Preprint

Return amplitude after a quantum quench in the XY chain

Authors:
  • Georgwtown university
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

We determine an exact formula for the transition amplitude between any two arbitrary eigenstates of the local z-magnetization operators in the quantum XY chain. We further use this formula to obtain an analytical expression for the return amplitude of fully polarized states and the N\'eel state on a ring of length L. Then, we investigate finite-size effects in the return amplitude: in particular quasi-particle interference halfway along the ring, a phenomenon that has been dubbed traversal~\cite{FE2016}. We show that the traversal time and the features of the return amplitude at the traversal time depend on the initial state and on the parity of L. Finally, we briefly discuss non-analyticities in time of the decay rates in the thermodynamic limit LL\rightarrow\infty, which are known as dynamical phase transitions.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We study the statistics of the work done on a quantum critical system by quenching a control parameter in the Hamiltonian. We elucidate the relation between the probability distribution of the work and the Loschmidt echo, a quantity emerging usually in the context of dephasing. Using this connection we characterize the statistics of the work done on a quantum Ising chain by quenching locally or globally the transverse field. We show that for local quenches starting at criticality the probability distribution of the work displays an interesting edge singularity.
Article
Full-text available
We study the transition of a quantum system from a pure state to a mixed one, which is induced by the quantum criticality of the surrounding system E coupled to it. To characterize this transition quantitatively, we carefully examine the behavior of the Loschmidt echo (LE) of E modeled as an Ising model in a transverse field, which behaves as a measuring apparatus in quantum measurement. It is found that the quantum critical behavior of E strongly affects its capability of enhancing the decay of LE: near the critical value of the transverse field entailing the happening of quantum phase transition, the off-diagonal elements of the reduced density matrix describing S vanish sharply.
Article
We show that the time dependence of correlation functions in an extended quantum system in d dimensions, which is prepared in the ground state of some Hamiltonian and then evolves without dissipation according to some other Hamiltonian, may be extracted using methods of boundary critical phenomena in d + 1 dimensions. For d = 1 particularly powerful results are available using conformal field theory. These are checked against those available from solvable models. They may be explained in terms of a picture, valid more generally, whereby quasiparticles, entangled over regions of the order of the correlation length in the initial state, then propagate classically through the system.
Article
In this contribution we review the theory of integrability of quantum systems in one spatial dimension. We introduce the basic concepts such as the Yang-Baxter equation, commuting currents, and the algebraic Bethe ansatz. Quite extensively we present the treatment of integrable quantum systems at finite temperature on the basis of a lattice path integral formulation and a suitable transfer matrix approach (quantum transfer matrix). The general method is carried out for the seminal model of the spin-1/2 XXZ chain for which thermodynamic properties like specific heat, magnetic susceptibility and the finite temperature Drude weight of the thermal conductivity are derived.
  • P Calabrese
  • J Cardy
Calabrese P and Cardy J 2007 J. Stat. Mech. 0706:P06008
  • D Fioretto
  • G Mussardo
Fioretto D and Mussardo G 2010 New. J. Phys. 12 55015
  • D Schuricht
  • F Essler
Schuricht D and Essler F 2012 J. Stat. Mech. P04017
  • G Delfino
Delfino G 2014 J. Phys. A 47 (40) 402001
  • D Bertini B Schuricht
  • F Essler
Bertini B Schuricht D and Essler F 2014 J. Stat. Mech. (10) P10035
  • G Delfino
  • J Viti
Delfino G and Viti J 2017 J. Phys. A 50 (8) 084004
