ArticlePDF Available

BACKSTEPPING CONTROL FOR HEXA-ROTOR MICROCOPTER

Authors:
  • Óbuda University, Budapest, Hungary

Abstract

Unmanned autonomous aerial vehicles have become a real center of interest. In the last few years, their utilization has significantly increased. During the last decade many research papers have been published on the topic of modeling and control strategies of autonomous multirotors. Today, they are used for multiple tasks such as navigation and transportation. This paper presents the development of a dynamic modeling and control algorithm-backstepping controller of an autonomous hexa-rotor microcopter. The autonomous hexa-rotor microcopter is an under-actuated and dynamically unstable nonlinear system. The model that represents the dynamic behavior of the hexa-rotor microcopter is complex. Unmanned autonomous aerial vehicles applications are commonly associated with exploration, inspection or surveillance tasks.
ACTA TEHNICA CORVINIENSIS Bulletin of Engineering
Tome VIII [2015] Fascicule 3 [JulySeptember]
ISSN: 2067 3809
© copyright Faculty of Engineering - Hunedoara, University POLITEHNICA Timisoara
Gyula MESTER
BACKSTEPPING CONTROL FOR HEXA-ROTOR
MICROCOPTER
1. Óbuda University, Doctoral School of Safety and Security Sciences, Budapest, HUNGARY
2. University of Szeged, Faculty of Engineering, Institute of Technology, Robotics Laboratory, Szeged, HUNGARY
Abstract:
Unmanned autonomous aerial vehicles have become a real center of interest. In the last few years, their utilization has signicantly increased.
During the last decade many research papers have been published on the topic of modeling and control strategies of autonomous multirotors. Today,
they are used for multiple tasks such as navigation and transportation. This paper presents the development of a dynamic modeling and control algorithm
- backstepping controller of an autonomous hexa-rotor microcopter. The autonomous hexa-rotor microcopter is an under-actuated and dynamically
unstable nonlinear system. The model that represents the dynamic behavior of the hexa-rotor microcopter is complex. Unmanned autonomous aerial
vehicles applications are commonly associated with exploration, inspection or surveillance tasks.
Keywords:
dynamic model, dynamic behavior, unmanned autonomous aerial vehicles, autonomous hexa-rotor microcopter, under actuated,
dynamically unstable nonlinear system, complex, control strategies, backstepping controller
INTRODUCTION
Unmanned autonomous aerial vehicles have become a real center of
interest [1-14]. In the last few years, their utilization has significantly
increased. Today, they are used for civil and military applications, for
multiple tasks such as navigation and transportation. Unmanned
autonomous aerial vehicles applications are commonly associated with
exploration, inspection or surveillance tasks.
During the last decade many research papers have been published on
the topic of modeling and control strategies of autonomous multirotors
[15-30]. One of the unmanned autonomous aerial vehicles with a strong
potential is the hexa-rotor microcopter.
The autonomous hexa-rotor microcopter have numerous advantages
over quadrotors, since they can offer more:
power and
speed, due to the properly position of the rotors.
Figure 1. Hexa-rotor microcopter used for the experiments
The autonomous hexa-rotor microcopter , Figure 1, consists of six rotors
attached to a rigid body frame and these additional two rotors make it
able to carry:
more payload,
the longest flight time and
high maneuverability
compared to quadrotor. The autonomous hexa-rotor microcopters have
additional redundancy over autonomous quad-rotor microcopters.
The control design carried out for an autonomous quad-rotor
microcopter can be applied to the autonomous hexa-rotor microcopter
since they are modeled as a rotating rigid body dynamic system wih six
degres of freedom (6 DOF), Figure 2.
Figure 2. The Hexa-rotor microcopter in hovering conditions
The autonomous hexa-rotor microcopter is an:
under-actuated and
dynamically unstable nonlinear system.
The model that represents the dynamic behavior of the hexa-rotor
microcopter is nonlinear and complex. This paper presents the
development of a dynamic modeling and control algorithm of an
autonomous hexa-rotor microcopter.
The paper is organized as follows: Section 1: Introduction. In Section 2,
the dynamic modeling of a hexa-rotor microcopter is presented. In
ACTA TEHNICA CORVINIENSIS Fascicule 3 [JulySeptember]
Bulletin of Engineering Tome VIII [2015]
|
122
|
Section 3 backstepping controller for hexa-rotor microcopter is
presented. Conclusions are given in Section 4.
DYNAMIC MODELING OF HEXA-ROTOR MICROCOPTER
The model [31-46] of the hexa-rotor helicopter and the rotational
directions of the propellers are presented in Figure 3. This cross structure
is quite thin and light, however it shows robustness by linking
mechanically the motors. Hexa-rotor microcopter body is rigid. The six
rotors are symmetrically distributed around the center. All the propellers
axes of rotation are fixed and parallel. Propellers are rigid. These
considerations point out that the structure is quite rigid and the only
things that can vary are the propeller speeds.
The hexa-rotor microcopter configuration has six rotors which generate
the propeller forces Fi (i = 1,2,3,4,5,6) as it is shown in Figure 3. Control
of quadrotor is achieved [2] by commanding different speeds to
different propellers, which in turn produces differential aerodynamic
forces and moments. In order to increase the altitude of the aircraft it is
necessary to increase the rotor speeds altogether with the same
quantity.
