ArticlePDF Available

The effect of zinc on microstructure and solidification characteristics of Al-Zn-Mg-Cu alloys

Authors:

Abstract and Figures

In this study, the effect of zinc on microstructure and solidification characteristics of super high strength Al-Zn-Mg-Cu has been investigated. The solidification studies were performed using cooling curve thermal analysis. This method represents quick and accurate results of solidification path of an alloy. The microstructure studies showed increment in the amounts of zinc increases the dendrite arm spacing (DAS), fraction of second phases and eutectic structure and results in a coarse dendrite structure. However, the zinc content did not affect the present phases in this alloying system. Thermal analysis evaluations revealed decrease in nucleation temperature with zinc addition. The formation of Al13Fe4 phase was observed using cooling curve. The solidification range in the presence of 8wt.% of zinc was 175 °C although the adding of zinc up to 25 wt.% increased it to 190 °C. Cooling curves represented the increase of the fraction of eutectic structure which was in accordance with image analysis results. The addition of zinc resulted in the decrease of the solidified fraction at dendrite coherency point from 0.32 to 0.1 which matched by increment in porosity fraction from 0.09 to 0.32
Content may be subject to copyright.
Winter 2019, Volume 21, number 4

Spring 2016, Volume 19, Number 1
METALLURGICAL ENGINEERING
The Journal of Iranian Metallurgical and Materials Engineering Society
hp:metalleng.ir/ 4
Hot deformaon of an extruded Mg–10Li–1Zn alloy was studied by compression tesng in the temperatures range of 250-
450˚C and strain rates of 0.001–0.1s−1. During hot compressive deformaon of the Mg-10Li-1Zn alloy, ow stress curves
reach a maximum value and then reach a steady state which is indicave of the occurrence of dynamic recrystallizaon. Be-
cause of the acvaon of soening mechanisms at higher temperatures and lower strain rates, this phenomenon is more
pronounced at lower temperatures and higher strain rate. The ow stress of the Mg–10Li–1Zn alloy at elevated tempera-
tures was modeled via an Arrhenius-type constuve equaon. The values for the acvaon energy of about 103 kJ mol–1
and the power-law stress exponents in the range of 5.2–6.0 obtained from the Arrhenius-type model indicate that the domi-
nant mechanism during hot deformaon of the Mg–10Li–1Zn alloy is dislocaon climb which is controlled by the lace
self-diusion of Li atoms.
Key words: Mg-Li alloys, Hot deformaon, Constuve equaons
A B S T R A C T
Citation:
Shalba M, Roumina R, Mahmudi R. The Study of Hot Deformation Behavior of an Mg-10Li-1Zn Alloy by Arrhenius Conitutive
Equations. Metallurgical Engineering. 2016; 19(1):4-12. http://dx.doi.org/10.22076/me.2017.27135.1030
:
: http://dx.doi.org/10.22076/me.2017.27135.1030
* Corresponding Author:
Reza Roumina, PhD
Address:
School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
Tel: +98 (21) 82084097
E-mail: roumina@ut.ac.ir
Research Paper
The Study of Hot Deformaon Behavior of an Mg-10Li-1Zn Alloy by Arrhenius Constuve
Equaons
1. MSc., School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
2. Assistant Professor, School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
3. Professor, School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
Mostafa Shalba1, *Reza Roumina2, Reza Mahmudi3
* Corresponding Author:
Mehdi Malekan, PhD
Address:
School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
Tel: +98 (21) 82084610
E-mail: mmalekan@ut.ac.ir
Research Paper
The eect of zinc on microstructure and solidicaon characteriscs of Al-Zn-Mg-Cu alloys
Saman Mostafapoor1, *Mehdi Malekan2, Masoud Emamy3
1- MSc, Metallurgy and Materials Engineering, School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
2- Assistant Professor, Metallurgy and Materials Engineering, School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
3- Professor, Metallurgy and Materials Engineering, School of Metallurgy and Materials Engineering,University of Tehran, Tehran, Iran.
Citation: Mostafapoor S, Malekan M, Emamy M. The effect of zinc on microstructure and solidication characteristics of Al-Zn-Mg-Cu
alloys. Metallurgical Engineering 2019: 21(4): 252-263 http://dx.doi.org/ 10.22076/me.2019.83388.1180
doi : http://dx.doi.org/ 10.22076/me.2019.83388.1180
ABSTRACT
In this study, the eect of zinc on microstructure and solidicaon characteriscs of super high strength Al-Zn-Mg-Cu has been
invesgated. The solidicaon studies were performed using cooling curve thermal analysis. This method represents quick
and accurate results of solidicaon path of an alloy. The microstructure studies showed increment in the amounts of zinc
increases the dendrite arm spacing (DAS), fracon of second phases and eutecc structure and results in a coarse dendrite
structure. However, the zinc content did not aect the present phases in this alloying system. Thermal analysis evaluaons re-
vealed decrease in nucleaon temperature with zinc addion. The formaon of Al13Fe4 phase was observed using bycooling
curve. The solidicaon range in the presence of 8wt.% of zinc was 175 °C although the adding of zinc up to 25 wt.% increased
it to 190 °C. Cooling curves represented the increase of the fracon of eutecc structure which was in accordance with image
analysis results. The addion of zinc resulted in the decrease of the solidied fracon at dendrite coherency point from 0.32
to 0.1 which matched by increment in porosity fracon from 0.09 to 0.32.
Keywords: Al-Zn-Mg-Cu alloy, Solidicaon, Thermal analysis, Cooling curve, microstructure.






