Content uploaded by Saman Mostafapoor
Author content
All content in this area was uploaded by Saman Mostafapoor on May 12, 2019
Content may be subject to copyright.
Winter 2019, Volume 21, number 4
Spring 2016, Volume 19, Number 1
METALLURGICAL ENGINEERING
The Journal of Iranian Metallurgical and Materials Engineering Society
hp:metalleng.ir/ 4
Hot deformaon of an extruded Mg–10Li–1Zn alloy was studied by compression tesng in the temperatures range of 250-
450˚C and strain rates of 0.001–0.1s−1. During hot compressive deformaon of the Mg-10Li-1Zn alloy, ow stress curves
reach a maximum value and then reach a steady state which is indicave of the occurrence of dynamic recrystallizaon. Be-
cause of the acvaon of soening mechanisms at higher temperatures and lower strain rates, this phenomenon is more
pronounced at lower temperatures and higher strain rate. The ow stress of the Mg–10Li–1Zn alloy at elevated tempera-
tures was modeled via an Arrhenius-type constuve equaon. The values for the acvaon energy of about 103 kJ mol–1
and the power-law stress exponents in the range of 5.2–6.0 obtained from the Arrhenius-type model indicate that the domi-
nant mechanism during hot deformaon of the Mg–10Li–1Zn alloy is dislocaon climb which is controlled by the lace
self-diusion of Li atoms.
Key words: Mg-Li alloys, Hot deformaon, Constuve equaons
A B S T R A C T
Citation:
Shalba M, Roumina R, Mahmudi R. The Study of Hot Deformation Behavior of an Mg-10Li-1Zn Alloy by Arrhenius Conitutive
Equations. Metallurgical Engineering. 2016; 19(1):4-12. http://dx.doi.org/10.22076/me.2017.27135.1030
:
: http://dx.doi.org/10.22076/me.2017.27135.1030
* Corresponding Author:
Reza Roumina, PhD
Address:
School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
Tel: +98 (21) 82084097
E-mail: roumina@ut.ac.ir
Research Paper
The Study of Hot Deformaon Behavior of an Mg-10Li-1Zn Alloy by Arrhenius Constuve
Equaons
1. MSc., School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
2. Assistant Professor, School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
3. Professor, School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
Mostafa Shalba1, *Reza Roumina2, Reza Mahmudi3
* Corresponding Author:
Mehdi Malekan, PhD
Address:
School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
Tel: +98 (21) 82084610
E-mail: mmalekan@ut.ac.ir
Research Paper
The eect of zinc on microstructure and solidicaon characteriscs of Al-Zn-Mg-Cu alloys
Saman Mostafapoor1, *Mehdi Malekan2, Masoud Emamy3
1- MSc, Metallurgy and Materials Engineering, School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
2- Assistant Professor, Metallurgy and Materials Engineering, School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
3- Professor, Metallurgy and Materials Engineering, School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
Citation: Mostafapoor S, Malekan M, Emamy M. The effect of zinc on microstructure and solidication characteristics of Al-Zn-Mg-Cu
alloys. Metallurgical Engineering 2019: 21(4): 252-263 http://dx.doi.org/ 10.22076/me.2019.83388.1180
doi : http://dx.doi.org/ 10.22076/me.2019.83388.1180
ABSTRACT
In this study, the eect of zinc on microstructure and solidicaon characteriscs of super high strength Al-Zn-Mg-Cu has been
invesgated. The solidicaon studies were performed using cooling curve thermal analysis. This method represents quick
and accurate results of solidicaon path of an alloy. The microstructure studies showed increment in the amounts of zinc
increases the dendrite arm spacing (DAS), fracon of second phases and eutecc structure and results in a coarse dendrite
structure. However, the zinc content did not aect the present phases in this alloying system. Thermal analysis evaluaons re-
vealed decrease in nucleaon temperature with zinc addion. The formaon of Al13Fe4 phase was observed using bycooling
curve. The solidicaon range in the presence of 8wt.% of zinc was 175 °C although the adding of zinc up to 25 wt.% increased
it to 190 °C. Cooling curves represented the increase of the fracon of eutecc structure which was in accordance with image
analysis results. The addion of zinc resulted in the decrease of the solidied fracon at dendrite coherency point from 0.32
to 0.1 which matched by increment in porosity fracon from 0.09 to 0.32.