Figure 3. Hexa-rotor microcopter - a non-linear dynamic system
Each rotor consists of a:
brushless DC motor and a
fixed-pitch propeller.
This rotorcraft is constituted by:
three rotors which rotate clockwise (1,3,5), and
three rotating counterclockwise (2,4,6).
Forward motion is accomplished by increasing the speed of the rotors
(3, 4, 5) while simultaneously reducing the same value for forward
rotors (1, 2, 6). For leftward motion the speed of rotors (5 and 6) is
increased while the speed of rotors (2 and 3) is reduced.
Backward and rightward motion can be accomplished similarly. Finally,
yaw motion can be performed by speeding up or slowing down the
clockwise rotors depending on the desired angle direction.
To describe the motion of a 6 DOF rigid body it is usual to define two
reference frames (Figure 2):
the earth inertial frame (E-frame), and
the body-fixed frame (B-frame).
The equations of motion are formulated using the Newton-Euler laws
with the following reasons:
the inertia matrix is time-invariant;
advantage of body symmetry can be taken to simplify the
equations;
measurements taken on-board are easily converted to body-
fixed frame;
control forces are almost always given in body-fixed frame.
The E-frame (OExyz ) is chosen as the inertial right hand reference. This
frame is used to define the linear position (in meters) and the angular
position (in radians) of the quadrotor.
The B-frame is attached to the body. The origin of the B-frame is
chosen to coincide with the center of the hexa-rotor microcopter cross
structure. This reference is right-hand, too.
The linear position of the helicopter (X, Y, Z) is determi-ned by the
coordinates of the vector between the origin of the B frame and the
origin of the E-frame according to equation.
The angular position of the hexa-rotor microcopter (Φ, θ, ψ ) is defined
by the orientation of the EB-frame with respect to the EE-frame. This is
given by three consecutive rotations about the main axes which take
the EE-frame into the EB-frame. In this paper, the ”roll-pitch-yaw” set
of Euler angles (Φ, θ, ψ) were used.
The vector that describes quad-rotor position and orientation with
respect to the E-frame can be written in the form:
s = [x, y, z, Φ, θ, ψ]T (1)
The rotation matrix between the EE- and EB-frames has the following
from:
=  +
 + 
  
(2)
Now, the model of hexa-rotor dynamics can be described by a system
of equations:
6
Z
4
Z
YX
4
Y
3
Y
R
Y
X
Z
2
X
2
X
R
X
ZY
8
1
12
1
10
1
A
I
U
θφ
I
I
I
ψ
Ad
I
U
ωφ
I
J
ψ
φ
I
II
θ
A
d
I
U
ω
θ
I
J
ψθ
I
I
I
φ
A
m
U
cosθosθcg
z
A
m
U
sφφsinψinψsin
cosψosψs(
y
A
m
U
sφφcosψosψsin
(sinψsinψx
++
=
++
=
++
=
++
=
+
+=
+
+=
(3)
BACKSTEPPING CONTROLLER FOR HEXA-ROTOR MICROCOPTER
In this paper, controller design for the hexa-rotor microcopter is
proposed by using backstepping technique. Backstepping is a recursive
design methodology that makes use of Lyapunov stability theory to
force the system to follow a desired trajectory. The hexa-rotor
microcopter is controlled by angular speeds of six motors. Each motor
produces a thrust and a torque, whose combination generates the
main trust, the yaw torque, the pitch torque, and he roll torque acting
on the hexa-rotor microcopter. First, the dynamical model is rewritten
in state-space form:
)U,X(fX
=
(4)
ACTA TEHNICA CORVINIENSIS Fascicule 3 [JulySeptember]
Bulletin of Engineering Tome VIII [2015]
| 123 |
by introducing :
12
T
12
1
]
x..
x[
X
=
(5)
as space vector of the system:
19
5
65
21 10 9
7
311
87 12 11
43
xxY
x
xx
xx x xY
xX
xxZ
xxX
xxZ
xx
φψ
ψ
φ
θ
θ
==
=
= =
= = = =
=
==
= = = =
= =
(6)
Next, the x- coordinates are transformed into the new z
coordinates:
1 1_ 1 7 7_ 7
2 2 1_ 1 1 8 8 7_ 7 7
33_3 99_9
4 4 3 _ 3 3 10 10 9 _ 9 9
5 5_ 5 11 11_ 11
6 6 5_ 5 5 12 12 11 _ 11 11
ref ref
ref ref
ref ref
ref ref
ref ref
ref ref
zx x zx x
z xx z z xx z
zx x zx x
z xx z z x x z
zx x z x x
z xx z z x x z
αα
αα
αα
=−=
=−− =
=−=
=−− =−−
=−=
=−− =− −



(7)
By introducing the partial Lyapunov functions [2], to all x coordinates
results in the following backstepping controller:
)z)zz(xx
I
II
z(IU
)z)zz(x
I
J
xx
I
II
z(IU
)z)zz(x
I
J
xx
I
II
z(IU
)z)zz(gz(
xcosxcos
m
U
)z)zz(z(
U
m
U
)z)zz(z(
U
m
U
66556542
ZZ
YYXX
5ZZ4
443343r2
XX
TP
62
YY
XXZZ
3YY3
221121r4
XX
TP
64
XX
ZZYY
1XX2
12121111121111
31
1
1010991099
1
Y
8877877
1
X
ααα
ααα
ααα
ααα
ααα
ααα
+
=
+
=
++
=
++=
+=
+=
(8)
The position of the hexa-rotor microcopter in the earth reference frame
is illustrated in Figure 4.