mmalekan@ut.ac.ir
Al-Zn-Mg-Cu




هدیکچ
AlZnMgCu



AlFe



Al-Zn-Mg-Cu

Al
ZnMgCu
      

     
       


    










CACCA

    

     

        
DTA       

      



1. Computer Aided Cooling Curve Analysis
2. Dierenal Thermal Analysis


Al-Zn-Mg-Cu

   
AlSiAlSi
AlSiCu  AlCu Mg

  AlZnMgCu   

 
    DCP    
   
         





      




      
xAl-xZn-2.5Mg-2.5Cu




   AlZnMgCu  
Al-50%Mg  %    
Al-50%Cu
3. Dendrite Coherency Point

          


     
  

°Cs


K



     

AlZnMgCu

%.wt
ZnMgCuSiFeAl
A8

A10

A12

A15

A17

A20

A25






     ADAM-4000 
   b9.2.257  OriginPro





= +
ct
T a be
cba tT

      







= =



s
e
s
t
cc zc
t1
st
cc zc
t
dT dT
() ()dtt
dt dt
fdT dT
() ()dt
dt dt
1
t
fs
 
 


 
TWTC

DCP


ASTM E3-11


     4.1.1.0 

PHILIPSXRD
KɑÅ
 


4. Curve Fing
5. Digimizer
6. X-ray Diracon


Vega©Tescan
EDS
     


       
ISO 2738
MelerToledoGreifensee
       



  AlZnMgCu     

       
        
      
    

 
μm      
     
μm


   
μm


         
 AlSiCu 




     
  A20  A15 A8  
        
       
  
     AlZnMgCu 
7. Energy Dispersive X-ray Spectroscopy
8. The role of mixtures


Al-Zn-Mg-Cu
       
EDS

AαAl
 B MgZn2η αAl  

AlZn

C        
 Al2MgCuS
  Al2Zn3Mg3T 
  E      D 
θ    F 
     Al2Cu

A20A17A15A12A10A8
A15EDS


 AlZnMgCuFe
A
αAl
B
ηαAl
C

S(Al2MgCu)
D

T(Al2Mg3Zn3)
E

T(Al2Mg3Zn3)
F

θ(Al2Cu)
G

Al13Fe4
Al-Zn-      
Mg-Cu



AlZnMgCu

  Al13Fe4     
    
A15A8
A20


XRDXRD
A20 A15A8
MgZnAlCu2MgZn2ηɑ-Al
Mg32AlCu49T
θS 

A20A15A8XRD
 

MgZn2
 Mg(Zn,Al,Cu)2
  TMg32(Al,Cu)49
          S θ


EDSA15


Al
Zn
Mg
Cu
Fe
A

-
α-Al
B



-
α-Alη
C



-
S(Al2MgCu)
D



-
T(Al2Mg3Zn3)
E



-
T(Al2Mg3Zn3)
F


-
θ(Al2Cu)
G


Al13Fe4

200
300
400
500
600
40 50 60 70 80 90 100
Temperature oC
Zinc, wt%
Liquid
a
b
a+Liquid
382
o
443o
275o
69.5
80.5
95
a'
71.6
a+b
340o
b+h
b+Liquid
h
420o
86.5
a+h