Keywords: Al-Zn-Mg-Cu alloy, Solidicaon, Thermal analysis, Cooling curve, microstructure.
mmalekan@ut.ac.ir
Al-Zn-Mg-Cu
هدیکچ
AlZnMgCu
AlFe
Al-Zn-Mg-Cu
Al
ZnMgCu
–
CACCA
–
DTA
1. Computer Aided Cooling Curve Analysis
2. Dierenal Thermal Analysis
Al-Zn-Mg-Cu
AlSiAlSi
–AlSiCu –AlCu –Mg
AlZnMgCu
DCP
xAl-xZn-2.5Mg-2.5Cu
AlZnMgCu
Al-50%Mg %
Al-50%Cu
3. Dendrite Coherency Point
°Cs
K
AlZnMgCu
%.wt
ZnMgCuSiFeAl
A8
A10
A12
A15
A17
A20
A25
ADAM-4000
b9.2.257 OriginPro
= +
ct
T a be
cba tT
−
= =
−
∫
∫
s
e
s
t
cc zc
t1
st
cc zc
t
dT dT
() ()dtt
dt dt
fdT dT
() ()dt
dt dt
1
t
fs
TWTC
DCP
ASTM E3-11
4.1.1.0
PHILIPSXRD
KɑÅ
4. Curve Fing
5. Digimizer
6. X-ray Diracon
Vega©Tescan
EDS
ISO 2738
MelerToledoGreifensee
AlZnMgCu
μm
μm
μm
AlSiCu
A20 A15 A8
AlZnMgCu
7. Energy Dispersive X-ray Spectroscopy
8. The role of mixtures
Al-Zn-Mg-Cu
EDS
AαAl
B MgZn2η αAl
AlZn
C
Al2MgCuS
Al2Zn3Mg3T
E D
θ F
Al2Cu
A20A17A15A12A10A8
A15EDS
AlZnMgCuFe
A
αAl
B
ηαAl
C
S(Al2MgCu)
D
T(Al2Mg3Zn3)
E
T(Al2Mg3Zn3)
F
θ(Al2Cu)
G
Al13Fe4
Al-Zn-
Mg-Cu
AlZnMgCu
Al13Fe4
A15A8
A20
XRDXRD
A20 A15A8
MgZnAlCu2MgZn2ηɑ-Al
Mg32AlCu49T
θS
A20A15A8XRD
MgZn2
Mg(Zn,Al,Cu)2
TMg32(Al,Cu)49
S θ
EDSA15
Al
Zn
Mg
Cu
Fe
A
-
α-Al
B
-
α-Alη
C
-
S(Al2MgCu)
D
-
T(Al2Mg3Zn3)
E
-
T(Al2Mg3Zn3)
F
-
θ(Al2Cu)
G
Al13Fe4
200
300
400
500
600
40 50 60 70 80 90 100
Temperature oC
Zinc, wt%
Liquid
a
b
a+Liquid
382
o
443o
275o
69.5
80.5
95
a'
71.6
a+b
340o
b+h
b+Liquid
h
420o
86.5
a+h
Al-Zn-Mg-Cu
A15
Al-15Zn-2.5Mg-2.5Cu
AlZnMgCu
AlZnMgCu
Tmin
TG
TG
ɑ
Tmin
TG
°CA8TGTminTN
°C °C
AlZn
°C °C °C
TE
TN
ΔTN
°C°C
A15
°C
TR
°C C° TR
αAlAl-9.2Zn-xMg-2.3Cu
°CC°
η αAl
SαAl TαAl
TNE
°C
°C
Al13Fe4
°C 7050
Al13Fe4
9. Xie
Al13Fe4 (TR)
Al-Zn-Mg-Cu
Ts
TS
°C °C
A8°C
°C
°C
tft1
AlNiSi
A15
TcTw
TwTc
DCP
fDCP
A8
DCP
DCP
ts∆TsTS
Al-15Zn-2.5Mg-2.5Cu
DCP
DCP
DCP
DCP
tDCPTDCP
DCP
°C
DCP°C
DCP
DCP
DCP
TNTDCPDCP
°C
°C
A15DCP
DCP
AlZnMgCu
DCPTNTDCP
Al-Zn-Mg-Cu
DCP
DCP
μm
μm
°C°C
°C°C
°C°C
Al13Fe4
°C°C
DCP
DCP
°C °C
AlZnMgCu
References
1. Gao T, Zhang Y, Liu X. Inuence of trace Ti on the microstruc-
ture, age hardening behavior and mechanical properties of an
Al-Zn-Mg-Cu-Zr alloy. Mater Sci Eng A. 2014;598:293–8.
2. Deng Y, Yin Z, Zhao K, Duan J, Hu J, He Z. Effects of Sc and Zr
microalloying additions and aging time at 120°C on the corro-
sion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65:288–
98.
3. Fang HC, Chao H, Chen KH. Effect of Zr, Er and Cr additions on
microstructures and properties of Al-Zn-Mg-Cu alloys. Mater
Sci Eng A. 2014;610:10–6.
4. Wu YL, Froes FH, Alvarez A, Li CG, Liu J. Microstructure and
properties of a new super-high-strength Al-Zn-Mg-Cu alloy
C912. Mater Des. 1998;18:211–5.