Figure 4. Position of the hexa-rotor microcopter in the earth reference
frame.
CONCLUSIONS
This paper presents the development of a dynamic modeling and
control algorithm of an autonomous hexa-rotor microcopter. During the
last decade many research papers have been published on the topic of
modeling and control strategies of autonomous multirotors.
The autonomous hexa-rotor microcopter is an under-actuated and
dynamically unstable nonlinear system. The model that represents the
dynamic behavior of the hexa-rotor microcopter is complex. Unmanned
autonomous aerial vehicles have become a real center of interest. In the
last few years, their utilization has significantly increased. The
autonomous hexa-rotor microcopters have additional redundancy over
autonomous quad-rotor microcopters.
The control design carried out for an autonomous quad-rotor
microcopter - backstepping controller, can be applied to the
autonomous hexa-rotor microcopter since they are modeled as a
rotating rigid body dynamic system wih six degres of freedom.
REFERENCES
[1]
Attila Nemes, Genetic Algorithm-Based Adaptive Fuzzy Logic Systems
for Dynamic Modeling of Quadrotors, Proceedings of the IIIrnd
International Conference and Workshop Mechatronics in Practice and
Education, MechEdu 2015, pp. 96-103, ISBN 978-86-918815-0-4,
Subotica, Serbia, May 14-16, 2015.
[2]
Carlos A. Arellano-Muro, Luis F. Luque-Vega, B. Castillo-Toledo,
Alexander G. Loukianov, Backstepping Control with Sliding Mode
Estimation for a Hexacopter, Proceedings of the 2013 10th
International Conference on Electrical Engineering, Computing
Science and Automatic Control (CCE), pp. 31-36, Mexico City, Mexico.
September 30 - October 4, 2013.
[3]
R. Lozano, Unmanned Aerial Vehicles, ISTE Ltd, London, 2010, ISBN
978-1-84821-127-8
[4]
R. Stengel, Flight Dynamics, Princeton University Press, Cloth, 2004,
ISBN 0-691-11407-2
[5]
G. Carrillo, D. López, R. Lozano, C. Pégard, Modeling the Quadrotor
Mini-Rotorcraft, Quad Rotorcraft Control, Springer, 2013, ISBN 978-1-
4471-4398-7
[6]
Aurélien Yol, Bertrand Delabarre, Amaury Dame, Jean-Émile Dartois
and Eric Marchand, Vision-based Absolute Localization for Unmanned
Aerial Vehicles, Proceedings of the 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2014), pp. 3429-
3434, 978-1-4799-6934-0/14/$31.00 ©2014 IEEE, September 14-
18, 2014, Chicago, IL, USA
[7]
Dafizal Derawi, Nurul Dayana Salim, Mohd Azizi Abdul Rahman, Saiful
Amri Mazlan, Hairi Zamzuri, Modeling, Attitude Estimation, and
Control of Hexarotor Micro Aerial Vehicle (MAV), Proceedings of the
2014 IEEE International Conference on Industrial Technology (ICIT),
pp. 55-60, 978-1-4799-3939-8/14/$31.00 ©2014 IEEE, Feb. 26 - Mar.
1, 2014, Busan, Korea.
[8]
Nurul Dayana Salim, Dafizal Derawi, Shahrum Shah Abdullah, Saiful
Amri Mazlan, Hairi Zamzuri, PID plus LQR Attitude Control for
Hexarotor MAV in Indoor Environments, Proceedings of the 2014 IEEE
International Conference on Industrial Technology (ICIT), pp. 85-90,
978-1-4799-3939-8/14/$31.00 ©2014 IEEE, Feb. 26 - Mar. 1, 2014,
Busan, Korea.
[9]
Armando S. Sanca , P. J. Alsina J´es de Jesus F. Cerqueira, Dynamic
Modeling with Nonlinear Inputs and Backstepping Control for a
Hexarotor Micro-Aerial Vehicle, Proceedings of the 2010 Latin
American Robotics Symposium and Intelligent Robotics Meeting, DOI
10.1109/LARS.2010.14, 978-0-7695-4231-7/10 $26.00 © 2010 IEEE,
pp. 36 42, 2010.
ACTA TEHNICA CORVINIENSIS Fascicule 3 [JulySeptember]
Bulletin of Engineering Tome VIII [2015]
|
124
|
[10]
Mark W. Spong, Seth Hutchinson, M. Vidyasagar, Robot Modeling and
Control, ISBN-13: 978-0471649908, John Wiley & Sons, Inc, 2006.
[11]
Attila Nemes, Synopsis of Soft Computing Techniques Used in
Quadrotor UAV Modelling and Control, Interdisciplinary Description of
Complex Systems, Vol.13 , No. 1, DOI: 10.7906/indecs.13.1.3, ISSN
1334-4684, pp. 15-25. 2015.
[12]
Gyula Mester, Aleksandar Rodic, Autonomous Locomotion of
Humanoid Robots in Presence of Mobile and Immobile Obstacles,
Studies in Computational Intelligence, Towards Intelligent
Engineering and Information Technology, Part III Robotics, Volume
243/2009, pp. 279-293, ISBN 978-3-642-03736-8, DOI 10.1007/978-
3-642-03737-5, Springer, 2009.