Al-Zn-Mg-Cu

     A15   
  



       





Al-15Zn-2.5Mg-2.5Cu

AlZnMgCu 

       

     
        


       
AlZnMgCu


   

        
Tmin
        


TG
TG
ɑ
Tmin
TG
°CA8TGTminTN
°C °C
 
AlZn
 °C   °C °C 

TE
TN
ΔTN

      


°C°C
       

A15     
   °C  
   TR      
        
  °C   C°  TR   
   
αAlAl-9.2Zn-xMg-2.3Cu
°CC°






   
        

 

        
       η αAl
SαAl TαAl 
TNE  
    
        
   °C
°C
       




Al13Fe4
  °C     7050  
Al13Fe4

9. Xie
Al13Fe4 (TR)


Al-Zn-Mg-Cu

        
        



    





        
Ts
        
   



   
TS
          
   
     
 °C         °C
         
         
       
 A8°C
    °C    

 °C
tft1




AlNiSi





A15
TcTw

TwTc
DCP

fDCP


A8 
     
    

         
  
    
DCP      
         

       
       DCP  
         

ts∆TsTS




  Al-15Zn-2.5Mg-2.5Cu
DCP

DCP
  
DCP 




        




DCP


tDCPTDCP
DCP
°C

DCP°C

DCP
DCP

DCP
TNTDCPDCP

°C   
°C

A15DCP
DCP
AlZnMgCu

DCPTNTDCP



Al-Zn-Mg-Cu
DCP
DCP



 

μm
μm
 
°C°C
°C°C
°C°C
         
Al13Fe4
         
°C°C
 DCP       


DCP

 

 


 


 °C  °C  

AlZnMgCu


        

References
1. Gao T, Zhang Y, Liu X. Inuence of trace Ti on the microstruc-
ture, age hardening behavior and mechanical properties of an
Al-Zn-Mg-Cu-Zr alloy. Mater Sci Eng A. 2014;598:293–8.
2. Deng Y, Yin Z, Zhao K, Duan J, Hu J, He Z. Effects of Sc and Zr
microalloying additions and aging time at 120°C on the corro-
sion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65:288–
98.
3. Fang HC, Chao H, Chen KH. Effect of Zr, Er and Cr additions on
microstructures and properties of Al-Zn-Mg-Cu alloys. Mater
Sci Eng A. 2014;610:10–6.
4. Wu YL, Froes FH, Alvarez A, Li CG, Liu J. Microstructure and
properties of a new super-high-strength Al-Zn-Mg-Cu alloy
C912. Mater Des. 1998;18:211–5.
5. Pourkia N, Emamy M, Farhangi H, Ebrahimi SHS. The effect
of Ti and Zr elements and cooling rate on the microstructure
and tensile properties of a new developed super high-strength
aluminum alloy. Mater Sci Eng A. 2010;527:5318–25.
6. Seyed Ebrahimi SH, Emamy M. Effects of Al–5Ti–1B and Al–5Zr
master alloys on the structure, hardness and tensile properties
of a highly alloyed aluminum alloy. Mater Des. 2010;31:200–9.
7. Seyed Ebrahimi SH, Emamy M, Pourkia N, Lashgari HR. The
microstructure, hardness and tensile properties of a new super
high strength aluminum alloy with Zr addition. Mater Des.
2010;31:4450–6.
8. Fan Z, Wang Y, Zhang Y, Qin T, Zhou XR, Thompson GE, et
al. Grain rening mechanism in the Al/Al–Ti–B system. Acta
Mater. 2015;84:292–304.
9. Easton M, Stjohn D. Grain renement of aluminum alloys: Part I.
The nucleant and solute paradigms - a review of the literature.
Metall Mater Trans A Phys Metall Mater Sci. 1999;30:1613–23.
10. Chen K, Liu H, Zhang Z, Li S, Todd RI. The improvement
of constituent dissolution and mechanical properties of 7055
aluminum alloy by stepped heat treatments. J Mater Process
Technol. Elsevier; 2003;142:190–6.
11. Stefanescu DM. Science and engineering of casting solidica-
tion: Third edition. Sci. Eng. Cast. Solidif. Third Ed. 2015.
12. Shabestari SG, Malekan M. Assessment of the effect of grain re-
nement on the solidication characteristics of 319 aluminum
alloy using thermal analysis. J Alloys Compd. 2010;492:134–42.
13. Naghdali S, Jafari H, Malekan M. Cooling curve thermal anal-
ysis and microstructure characterization of Mg-5Zn-1Y-xCa
(0–1 wt%) alloys. Thermochim Acta. 2018;667:50–8.
14. Mostafapoor S, Malekan M, Emamy M. Thermal analysis
study on the grain renement of Al–15Zn–2.5Mg–2.5Cu alloy.
J Therm Anal Calorim [Internet]. 2017;127:1941–52. Available
from: https://doi.org/10.1007/s10973-016-5737-7
15. Upadhya KG, Stefanescu DM, Lieu K, Yeager DP. Computer-
aided cooling curve analysis: principles and applications in
metal casting. AFS Trans. 1989. p. 1989.
16. Larranaga P, Gutierrez JM, Loizaga a, Sertucha J, Suarez R.
A Computer-Aided System for Melt Quality and Shrinkage
Propensity Evaluation Based on the Solidication Process of
Ductile Iron. Trans Am Foundry Soc. 2008;
17. Emadi D, Whiting L V, Đurđević MB, Kierkus WT, Sokolowski
J. Comparison of newtonian and fourier thermal analysis tech-
niques for calculation of latent heat and solid fraction of alumi-
num alloys. Metalurgija. 2004;10:91–106.