5. Pourkia N, Emamy M, Farhangi H, Ebrahimi SHS. The effect
of Ti and Zr elements and cooling rate on the microstructure
and tensile properties of a new developed super high-strength
aluminum alloy. Mater Sci Eng A. 2010;527:5318–25.
6. Seyed Ebrahimi SH, Emamy M. Effects of Al–5Ti–1B and Al–5Zr
master alloys on the structure, hardness and tensile properties
of a highly alloyed aluminum alloy. Mater Des. 2010;31:200–9.
7. Seyed Ebrahimi SH, Emamy M, Pourkia N, Lashgari HR. The
microstructure, hardness and tensile properties of a new super
high strength aluminum alloy with Zr addition. Mater Des.
2010;31:4450–6.
8. Fan Z, Wang Y, Zhang Y, Qin T, Zhou XR, Thompson GE, et
al. Grain rening mechanism in the Al/Al–Ti–B system. Acta
Mater. 2015;84:292–304.
9. Easton M, Stjohn D. Grain renement of aluminum alloys: Part I.
The nucleant and solute paradigms - a review of the literature.
Metall Mater Trans A Phys Metall Mater Sci. 1999;30:1613–23.
10. Chen K, Liu H, Zhang Z, Li S, Todd RI. The improvement
of constituent dissolution and mechanical properties of 7055
aluminum alloy by stepped heat treatments. J Mater Process
Technol. Elsevier; 2003;142:190–6.
11. Stefanescu DM. Science and engineering of casting solidica-
tion: Third edition. Sci. Eng. Cast. Solidif. Third Ed. 2015.
12. Shabestari SG, Malekan M. Assessment of the effect of grain re-
nement on the solidication characteristics of 319 aluminum
alloy using thermal analysis. J Alloys Compd. 2010;492:134–42.
13. Naghdali S, Jafari H, Malekan M. Cooling curve thermal anal-
ysis and microstructure characterization of Mg-5Zn-1Y-xCa
(0–1 wt%) alloys. Thermochim Acta. 2018;667:50–8.
14. Mostafapoor S, Malekan M, Emamy M. Thermal analysis
study on the grain renement of Al–15Zn–2.5Mg–2.5Cu alloy.
J Therm Anal Calorim [Internet]. 2017;127:1941–52. Available
from: https://doi.org/10.1007/s10973-016-5737-7
15. Upadhya KG, Stefanescu DM, Lieu K, Yeager DP. Computer-
aided cooling curve analysis: principles and applications in
metal casting. AFS Trans. 1989. p. 1989.
16. Larranaga P, Gutierrez JM, Loizaga a, Sertucha J, Suarez R.
A Computer-Aided System for Melt Quality and Shrinkage
Propensity Evaluation Based on the Solidication Process of
Ductile Iron. Trans Am Foundry Soc. 2008;
17. Emadi D, Whiting L V, Đurđević MB, Kierkus WT, Sokolowski
J. Comparison of newtonian and fourier thermal analysis tech-
niques for calculation of latent heat and solid fraction of alumi-
num alloys. Metalurgija. 2004;10:91–106.
18. Hegde S, Prabhu KN. Modication of eutectic silicon in Al-Si
alloys. J Mater Sci. 2008;
19. Ludwig TH, Schaffer PL, Arnberg L. Inuence of some trace
elements on solidication path and microstructure of Al-Si
foundry alloys. Metall Mater Trans A Phys Metall Mater Sci.
2013;
20. Shin J, Lee Z, Ul-Haq I. Computer-Aided Cooling Curve Anal-
ysis of A356 Aluminum Alloy. Met Mater Int. 2004;10:89–96.
21. Eguskiza S, Niklas A, Fernández-Calvo AI, Santos F, Djurd-
jevic M. Study of strontium fading in Al-Si-Mg and Al-Si-Mg-
Cu alloy by thermal analysis. Int J Met. 2015;9:43–50.
22. Coniglio N, Cross CE. Characterization of solidication path
for aluminium 6060 weld metal with variable 4043 ller dilu-
tion. Weld World. 2006. p. 14–23.
23. Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of cooling
rate on the microstructure and solidication characteristics
of Al2024 alloy using computer-aided thermal analysis tech-
nique. J Therm Anal Calorim. 2014;117:1253–61.
24. Kamguo Kamga H, Larouche D, Bournane M, Rahem A. Solid-
ication of aluminum-copper B206 alloys with iron and silicon
additions. Metall Mater Trans A Phys Metall Mater Sci. 2010;
25. Haghdadi N, Phillion AB, Maijer DM. Microstructure Char-
acterization and Thermal Analysis of Aluminum Alloy B206
During Solidication. Metall Mater Trans A Phys Metall Mater
Sci. 2015;46:2073–81.
26. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer-
aided cooling curve thermal analysis of near eutectic Al – Si
– Cu – Fe alloy. J Therm Anal Calorim. 2013;114:1–13.
27. Farahany S, Idris MH, Ourdjini A, Faris F, Ghandvar H. Evalu-
ation of the effect of grain reners on the solidication charac-
teristics of an Sr-modied ADC12 die-casting alloy by cooling
curve thermal analysis. J Therm Anal Calorim. 2015;
28. Malekan M, Dayani D, Mir A. Thermal analysis study on the
simultaneous grain renement and modication of 380.3 alu-
minum alloy. J Therm Anal Calorim. 2014;
29. Timelli G, Camicia G, Ferraro S. Effect of grain renement and
cooling rate on the microstructure and mechanical properties
of secondary Al-Si-Cu alloys. J Mater Eng Perform. 2014;
30. Gonzalez C, Alvarez O, Genesca J, Juarez-Islas JA. Solidication
of chill-cast Al-Zn-Mg alloys to be used as sacricial anodes.
Metall Mater Trans A Phys Metall Mater Sci. 2003;34:2991–7.
31. Ahmad AH, Naher S, Brabazon D. Thermal proles and frac-
tion solid of aluminium 7075 at different cooling rate condi-
tions. Key Eng Mater. Trans Tech Publ; 2013. p. 582–95.
32. Dahle AK, Arnberg L. Development of strength in solidifying
aluminium alloys 10.1016/S1359-6454(96)00203-0 : Acta Mate-
rialia | ScienceDirect.com. Acta Mater [Internet]. 1997;45:547–
59. Available from: http://www.sciencedirect.com/science/
article/pii/S1359645496002030
33. Backerud L, Chai G, Tamminen J. Solidication Characteristics
of Aluminum Alloys. Vol. 2. Foundry Alloys. AFS/SkanAlu-
minum. 1990;266.
34. Alipour M, Emamy M. Effects of Al–5Ti–1B on the structure
and hardness of a super high strength aluminum alloy pro-
duced by strain-induced melt activation process. Mater Des.
2011;32:4485–92.
35. Djurdjevič MB, Grzinčič MA. The Effect of Major Alloying Ele-
ments on the Size of Secondary Dendrite Arm Spacing in the
As-Cast Al-Si-Cu Alloys. Arch Foundry Eng. 2012;12:19–24.
36. Mishra RR, Sharma AK. Effect of susceptor and mold material
on microstructure of in-situ microwave casts of Al-Zn-Mg al-
loy. Mater Des. 2017;131:428–40.
37. Jiang W, Jiang Z, Li G, Wu Y, Fan Z. Microstructure of Al/Al
bimetallic composites by lost foam casting with Zn interlayer.
Mater Sci Technol. Taylor & Francis; 2018;34:487–92.
38. Mostafapoor S, Malekan M, Emamy M. Effects of Zr addi-
tion on solidication characteristics of Al–Zn–Mg–Cu al-
loy using thermal analysis. J Therm Anal Calorim. Springer;
2018;134:1457–69.
39. Liu JT, Zhang YA, Li XW, Li ZH, Xiong BQ, Zhang JS. Ther-
modynamic calculation of high zinc-containing Al-Zn-Mg-Cu
alloy. Trans Nonferrous Met Soc China (English Ed. 2014;
40. Xie F, Yan X, Ding L, Zhang F, Chen S, Chu MG, et al. A study
of microstructure and microsegregation of aluminum 7050 al-
loy. Mater Sci Eng A. 2003;
41. Mondal C, Mukhopadhyay AK. On the nature of T(Al2Mg3Zn3)
and S(Al2CuMg) phases present in as-cast and annealed 7055
aluminum alloy. Mater Sci Eng A. 2005;
42. Timelli G, Caliari D. Effect of Superheat and Oxide Inclusions
on the Fluidity of A356 Alloy. Mater Sci Forum [Internet].
Trans Tech Publ; 2017. p. 71–80. Available from: http://www.
scientic.net/MSF.884.71
43. Yang L, Li W, Du J, Wang K, Tang P. Effect of Si and Ni con-
tents on the uidity of Al-Ni-Si alloys evaluated by using ther-
mal analysis. Thermochim Acta. 2016;645:7–15.
44. Arnberg L, Chai G, Backerud L. Determination of dendritic
coherency in solidifying melts by rheological measurements.
Mater Sci Eng A. 1993;173:101–3.
45. Malekan M, Shabestari SG. Effect of grain renement on the
dendrite coherency point during solidication of the A319 alu-
minum alloy. Metall Mater Trans A. 2009;40:3196–203.