[13]
G. Mester, Obstacle Avoidance and Velocity Control of Mobile Robots,
Proceedings of the 6th International Symposium on Intelligent
Systems and Informatics SISY 2008, pp. 97-101, ISBN 978-1-4244-
2406-1, DOI 10.1109/SISY.2008.4664918, Subotica, Serbia, Sept. 26-
27, 2008.
[14]
Aleksandar Rodic, Gyula Mester, Virtual WRSN Modeling and
Simulation of Wireless Robot-Sensor Networked Systems,
Proceedings of the 8th IEEE International Symposium on Intelligent
Systems and Informatics, SISY 2010, pp. 115-120, DOI: 10.1109/SI
SY.2010.5647245, ISBN: 978-1-4244-7394-6, Subotica, Serbia, 2010.
[15]
Gyula Mester, Introduction to Control of Mobile Robots, Proceedings
of the YUINFO’2006, pp. 1-4, ISBN 86-85525-01-2, http://www.e-
drustvo.org/proceedings/YuInfo2006/html/pdf/188.pdf, Kopaonik,
Serbia & Montenegro, 2006.
[16]
Aleksandar Rodic, Gyula Mester, Sensor-based Navigation and
Integrated Control of Ambient Intelligent Wheeled Robots with Tire-
Ground Interaction Uncertainties, Acta Polytechnica Hungarica,
Journal of Applied Sciences, Vol. 10, No. 3, pp. 113-133, ISSN 1785-
8860, DOI: 10.12700/APH. 10.03.2013.3.9, Budapest, Hungary, 2013.
[17]
Aleksandar Rodic, Gyula Mester, The Modeling and Simulation of an
Autonomous Quad-Rotor Microcopter in a Virtual Outdoor Scenario,
Acta Polytechnica Hungarica, Journal of Applied Sciences, Vol. 8, Issue
No. 4, pp. 107-122, ISSN 1785-8860, Budapest, Hungary, 2011.
[18]
Ž Hederić, D Šoštarić, G Horvat, Numerical calculation of electro-
magnetic forces in magnetic actuator for use in active suspension
system for vehicles, Tehnicki Vjesnik-Technical Gazette 20 (1), 73-77.
[19]
Simon János, Optimal Microclimatic Control Strategy Using Wireless
Sensor Network and Mobile Robot, Acta Agriculturae Serbica Vol.
XVIII, No. 36, pp. 3-12, 2013.
[20]
Gyula Mester, Sensor Based Control of Autonomous Wheeled Mobile
Robots, The Ipsi BgD Transactions on Internet Research, TIR, Volume
6, Number 2, pp. 29-34, ISSN 1820-4503, New York, Frankfurt, Tokio,
Belgrade, http://internetjournals.net/journals/
tir/2010/July/Paper%2004.pdf, 2010.
[21]
Simon János, Goran Martinović, Navigation of Mobile Robots Using
WSN’s RSSI Parameter and Potential Field Method, Acta Polytechnica
Hungarica, Journal of Applied Sciences Vol.10, No.4, pp. 107-118,
2013.
[22]
Aleksandar Rodic, Gyula Mester, Modeling and Simulation of Quad-
Rotor Dynamics and Spatial Navigation, Proceedings of the SISY 2011,
9th IEEE International Symposium on Intelligent Systems and
Informatics, pp 23-28, ISBN: 978-1-4577-1973-8, DOI: 10.1109
/SISY.2011.6034325, Subotica, Serbia, 810 September, 2011.
[23]
Aleksandar Rodic, Milos Jovanovic, Svemir Popic, Gyula Mester,
Scalable Experimental Platform for Research, Development and
Testing of Networked Robotic Systems in Informationally Structured
Environments, Proceedings of the IEEE SSCI2011, Symposium Series
on Computional Intelligence, Workshop on Robotic Intelligence in
Informationally Structured Space, pp. 136-143, ISBN: 978-1-4244-
9885-7, DOI: 10.1109/RIISS.2011.5945779, Paris, France, 2011.
[24]
Gyula Mester, Intelligent Wheeled Mobile Robot Navigation,
Jelenkori társadalmi és gazdasági folyamatok, V. Évfolyam, 1-2 szám,
pp. 258-264, ISSN: 1788-7593, SZTE, Szeged, Hungary, 2010. Gyula
Mester, Intelligent Wheeled Mobile Robot Navigation“,
Konferenciakiadvány Európai Kihívások V, pp. 1-5, SZTE, Szeged,
Hungary, 2009.
[25]
Sárosi J., Bíró I., Németh J. Cveticanin L., Dynamic Modelling of a
Pneumatic Muscle Actuator with Two-direction Motion Mechanism
and Machine Theory, Vol. 85, pp. 25-34, 2015.
[26]
Aleksandar Rodic, Dusko Katic, Gyula Mester, Ambient Intelligent
Robot-Sensor Networks for Environmental Surveillance and Remote
Sensing, Proceedings of the IEEE SISY 2009, pp. 28-33, IEEE Catalog
Number: CFP0984C-CDR, ISBN: 978-1-4244-5349-8, Library of
Congress: 2009909575, DOI 10.1109/SISY.2009. 5291141, Subotica,
Serbia, Sept. 25-26, 2009.