18. Hegde S, Prabhu KN. Modication of eutectic silicon in Al-Si
alloys. J Mater Sci. 2008;
19. Ludwig TH, Schaffer PL, Arnberg L. Inuence of some trace
elements on solidication path and microstructure of Al-Si
foundry alloys. Metall Mater Trans A Phys Metall Mater Sci.
2013;
20. Shin J, Lee Z, Ul-Haq I. Computer-Aided Cooling Curve Anal-
ysis of A356 Aluminum Alloy. Met Mater Int. 2004;10:89–96.
21. Eguskiza S, Niklas A, Fernández-Calvo AI, Santos F, Djurd-
jevic M. Study of strontium fading in Al-Si-Mg and Al-Si-Mg-
Cu alloy by thermal analysis. Int J Met. 2015;9:43–50.
22. Coniglio N, Cross CE. Characterization of solidication path
for aluminium 6060 weld metal with variable 4043 ller dilu-
tion. Weld World. 2006. p. 14–23.
23. Ghoncheh MH, Shabestari SG, Abbasi MH. Effect of cooling
rate on the microstructure and solidication characteristics
of Al2024 alloy using computer-aided thermal analysis tech-
nique. J Therm Anal Calorim. 2014;117:1253–61.
24. Kamguo Kamga H, Larouche D, Bournane M, Rahem A. Solid-
ication of aluminum-copper B206 alloys with iron and silicon
additions. Metall Mater Trans A Phys Metall Mater Sci. 2010;
25. Haghdadi N, Phillion AB, Maijer DM. Microstructure Char-
acterization and Thermal Analysis of Aluminum Alloy B206
During Solidication. Metall Mater Trans A Phys Metall Mater
Sci. 2015;46:2073–81.
26. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer-
aided cooling curve thermal analysis of near eutectic Al – Si
– Cu – Fe alloy. J Therm Anal Calorim. 2013;114:1–13.
27. Farahany S, Idris MH, Ourdjini A, Faris F, Ghandvar H. Evalu-
ation of the effect of grain reners on the solidication charac-
teristics of an Sr-modied ADC12 die-casting alloy by cooling
curve thermal analysis. J Therm Anal Calorim. 2015;
28. Malekan M, Dayani D, Mir A. Thermal analysis study on the
simultaneous grain renement and modication of 380.3 alu-
minum alloy. J Therm Anal Calorim. 2014;
29. Timelli G, Camicia G, Ferraro S. Effect of grain renement and
cooling rate on the microstructure and mechanical properties
of secondary Al-Si-Cu alloys. J Mater Eng Perform. 2014;
30. Gonzalez C, Alvarez O, Genesca J, Juarez-Islas JA. Solidication
of chill-cast Al-Zn-Mg alloys to be used as sacricial anodes.
Metall Mater Trans A Phys Metall Mater Sci. 2003;34:2991–7.
31. Ahmad AH, Naher S, Brabazon D. Thermal proles and frac-
tion solid of aluminium 7075 at different cooling rate condi-
tions. Key Eng Mater. Trans Tech Publ; 2013. p. 582–95.
32. Dahle AK, Arnberg L. Development of strength in solidifying
aluminium alloys 10.1016/S1359-6454(96)00203-0 : Acta Mate-
rialia | ScienceDirect.com. Acta Mater [Internet]. 1997;45:547–
59. Available from: http://www.sciencedirect.com/science/
article/pii/S1359645496002030
33. Backerud L, Chai G, Tamminen J. Solidication Characteristics
of Aluminum Alloys. Vol. 2. Foundry Alloys. AFS/SkanAlu-
minum. 1990;266.
34. Alipour M, Emamy M. Effects of Al–5Ti–1B on the structure
and hardness of a super high strength aluminum alloy pro-
duced by strain-induced melt activation process. Mater Des.
2011;32:4485–92.
35. Djurdjevič MB, Grzinčič MA. The Effect of Major Alloying Ele-
ments on the Size of Secondary Dendrite Arm Spacing in the
As-Cast Al-Si-Cu Alloys. Arch Foundry Eng. 2012;12:19–24.
36. Mishra RR, Sharma AK. Effect of susceptor and mold material
on microstructure of in-situ microwave casts of Al-Zn-Mg al-
loy. Mater Des. 2017;131:428–40.
37. Jiang W, Jiang Z, Li G, Wu Y, Fan Z. Microstructure of Al/Al
bimetallic composites by lost foam casting with Zn interlayer.
Mater Sci Technol. Taylor & Francis; 2018;34:487–92.
38. Mostafapoor S, Malekan M, Emamy M. Effects of Zr addi-
tion on solidication characteristics of Al–Zn–Mg–Cu al-
loy using thermal analysis. J Therm Anal Calorim. Springer;
2018;134:1457–69.
39. Liu JT, Zhang YA, Li XW, Li ZH, Xiong BQ, Zhang JS. Ther-
