active cellular uptake. Here, we highlight the features of nanoparticle therapeutics that distinguish them from previous anticancer therapies, and describe how these features provide the potential for therapeutic effects that are not achievable with other modalities. While large numbers of preclinical studies have been published, the emphasis here is placed on preclinical and clinical studies that are likely to affect clinical investigations and their implications for advancing the treatment of patients with cancer.
Article
A minute hole upon a cultured cell, perforated with a finely focused laser beam, was found to repair itself within a short period of time. The procedure constitutes a new way of introducing exogenous gene materials dissolved in medium into cells. The 'laser-aided' DNA transfection is better than the existing methods because it allows the treatment of a large number of cells in a shorter time, and an improved success rate.
Article
A quantitative fluorescent microscopy system was developed to characterize, in real time, the effects of supraphysiological temperatures between 37 degrees and 70 degrees C on the plasma membrane of mouse 3T3 fibroblasts and isolated rat skeletal muscle cells. Membrane permeability was assessed by monitoring the leakage as a function of time of the fluorescent membrane integrity probe calcein. The kinetics of dye leakage increased with increasing temperature in both the 3T3 fibroblasts and the skeletal muscle cells. Analytical solutions derived from a two-compartment transport model showed that, for both cell types, a time-dependent permeability assumption provided a statistically better fit of the model predictions to the data than a constant permeability assumption. This finding suggests that the plasma membrane integrity is continuously being compromised while cells are subjected to supraphysiological temperatures.
Article
Drug delivery systems (DDS) such as lipid- or polymer-based nanoparticles can be designed to improve the pharmacological and therapeutic properties of drugs administered parenterally. Many of the early problems that hindered the clinical applications of particulate DDS have been overcome, with several DDS formulations of anticancer and antifungal drugs now approved for clinical use. Furthermore, there is considerable interest in exploiting the advantages of DDS for in vivo delivery of new drugs derived from proteomics or genomics research and for their use in ligand-targeted therapeutics.
Article
The relatively high transfection efficiency of polyethylenimine (PEI) vectors has been hypothesized to be due to their ability to avoid trafficking to degradative lysosomes. According to the proton sponge hypothesis, the buffering capacity of PEI leads to osmotic swelling and rupture of endosomes, resulting in the release of the vector into the cytoplasm. The mechanism of PEI-mediated DNA transfer was investigated using quantitative methods to study individual steps in the overall transfection process. In addition to transfection efficiency, the cellular uptake, local pH environment, and stability of vectors were analyzed. N-Quaternized (and therefore non-proton sponge) versions of PEI and specific cell function inhibitors were used to further probe the proton sponge hypothesis. Both N-quaternization and the use of bafilomycin A1 (a vacuolar proton pump inhibitor) reduced the transfection efficiency of PEI by approximately two orders of magnitude. Chloroquine, which buffers lysosomes, enhanced the transfection efficiency of N-quaternized PEIs and polylysine by 2-3-fold. In contrast, chloroquine did not improve the transfection efficiency of PEI. The measured average pH environment of PEI vectors was 6.1, indicating that they successfully avoid trafficking to acidic lysosomes. Significantly lower average pH environments were observed for permethyl-PEI (pH 5.4), perethyl-PEI (pH 5.1), and polylysine (pH 4.6) vectors. Cellular uptake levels of permethyl-PEI and perethyl-PEI vectors were found to be 20 and 90% higher, respectively, than that of parent PEI vectors, indicating that the reduction in transfection activity of the N-quaternized PEIs is due to a barrier downstream of cellular uptake. A polycation/DNA-binding affinity assessment showed that the more charge dense N-quaternized PEIs bind DNA less tightly than PEI, demonstrating that poor vector unpackaging was not responsible for the reduced transfection activity of the N-quaternized PEIs. The results obtained are consistent with the proton sponge hypothesis and strongly suggest that the transfection activity of PEI vectors is due to their unique ability to avoid acidic lysosomes.
Article
The lack of safe and efficient gene-delivery methods is a limiting obstacle to human gene therapy. Synthetic gene-delivery agents, although safer than recombinant viruses, generally do not possess the required efficacy. In recent years, a variety of effective polymers have been designed specifically for gene delivery, and much has been learned about their structure-function relationships. With the growing understanding of polymer gene-delivery mechanisms and continued efforts of creative polymer chemists, it is likely that polymer-based gene-delivery systems will become an important tool for human gene therapy.
Article
Dendrimers have unique characteristics including monodispersity and modifiable surface functionality, along with highly defined size and structure. This makes these polymers attractive candidates as carriers in drug delivery applications. Drug delivery can be achieved by coupling a drug to polymer through one of two approaches. Hydrophobic drugs can be complexed within the hydrophobic dendrimer interior to make them water-soluble or drugs can be covalently coupled onto the surface of the dendrimer. Using both methods we compared the efficacy of generation 5 PAMAM dendrimers in the targeted drug delivery of methotrexate coupled to the polymer. The amine-terminated dendrimers bind to negatively charged membranes of cells in a non-specific manner and can cause toxicity in vitro and in vivo. To reduce toxicity and to increase aqueous solubility, modifications were made to the surface hydroxyl groups of the dendrimers. For targeted drug delivery, the dendrimer was modified to have a neutral terminal functionality for use with surface-conjugated folic acid as the targeting agent. The complexation of methotrexate within a dendrimer changes the water insoluble drug into a stable and readily water-soluble compound. When this dendrimer complexed drug, however, was placed in a solution of phosphate buffered saline, the methotrexate was immediately released and displayed diffusion characteristics identical to free methotrexate. Covalently coupled methotrexate dendrimer conjugates were stable under identical conditions in water and buffered saline. Cytotoxicity tests showed that methotrexate as the dendrimer inclusion complex had an activity identical to the free drug in vitro. In contrast, folic acid targeted dendrimer with covalently conjugated methotrexate specifically killed receptor-expressing cells by intracellular delivery of the drug through receptor-mediated endocytosis. This study demonstrates that while drug as a dendrimer inclusion complex is readily released and active in vitro, covalently conjugated drug to dendrimer is better suited for specifically targeted drug delivery.
Article
The transfer of polymer-protein conjugates into routine clinical use, and the clinical development of polymer-anticancer-drug conjugates, both as single agents and as components of combination therapy, is establishing polymer therapeutics as one of the first classes of anticancer nanomedicines. There is growing optimism that ever more sophisticated polymer-based vectors will be a significant addition to the armoury currently used for cancer therapy.
Article
In this review, we highlight the recent research developments of a series of surface-functionalized mesoporous silica nanoparticle (MSN) materials as efficient drug delivery carriers. The synthesis of this type of MSN materials is described along with the current methods for controlling the structural properties and chemical functionalization for biotechnological and biomedical applications. We summarized the advantages of using MSN for several drug delivery applications. The recent investigations of the biocompatibility of MSN in vitro are discussed. We also describe the exciting progress on using MSN to penetrate various cell membranes in animal and plant cells. The novel concept of gatekeeping is introduced and applied to the design of a variety of stimuli-responsive nanodevices. We envision that these MSN-based systems have a great potential for a variety of drug delivery applications, such as the site-specific delivery and intracellular controlled release of drugs, genes, and other therapeutic agents.