[27]
Gyula Mester, Simulation of Humanoid Robot Motion, Proceedings of
The KANDÓ Conference, pp. 1-8, ISBN 978-963-7154-74-4, Budapest,
2008.
[28]
Gyula Mester, Intelligent Mobil Robot Control in Unknown
Environments, Intelligent Engineering Systems and Computational
Cybernetics, Part I Intelligent Robotics, pp. 15-26, ISBN 978-1-4020-
8677-9, Library of Congress: 2008934137, DOI 10.1007/978-1-4020-
8678-6_2, Springer, 2009.
[29]
Gyula Mester, Szilveszter Pletl, Gizella Pajor, and Imre Rudas.
Adaptive Control of Robot Manipulators with Fuzzy Supervisor Using
Genetic Algorithms. Proceedings of International Conference on
Recent Advances in Mechatronics, ICRAM’95, O. Kaynak (ed.), Volume
2, pages 661666, ISBN 975-518-063-X, August 14-16, 1995.
Bogazici University Bebek, Istanbul, Turkey, †CCA72953/97
ga95aGMester.
[30]
Gyula Mester, Obstacle Avoidance of Mobile Robots in Unknown
Environments," Proceedings of the 5th International Symposium on
Intelligent Systems and Informatics, SISY2007, pp. 123-127, ISBN
978-1-4244-1442-0, DOI 10.1109/SISY.2007.4342637, Subotica,
Serbia, August 24-25, 2007.
[31]
J. Ćosić, P. Ćurković, Josip Kasać i Josip Stepanić, Interpreting
development of unmanned aerial vehicles using systems thinking,
Interdisciplinary Description of Complex Systems, Vol. 11, No. 1, pp.
143-152, ISSN 1334-4676, DOI: 10.7906/indecs.11.1.12, 2013.
[32]
Stojan Stevanovic, Josip Kasac, Josip Stepanic, Robust tracking control
of a quadrotor helicopter without velocity measurement, proceedings
of the 23rd International DAAAM Symposium, pp. 595-600, Vienna,
Austria 23, 2012.
[33]
Josip Stepanic, Gyula Mester, Josip Kasac, Synthetic Inertial
Navigation Systems: Case Study of Determining Direction,
Proceedings of 57th ETRAN Conference, pp. RO 2.7., 1-3, Zlatibor,
Serbia, June 3-6, 2013.
ACTA TEHNICA CORVINIENSIS Fascicule 3 [JulySeptember]
Bulletin of Engineering Tome VIII [2015]
| 125 |
[34]
Gyula Mester, Distance Learning in Robotics, Proceedings of The Third
International Conference on Informatics, Educational Technology and
New Media in Education, pp. 239-245, ISBN 86-83097-51-X, Sombor,
Serbia 2006.
[35]
Gyula Mester, Improving the Mobile Robot Control in Unknown
Environments, Proceedings of the Y UINFO’2007, pp. 1-5, ISBN 978-86-
85525-02-5, Kopaonik, Serbia, 11-14.03.2007.
[36]
Gyula Mester, Szilveszter Pletl, Gizella Pajor, Zoltan Jeges, Flexible
Planetary Gear Drives in Robotics, Proceedings of the 1992
International Conference on Industrial Electronics, Control,
Instrumentation and Automation - Robotics, CIM and Automation,
Emerging Technologies, IEEE IECON '92, Vol. 2, p.p 646-649, ISBN 0-
7803-0582-5, DOI: 10.1109/IECON. 1992.254556, San Diego,
California, USA, November 9-13, 1992.
[37]
Gyula Mester, Szilveszter Pletl: Fuzzy-Neuro Control and its
Implementation for a Robot Manipulator. Proceedings of the Teaching
Fuzzy Systems Joint Tempus Workshop, pp.1-4, ISBN 963-420-464-3,
Budapest, Hungary, 14-16 May, 1995.
[38]
Gyula Mester, Adaptive Force and Position Control of Rigid Link
Flexible-Joint Scara Robots. Proceedings of the International Confe-
rence on Industrial Electronics, Control and Instrumentation, 20th
Annual Conference of the IEEE Industrial Electronics Society IECON'94,
Vol. 3, pp. 1639-1644, DOI: 10.1109/IECON.1994. 398059, Bologna,
Italy, September 1994.
[39]
Gyula Mester, Szilveszter Pletl, Imre J. Rudas: Dynamic Modeling of
Robot Joints. Proceedings of the IEEE International Workshop on
Emerging Technologies and Factory Automation, ETFA’92, pp. 561-
565, ISBN 0-646-10323-7, Melbourne, Australia, 08/1992.
[40]
Zoltan Rajnai, Edit Szilvia Ruboczki, Moving Towards Cloud Security.
Interdisciplinary Description of Complex Systems, Vol. 13, No. 1, pp. 9-
14, ISSN 1334-4684, 2015.
[41]
Zoltan Rajnai, Bela Puskas, Requirements of the Installation of the
Critical Informational Infrastructure and its Management,
Interdisciplinary Description of Complex Systems, Vol. 13, No. 1, pp.
48-56, ISSN 1334-4684, 2015.