modynamic calculation of high zinc-containing Al-Zn-Mg-Cu
alloy. Trans Nonferrous Met Soc China (English Ed. 2014;
40. Xie F, Yan X, Ding L, Zhang F, Chen S, Chu MG, et al. A study
of microstructure and microsegregation of aluminum 7050 al-
loy. Mater Sci Eng A. 2003;
41. Mondal C, Mukhopadhyay AK. On the nature of T(Al2Mg3Zn3)
and S(Al2CuMg) phases present in as-cast and annealed 7055
aluminum alloy. Mater Sci Eng A. 2005;
42. Timelli G, Caliari D. Effect of Superheat and Oxide Inclusions
on the Fluidity of A356 Alloy. Mater Sci Forum [Internet].
Trans Tech Publ; 2017. p. 71–80. Available from: http://www.
scientic.net/MSF.884.71
43. Yang L, Li W, Du J, Wang K, Tang P. Effect of Si and Ni con-
tents on the uidity of Al-Ni-Si alloys evaluated by using ther-
mal analysis. Thermochim Acta. 2016;645:7–15.
44. Arnberg L, Chai G, Backerud L. Determination of dendritic
coherency in solidifying melts by rheological measurements.
Mater Sci Eng A. 1993;173:101–3.
45. Malekan M, Shabestari SG. Effect of grain renement on the
dendrite coherency point during solidication of the A319 alu-
minum alloy. Metall Mater Trans A. 2009;40:3196–203.
... Hence, strengthening of these alloys using thermomechanical methods is a great matter of study. In this respect, grain refinement is the common method of strengthening in a wide range of ferrous and nonferrous alloys [6][7][8][9][10][11][12][13], and it is applied on stainless steels, using severe plastic deformation (SPD) methods, including equal channel angular processing (ECAP) [14,15], highpressure torsion (HPT) [16,17], surface mechanical attrition treatment (SMAT) [18,19], hydrostatic extrusion (HE) [20], and friction stir processing (FSP) [21][22][23]. ...
Article
The effect of friction stir processing on microstructure and mechanical properties of AISI 316 stainless steel was investigated, where characterizations were performed using optical microscopy, field emission scanning electron microscopy, electron backscatter diffraction, X-ray diffraction, atom probe tomography, and micro-hardness and tensile tests. The results revealed dramatically refined grains in the stir zone after applying the method. The application of two-stage processing in the presence of external coolant resulted in the finest grain size of 161 nm. The formation of induced martensite and segregation of alloying elements were observed as a result of processing. Moreover, the formation of martensite was induced up to 39.4 volume percent. Finally, one-step friction stir processing, with external coolant, resulted in enhancing tensile properties. It was shown that extreme grain size refinement, a large fraction of induced martensite along with segregation of alloying elements into the grain boundaries could be the main strengthening reasons.
Conference Paper
In this work, the effect of variation of Mg to Cu ratio for Al-15Zn-xMg-yCu (x+y=5) was studied using computer aided cooling curve analysis method. In this respect, different amounts of 0.25, 0.66, 1.00, 1.5, and 4 were selected for Mg/Cu ratio. Then, cooling curve analysis was performed for studied alloys. The provided data used to extract solidification parameters of the specimens. It was seen that, Mg/Cu ratio affects solidification behaviour of the alloy. The results showed that the influence of Mg/Cu ratio on solidification could be divided into two parts of ratios smaller than 1 and those larger than that. For Mg/Cu<1, solidification range, especially affected by solidus temperature, increases when the ratio climbs. In this ratio region, nucleation undercooling reduced with increment of Mg/Cu ratio although recalescence undercooling shows an increment in this region. For Mg/Cu>1 both undercoolings vary conversely compared to Mg/Cu<1 region.
Conference Paper