  • C Moca
  • M Kormos
  • G Zarand
Moca C P Kormos M and Zarand G 2017 Phys. Rev. Lett. 119 100603
  • M Hodsagi K Kormos
Hodsagi K Kormos M and Takacs G 2018 SciPost Phys. 5 027
  • K Senegupta
  • Powell S Sachdev
Senegupta K, Powell S and Sachdev S 2004 Phys. Rev. A 9 053616
  • V Mukherjee
  • U Divakaran
  • A Dutta
  • D Sen
Mukherjee V, Divakaran U, Dutta A, and Sen D 2007 Phys. Rev. B 76, 174303
  • P Calabrese
  • F Essler
  • M Fagotti
Calabrese P, Essler F and Fagotti M 2011 Phys. Rev. Lett. 106 227203
  • P Calabrese
  • F Essler
  • M Fagotti
Calabrese P, Essler F and Fagotti M 2012 J. Stat. Mech. P07022
  • B Blass
  • H Rieger
  • F Igloi
Blass B, Rieger H and Igloi F 2012 Europhys. Lett. 99 30004
  • J-S Caux
  • F Essler
Caux J-S and Essler F 2013 Phys. Rev. Lett. 110 257203
  • J De Nardis
  • B Wouters
  • J Brockmann
  • J-S Caux
De Nardis J, Wouters B, Brockmann J and Caux J-S 2014 Phys. Rev. A 89 033601
  • B Wouters
  • De Nardis
  • J Brockmann
  • M Fioretto
  • D Rigol
  • M Caux
Wouters B, De Nardis J, Brockmann M, Fioretto D, Rigol M and Caux J-S 2014 Phys. Rev. Lett. 113 117203
  • M Fagotti
  • M Collura
  • F Essler
  • P Calabrese
Fagotti M, Collura M, Essler F, and Calabrese P 2014 Phys. Rev. B 89 125101
  • B Pozsgay
  • M Mestyan
  • M Werner
  • M Kormos
  • G Zarand
  • G Takacs
Pozsgay B, Mestyan M, Werner M, Kormos M, Zarand G and Takacs G 2014 Phys. Rev. Lett. 113 117203
  • E Ilievsky
  • De Nardis
  • J Wouters
  • B Caux
  • J-S Essler
  • F Prozen
Ilievsky E, De Nardis J, Wouters B, Caux J-S, Essler F and Prozen T 2015 Phys. Rev. Lett. 115 (15) 157201
  • M Mestyan
  • B Bertini
  • L Piroli
  • P Calabrese
Mestyan M, Bertini B, Piroli L and Calabrese P 2017 J. Stat. Mech. (8) P083103
  • A Bastianello
Bastianello A, Piroli L and Calabrese P 2018 Phys. Rev. Lett. 120 19, 190601
  • C Gogolin
  • J Eisert
Gogolin C and Eisert J 2016 Rep. Prog. Phys. 79 056001
  • L D'alessio
  • Y Kafri
  • A Polkovnikov
  • M Rigol
D'Alessio L, Kafri Y, Polkovnikov A and Rigol M 2016 Adv. in Phys. 65, 239
  • M Rigol
  • V Dunijko
  • V Yurovsky
  • M Olshanii
Rigol M, Dunijko V, Yurovsky V, and Olshanii M 2007 Phys. Rev. Lett. 98 50405
  • M Rigol
  • V Dunjko
  • M Olshanii
Rigol M, Dunjko V and Olshanii M 2008 Nature 452 854858
  • T Kinoshita
  • T Wegner
  • D Weiss
Kinoshita T, Wegner T and Weiss D 2007 Nature (London) 449, 324
  • I Bloch
  • J Dalibard
  • S Nascimbéne
Bloch I, Dalibard J and Nascimbéne S 2012 Nature Physics 8 267276
  • F Essler
  • M Fagotti
Essler F and Fagotti M 2016 J. Stat. Mech. 064002
  • M Fagotti
Fagotti M 2013 Phys. Rev. B 87 165106
  • L Vidmar
  • M Rigol
Vidmar L and Rigol M 2016 J. Stat. Mech. 064007
  • P Bocchieri
  • A Loinger
Bocchieri P and Loinger A 1957 Phys. Rev. 107 337
  • F Igloi
  • H Rieger
Igloi F and Rieger H 2000 Phys. Rev. Lett. 85 3233
  • Campos Venuti
  • L Zanardi
Campos Venuti L and Zanardi P 2010 Phys. Rev. A 81 022113
  • E H Lieb
Lieb E H and Robinson D 1972 Commun. Math. Phys. 28 251
  • Z G Yuan
  • P Zhang
Yuan Z G, Zhang P, and Li S S 2007 Phys. Rev. A 75, 012102
  • D Rossini
  • T Calarco
  • V Giovannetti
  • S Montangero
Rossini D, Calarco T, Giovannetti V, Montangero S, and Fazio R2007 Phys. Rev. A 75, 032333
  • M Zhong
  • P Tong
Zhong M and Tong P 2011 Phys. Rev. A 84, 052105
  • L C Venuti
  • N T Jacobson
  • S Santra
  • P Zanardi
Venuti L C, Jacobson N T, Santra S, Zanardi P 2011 Phys. Rev. Lett. 107, 010403
  • J Mossel
  • J-S Caux
Mossel J and Caux J-S 2012 New. J. Phys. 14 075006
  • E J Torres-Herrera
  • L Santos
Torres-Herrera E J, Santos L 2014 Phys. Rev. A 90, 033623
  • A De Luca
De Luca A 2014 Phys. Rev. B 90, 081403(R)
  • T Palmai
  • S Sotiriadis
Palmai T, Sotiriadis S 2014 Phys. Rev. E 90 052102 (2014)
  • E J Torres-Herrera
  • L Santos
Torres-Herrera E J, Santos L 2015 Phys. Rev. B 92, 014208
  • P Mazza
  • J-M Stéphan
  • Canovi E Alba
  • V Brockmann
  • M Haque
Mazza P, Stéphan J-M, Canovi E., Alba V., Brockmann M, and Haque M 2016 J. Stat. Mech. 013104
  • L Piroli
  • B Pozsgay
  • E Vernier
Piroli L, Pozsgay B and Vernier E 2017 J. Stat. Mech. (2) P023106