[42]
Livija Cveticanin, Vibration of a Robot Arm, Proceedings of the IIIrnd
International Conference and Workshop Mechatronics in Practice and
Education, MechEdu 2015, pp. 31-35, ISBN 978-86-918815-0-4,
Subotica, Serbia, May 14-16, 2015.
[43]
Branko Karan, Robust position-force control of robot manipulator in
contact with linear dynamic environment, Robotica, pp. 799-803, Vol.
23, Issue 06, Cambridge University Press, 2005.
[44]
Livija Cveticanin, Gyula Mester, Istvan Biro, Parameter Influence on
the Harmonically Excited Duffing Oscillator, Acta Polytechnica
Hungarica, Journal of Applied Sciences, Vol. 11, No. 5, pp. 145-160,
ISSN 1785-8860, DOI: 10.12700/APH.11.05. 2014.05.9, Budapest,
Hungary, 2014.
[45]
Simon János, Implementation of potential field method for mobile
robot navigation in greenhouse environment with WSN support,
Proceedings of the 8th IEEE International Symposium on Intelligent
Systems and Informatics, SISY 2010, pp. 319-323, ISBN: 978-1-4244-
7394-6, Subotica, Serbia, 2010.
[46]
Simon Janos, Goran Martinovic, Web based distant monitoring
Intelligent Systems and Informatics, 2009. SISY'09. Proceedings of th e
7th IEEE International Symposium on Intelligent Systems and
Informatics, SISY'09, pp. 165 169, Subotica, Serbia, 2009.
copyright ©
University POLITEHNICA Timisoara,
Faculty of Engineering Hunedoara,
5, Revolutiei, 331128, Hunedoara, ROMANIA
http://acta.fih.upt.ro
... személy vesztette életét, a sérültek száma több mint 3.500.000. A közlekedési balesetek több mint 90%-át a gépkocsivezetők okozták [16][17][18][19][20][21][22][23][24][25][26][27][28][29][30]. Az önvezető autók esetében ezek a számok minimálisra csökkennek. ...
Conference Paper
Full-text available
Absztrakt: Az elektromos meghajtású önvezető autó-Self Driving Car-a közúti és városi forgalomban emberi beavatkozás nélkül képes közlekedni, érzékeli és értékeli a környezetet, digitális technológiák segíségével ütközésmentesen irányítja önmagát. Az önvezető autók kutatása-fejlesztése a közúti, városi közlekedés biztonsága szempontjából fontos és időszerű. Az önvezető autók fejlesztése forradalmat jelent az autóiparbabn. Az automata járművezető rendszernek 6 szintje van. Bemutatjuk a Toyota LQ negyedik szintű önvezető autót és a Matlab 2022R programcsomagot, valamint a programcsomag eszköztárait. Az önvezető autók elterjedésével az autó megosztás-car sharing-használata mindinkább teret hódít. Kulcsszavak: önvezető autó, elektromos meghajtás, autó megosztás, érzékeli és értékeli a környezetet, digitális technológiák, járművezető rendszer szintjei, Toyota LQ, Matlab 2022R.
... Rang listu istraživača naučnometrije u 2022 god. prezentujemo primenom baze Google Scholar na osnovu h-indeksa istraživača [21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39][40]. ...
Conference Paper
Full-text available
Apstrakt: Rang listu istraživača naučnometrije/Scientometrics u svetu u 2022 god., prezentujemo primenom baze Google Scholar na osnovu h-indeksa istraživača. Ako dva ili više istraživača imaju isti h-indeks tada se rangiranje vrši prema broju citata na publikacije istraživača. Na prikazanoj rang listi prikazujemo 12 istraživača, minimalna vrednost h-indeksa je 59. Prikazujemo i Orcid ID istraživača. Ključne reči: Rang lista istraživača naučnometrije u 2022 god., h-indeks, Google Scholar, citati, Orcid ID. 1. Uvod Rad prezentira rang listu istraživača naučnometrije/Scientometrics u svetu u 2022 god. Rang listu istraživača prvenstveno prezentujemo prema h-indeksu. Istraživač ima indeks h ako od ukupnog broja njegovih radova, h radova ima najmanje h citata. h-indeks se može odrediti iz sledećih baza podataka: Web of Science, Scopus, Google Scholar i programom Publish or Perish. U slučaju ako se h-indeks dva ili više istraživača poklapaju, tada rangiranje vršimo prema broju citata na radove istraživača. Na rang listi prikazujemo 12 najboljih istraživača sa minimalnim h-indeksom 59. Rang listu prezentujemo primenom baze Google Scholar [1-20]. Prikazujemo i Orcid ID istraživača. Prvo poglavlje obuhvata uvod, u drugom poglavlju prezentujemo rang listu istraživača naučnometrije, treće poglavlje obuhvata zaključke. 2. Rang lista istraživača naučnometrije 2022 Rang listu istraživača naučnometrije u 2022 god. prezentujemo primenom baze Google Scholar na osnovu h-indeksa istraživača [21-40]. Ako dva ili više istraživača imaju isti h-indeks tada se rangiranje vrši prema broju citata na publikacije istraživača [41-67]. Prikazujemo i Orcid ID istraživača (ukoliko istraživač ima Orcid ID).
... Historically, all the critical points of the vehicle have been developed; today, these advances have focused on more sophisticated and intelligent systems, so the results are less physically dazzling. For this reason, can describe two safety systems stages, passive and active safety [10][11][12][13][14][15]. ...