The effect of welding parameters (electric current and time) on microstructure and hardness of dissimilar resistant spot welding of 304 with 430 stainless steel sheets was investigated. 3 different welding time of 0.4, 0.8, and 1.2 s and 3 different electric currents of 2500, 3750 and 5000 A were applied. After welding the specimens were cut and prepared for microscopy studies and hardness ones. The heat of welding zone affects the adjust zone called heat affected zone. The grain size of this zone rose up to 8 times larger than the base metal (6.1 to 47 µm).The results also showed that the increment of welding time enlarge the grain size of this to a wider extent. The hardness of heat affected zone in the side of 304 steel decreased from around 260 HV to almost 225 HV. However, in the same zone of 430 alloy, the hardness increase as the distance with the welding zone decrease, which is the result of the formation of carbides.
Conference Paper
In this paper, AISI 316 stainless steel was underwent sever plastic deformation by friction stir processing, resulting in ultrafine and nano size grains. Afterwards, tempering was applied on some specimens. To evaluate microstructure and corrosion properties, required specimens were cut, ground, and polished to achieve appropriate surface. Then, electro etching carried out to reveal the microstructure of the material. Microstructural evaluations were performed using optical microscopy and scanning electron microscopy. Moreover, to study corrosion behavior, open circuit potential and TOEFL test were utilized. Microstructural analysis revealed that friction stir processing refined grain structure down to 196 nm (99 per cent reduction). However, low temperature annealing increased the average grain size to 310 nm. Moreover, corrosion evaluations along with microstructure analysis showed that the presence of martensite in friction stir processed specimens degraded corrosion behavior of the alloy. In fact, corrosion rate of the alloy increased from 4.197 mm/yr to 6.582 mm/yr. On the contrary, post-tempering of the alloy reduced the amount of martensite phase resulting in a better corrosion rate of 1.639 mm/yr.
Article
Full-text available
A novel method named the lost foam casting (LFC) liquid–liquid compound process with a Zn interlayer was proposed to prepare the Al/Al bimetallic composites, and the microstructure of the Al/Al bimetallic composites was investigated in the present work. The results showed that the Al/Al bimetallic composites were successfully produced using the novel process. The Zn interlayer prevented different liquid metals from directly mixing. A uniform and compact metallurgical interface was obtained between the Al and the A356 aluminium alloy, which consisted of the η-Zn, α-Al rich, α + η eutectoid, and primary silicon phases. The microhardness of the interface layer was significantly higher in comparison with those of the Al and A356 matrixes.
Article
Full-text available
The effect of melt superheat and oxide inclusions on the fluidity of a commercial A356 alloy has been investigated. Fluidity measurements have been performed by means of Archimedean spiral in sand moulds. The specific testing method and the experimental apparatus show a good reproducibility. Metallographic and image analysis techniques have been used to quantitatively examine the microstructural changes and the amount of defects occurring at the tip of the spirals. The results reveal that oxide films increase the variability in the fluidity results obtained at the same apparent experimental conditions. A long permanence in the holding furnace and the introduction of some turbulence during sampling increase the oxide formation and entrapment in the molten bath, thus decreasing the repeatability of the fluidity results. The fluidity increases linearly with superheat and it extrapolates to zero at the temperature corresponding to a fraction solid of about 23%. The initial Ti content in the alloy produces an independent crystallization during freezing of the fluidity spirals.