Conference Paper
Full-text available
At present, the development of Self-Driving Cars systems has been increasing. The need for man to control all possible scenarios has led to the inclusion of theories such as human perception. This means identifying how the human brain recognizes its environment and translating it into data that a machine can learn and make decisions. For this, great doubts have been generated concerning safety; in the present work, a Markovian model is used, a stochastic method for randomly changing systems. These models show all possible forms and the transitions, the rate of changes, and the probabilities between them. Markovian models can also recognize patterns, make predictions, and learn sequential statistics.
Conference Paper
Full-text available
Rad analizira na koji način digitalne tehnologije podržavaju saradnju aktera u ekonomiji i društvu da bi se obezbedila veća ekonomska dinamika razvoja i socijalna inkluzivnost i stabilnost. S druge strane, digitalni prodori kao što su brz napredak u veštačkoj inteligenciji,oblak računarstvu, internetu stvari, analitici podataka, kvantnom skoku računarskih potencijala otvaraju rizike sigurnosti, poverenja, koncentracije moći, socijalnih i digitalnih disproporcija, ekoloških rizika koji se samo kroz saradnju i zajedničku akciju na globalnom nivou mogu rešiti, a njihove negativne posledice svesti na minimum. Poseban akcenat analiza stavlja na digitalne platforme i digitalne poslovne ekosisteme kao nove modele organizovanja ekonomske aktivnosti koji kroz saradnju obezbeđuju kreiranje novih znanja, novih proizvode i nove vrednosti za sve učesnike. Ključne reči: digitalne tehnologije, saradnja, konkurentnost, razvoj
Conference Paper
Full-text available
Da bi kompanije danas opstale na tržištu treba da poznaju svoje potrošače, razumeju njihove želje i potrebe i obezbeđuju im zahtevana iskustva, proizvode i usluge, brzo i u realnom vremenu. To znači da su kompanije uvek na raspolaganju svojim konzumentima i da imaju vrlo fleksibilne strategije pristupa istim, a sve kako bi odgovorile njihovim promenljivim potrebama. Proaktivni kupci, kao nova vrsta korisnika, su zahtevni, informisani i imaju mogućnost da do proizvoda i usluga različitih kompanija dođu jako brzo. Oni su onalajn konzumenti na prvom mestu, i definiše ih potreba da komuniciraju na sve moguće načine. Proaktivni kupci, očekuju da kompanije predviđaju njihove potrebe, da ih slušaju, sa njima razgovarju i brinu o njima, a za uzvrat postaju lojalni saradnici i verni kupc, koji će svoja pozitivna iskustva deliti u onlajn sferi i na taj način privući nove korisnike. Ključne reči: kompanija, proaktivnost, kupac, komunikacija
Conference Paper
Full-text available
Absztrakt: A tudományos közlemény bemutatja a tudománymetria tudományterületi magyar kutatók 2022-es ranglistáját. A ranglistát elsődlegesen a kutatók h-indexe szerint prezentáljuk. Megegyező h-index szerinti kutatókat az idézetek száma szerint rangsoroljuk. A ranglistán 15 kutató szerepel. A h-index meghatározható a következő internetes adatbázisokból: Web of Science, Scopus, Google Scholar, Magyar Tudományos Művek Tára és a Tud-O-Méter, Publish or Perish programok alkalmazásával. A ranglistát a Google Scholar internetes adatbázis és a Publish or Perish program alkalmazásával szerkesztjük.
Conference Paper
Full-text available
Absztrakt: A repülő elektromos autó egy olyan típusú személyi légi jármű, amely háztól-házig közlekedik, földi és légi közlekedést egyaránt biztosít. Ebben a cikkben áttekintjük a repülő autók legújabb fejlesztéseit. Az autonóm repülő autó érzékeli és értékeli a környezetet, digitális techno-lógiákat használ a vezérléshez és navigálja magát ütközés nélkül, térben közlekedik, képes helyből felszállni és leszállni (VTOL) és elektromos meghajtással működik. Napjainkban több vállalat is fejleszt repülő autókat: Terrafugia, Aero Mobil, Volocopter, Lilium, Hyundai, Uber, Bosch. Az elmúlt években számos prototípust építettek, amelyekhez különböző repülési technológiákat alkalmaznak, és néhányuk valódi VTOL-teljesítménnyel rendelkezik. Kulcszavak: autonóm repülő autó, elektromos meghajtás, VTOL-teljesítménny, érzékeli és értékeli a környezetet, digitális technológiák ___________________________________________________________________________ Abstract: A flying electric car is a type of personal air vehicle that provides door-to-door transportation by both ground and air. In this article, we review the latest developments in flying cars. The autonomous flying car detects and evaluates the environment, uses digital technologies to control and navigate itself without collision, travels in space, can take off and land (VTOL), and uses electric propulsion. Today, several companies are developing flying cars: Terrafugia, Aero Mobil, Volocop-ter, Lilium, Hyundai, Uber, Bosch. Many prototypes have been built in the last years using a variety of flight technologies and some have true VTOL performance. Az autonóm repülő autók megjelenése nem csupán fejlesztés, hanem forradalom. Manapság úgy tűnik, hogy tőbb cég fejleszti autonóm, elektromos, függőlegesen felszálló és leszálló (VTOL) repülő autóját. Az autonóm repülő autó érzékeli és értékeli a környezetet, digitális technológiákat használ az irányításhoz, ütközés nélkül navigálja magát, közlekedik a térben, képes fel-és leszállni, és elektro-mos meghajtást használ. Az autonóm repülő elektromos autó egy olyan típusú személyi légi jármű, amely biztosítja a földön és a levegőben is háztól házig történő szállítást.