Article
Full-text available
The aim of this work was to investigate the effect of different cooling rates on the microstructure and solidification parameters of 2024 aluminum alloy. Solidification characteristics are recognized from the cooling curve and its first and second derivative curves which have been plotted using thermal analysis technique. In this study, a mold having high cooling rate was designed and used to simulate the direct-chill casting process. The results of thermal analysis show that the characteristic parameters of Al2024 alloy are influenced by cooling rate. The cooling rates used in the present study range from 0.4 to 17.5 °C s-1. Increasing the cooling rate affects the undercooling parameters both in liquidus and eutectic solidification regions. Investigations showed that solidification parameters such as nucleation temperature, recalescence undercooling temperature, and range of solidification temperature are influenced by variation of cooling rates. Microstructural evaluation was carried out to present the correlation between the cooling rate and dendrite arm spacing.
Article
Full-text available
The production of high quality parts for automotive and aircraft industries requires both improved melt processing and effective control tools which can assure the melt quality in terms of Si modification before casting. Thermal analysis is a highly interesting metallurgical quality control tool, well suited for use in casting plants as it is easy to handle and provides quick results. In this work, the effect of strontium fading on eutectic silicon modification and on the solidification curve of an A356 and A319 alloy was studied. Eutectic silicon modification was assessed by image analysis of characteristic features of the silicon particles. A correlation with the cooling curve parameters at the eutectic arrest was established.
Article
The effect of 0–1 wt% Ca addition on solidification pathway of Mg-5Zn-1Y alloy and its solidification characteristics such as nucleation transformation and intermetallics formation temperatures was investigated via plotting cooling and the corresponding first derivative curves. The results revealed the presence of three peaks in the first derivative curve of the ternary Mg-5Zn-1Y alloy, referring to the formation of α-Mg primary phase and intermetallics Mg3Zn3Y2 (W-phase) and Mg3YZn6 (I-phase). One more peak, corresponding to the formation of intermetallic Ca2Mg6Zn3 phase, appeared in that of the quaternary Mg-5Zn-1Y-xCa alloy when Ca content exceeds 0.1 wt%. The cooling curves showed that increasing Ca content from 0 to 1 wt% results in reducing the liquidus temperature from 659 °C to 636 °C and the average grain size from 2864 μm to 1719 μm in the Mg-5Zn-1Y alloy. The increase in Ca content also decreased the formation temperature of Ca2Mg6Zn3 phase significantly, about 29 °C, while it increased the solidus temperature from 219 °C to 233 °C. The microstructure constitution of the alloys and the formation of intermetallic phases were further confirmed through metallographic techniques including scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction analysis.
Article
The effect of Zr as a grain refiner on the solidification behavior, micro- and macrostructure of a new Al–Zn–Mg–Cu aluminum super-high strength alloy containing high Zn content was studied. The addition of 2 mass% Zr reduced the grain size from 1500 to 190 μm. Moreover, the dendritic structure of the alloy altered from a coarse, elongated and non-uniform morphology to a rosette-like shape and more uniform one. The parameters of liquidus region of cooling curve obtained from thermal analysis were in a good correlation with grain size results. The maximum of first derivative in the liquidus region was introduced beside recalescence undercooling which could predict the grain refinement level even after disappearing of recalescence in the cooling curve. Furthermore, the addition of 1 mass% Zr enhanced fraction of solid in dendrite coherency point from 21 to 31% and lessened the amounts of porosity from 2.3 to 1.4%.