Conference Paper
Full-text available
Apstrakt: Publikacija prezentira rang listu istraživača u Srbiji u 2022 god. Rang listu prezentiramo prema h-indeksu istraživača. U slučaju ako dva istraživača imaju isti h-indeks, rangiranje vršimo prema broju citata. Na rang listi prikazujemo 20 najboljih istraživača. h-indeks se može odrediti iz sledećih baza podataka: Web of Science, Scopus, Google Scholar i programom Publish or Perish. Rang listu prezentujemo primenom baze Google Scholar. Kjučne reči: rang lista, istraživači u Srbiji, merenje rezultata naučnih istraživanja, h-indeks, citati, Google Scholar. ___________________________________________________________________________ Abstract: The paper presents the 2022 ranking list of researchers from Serbia. The ranking is presented primarily according to the h-index of researchers. Researchers with the same h-index are ranked by the number of citations. We present the top 20 researchers in the ranking list. h-index can be determined from the following online databases: Web of Science, Scopus, Google Scholar and the Publish or Perish program. The ranking is edited using the Google Scholar database.
Conference Paper
Full-text available
Publikacija prezentira rang listu istraživača Univerziteta u Novom Sadu u 2022 god. Na Šangajskoj rang listi univerziteta u svetu ARWU u 2022 god., Univerzitet u Novom Sadu nalazi se u klasteru 901-1000. Rang listu prezentiramo prema h-indeksu istraživača. U slučaju ako dva istraživača imaju isti h-indeks, rangiranje vršimo prema broju citata. Na rang listi prikazujemo 20 najboljih istraživača sa minimalnim h-indeksom 25. h-indeks se može odrediti iz sledećih baza podataka: Web of Science, Scopus, Google Scholar i programom Publish or Perish. Rang listu prezentujemo primenom baze Google Scholar.
Conference Paper
This paper proposes an adaptive control for a quadrotor drone with uncertain dynamics and subject to unknown disturbances. Radial Base Function Neural Network (RBFNN) is used to approximate the unknowns in the system. The output layer of the RBFNN is used as a compensator that estimates and eventually eliminates the physical uncertainties along with an adaptive controller designed to give robustness to the system. Hence, faster error convergence can be achieved. The closed loop system was analyzed by a Lyapunov function and the proposed controller performance is tested by Matlab /Simulink. The results prove the efficiency of the proposed system.
Conference Paper
Full-text available
Sadržaj-U radu je prikazuje modeliranje i upravljanje kretanjem mobilnih robota na točkovima. Upravljanje autonomnim mobilnim robotima pri praćenju trajektorije danas je vrlo važna istraživačka oblast kako u oblasti teorijskih istraživanja tako i u oblasti aplikacija. U ovom radu autonomni mobilni robot ima dva pogonska točka i nezavisno upravljanje ugaonim brzinama točkova. Prvo se analizira kinematički model i nakon toga se postavlja strategija upravljanja sa predkompenzacionim signalom. Daje se osvrt na simulaciju mobilnih robota. Abstract-The paper deals with the modeling and control strategies of the motion of wheeled mobile robots. Path control of autonomous robots is a very important research field today, because mobile robots are a very interesting subject both in scientific research and practical applications. In this paper the model of the vehicle has two driving wheels (which are attached to both sides of the vehicle) and the angular velocities of the two wheels are independently controlled. First, the vehicle kinematics model is analyzed. Second, the control strategies using a feedforward compensator are proposed. Finally, the mobile robot simulation is illustrated.
Conference Paper
Full-text available
This paper will deal with the simulation of humanoid robot motion. The modeling of the humanoid robot motion is analyzed. The robot's body consists of a number of rigid segments interconnected with spherical or cylindrical joints. A kinematic scheme of a 20-DOFs biped locomotion system is used in simulation. The simulation results in the Matlab/Simulink and Robotics toolbox for Matlab/Simulink environment show the effectiveness and the validity of the proposed humanoid robot motion strategy. Plenty of graphic presentations as the results of the corresponding simulations tests are shown.
Conference Paper
Adaptive Control of Rigid-Link Flexible-Joint Robots.
Conference Paper
Fuzzy-Neuro Control and its Implementation for a Robot Manipulator.
Conference Paper
Obstacle and Slope Avoidance of Mobile Robots in Unknown Environments.
Conference Paper
Improving the Mobile Robot Control in Unknown Environments.
Conference Paper
Synthetic Inertial Navigation Systems: Case Study of Determining Direction.
Article
In this paper, a robust output tracking controller for quadrotor helicopter is proposed. The proposed controller requires measurement of only four state variables: positions in inertial coordinate frame and yaw angle. Also, the controller is robust to unmodeled dynamics and provides rejections of all external force and torque disturbances. The effectiveness of the proposed controller is tested on a simulation example of quadrotor tracking under wind influence which is modeled as unmatched external force disturbances in horizontal plane. Copyright © (2012) by Danube Adria Association for Automation and Manufacturing (DAAAM).