Article
In-situ microwave casting is a novel technique; it is based on the principles of microwave hybrid heating. The dynamics of the process and the cast quality are significantly influenced by the materials used in the microwave irradiation. In the present work, role of susceptor and mold on exposure time, melting time, mold preheating and cast properties is studied. Physics of the process in the context of exposure time and mold materials is discussed. The aluminum alloy 7039 casts were developed in ambient atmosphere inside an applicator using microwaves at 2.45 GHz and 1400 W. Charge was hybrid heated using susceptors – SiC and ceramic crucible to melt and cast in-situ in the preplaced alumina and graphite molds. Characterization reveals that grain structures of the casts were influenced by mold preheating and mold material. Finer grains with higher micro-pores were observed in the casts developed in alumina mold with SiC susceptor. The casts contain MgZn2, Mg2Si, Al3Fe and Al8Fe2Si as intermetallics; however, their distribution and size depend upon the cooling pattern of the melt. Microindentation hardness of the casts developed in alumina mold with SiC susceptor was observed to be the highest (146 ± 10 HV) among the developed casts.
Article
The effect of Ni and Si contents on the fluidity of Al-Ni-Si alloys were investigated via a spiral permanent mould. The characteristic parameters related to fluidity during solidification were measured by computer-aided cooling curve thermal analysis (CA-CCTA). When the Si content was less than 3 wt.% and the Ni content was varied from 2 wt.% to 6 wt.%, the fluidity of Al-Ni-Si alloys increased with increasing Si and Ni contents. However, the fluidity decreased when the Ni content was further increased to 8 wt.% due to the formation of primary Al3Ni phase. With the increase of Si and Ni contents, the solidification range (△TS), the dendrite coherency temperature (TDCP) and the difference between the pouring temperature and dendrite coherency temperature (TP-TDCP) were in good agreement with the variation trend of the fluidity. Such features of the cooling curves and the results of the fluidity test were also supported by micrograph analysis of the Al-Ni-Si alloys. The ultimate tensile strength of the Al-Ni-Si alloys was improved with the addition of Ni and Si.
Article
Computer-aided cooling curve analysis is a reliable method to characterize the solidification behavior of an alloy. In this study, the effect of Al–5Ti–1B grain refiner on the solidification path, microstructure and macrostructure of a new Al–Zn–Mg–Cu super highstrength aluminum alloy containing high amounts of zinc was investigated using thermal analysis technique. The grain size measurement showed that Al–5Ti–1B reduces the grain size from 1402 to 405 lm. Solidification parameters in the liquidus region were in a good accordance with microstructural results. The addition of 1 mass% of Al–5Ti–1B grain refiner decreased DTN from 9.1 to 7.7 C. It also diminished recalescence undercooling from 1.42 to 0.32 C. The grain refinement also altered dendritic structure of the alloy from a coarse, elongated and non-uniform to a rosette and more uniform shape. Moreover, the grain refiner resulted in a more uniform distribution of eutectic structure between dendrite arms. Furthermore, the grain refinement enhanced fraction of solid at dendrite coherency point from 21 % for unrefined alloy to 25 % for the alloy containing 1 mass% Al–5Ti–1B. In the same trend, the addition of 1 mass% Al–5Ti–1B reduced the amounts of porosity from 2.3 to 1.8 %.