ArticlePDF Available

Abstract and Figures

The events related to the Messinian salinity crisis have been extensively debated since the early 1970s. The spectacular scenario of a completely desiccated Mediterranean subsequently partially occupied by freshwater and brackish endorheic basins triggered a considerable amount of multidisciplinary research for almost five decades. Although the Italian geological record played a crucial role in the origin and complex development of the salinity crisis model, due to the hypothesised palaeobiotic apocalypse, the exploration of the fossil record has been limited or, in certain cases, nearly absent. In this paper, a cursory overview of the Italian fossil record of the Messinian salinity crisis is provided. The integrative analysis of the (primarily) Italian record of microbes, calcareous nannoplankton, dinoflagellates, diatoms, foraminiferans, ostracods, molluscs (and other invertebrates), and fishes reveals the persistence of marine organisms throughout the three stages of the MSC. Moreover, it clearly indicates that a more detailed exploration of the palaeobiological record at a Mediterranean scale is necessary to properly interpret the structure and composition of the biotic communities that inhabited the Mediterranean during the MSC. RIASSUNTO-[La vita in un Mediterraneo completamente disseccato: Uno sguardo al registro paleontologico italiano della crisi di salinità messiniana]-Gli eventi connessi alla crisi di salinità messiniana sono stati profondamente dibattuti sin dall'inizio degli anni 70. Lo spettacolare scenario di un Mediterraneo completamente disseccato e successivamente occupato da bacini endoreici dulcicoli e/o salmastri ha innescato per circa cinque decenni numerose ricerche multidisplinari volte a comprendere le caratteristiche di questo straordinario evento paleoceanografico. Nonostante il registro geologico italiano abbia giocato un ruolo fondamentale nell'origine e nello sviluppo del modello della crisi di salinità, principalmente a causa dell'evocata catastrofe paleobiotica, l'esplorazione del registro paleontologico è stata limitata o, in alcuni casi, del tutto nulla. In questa sede viene fornita una rapida panoramica del registro paleontologico italiano della crisi di salinità messiniana. L'analisi integrata delle evidenze (principalmente) italiane relative a tracce di vita microbica, nannoplancton calcareo, dinoflagellati, diatomee, foraminiferi, ostracodi, molluschi (e altri invertebrati) e pesci suggerisce la persistenza di organismi marini nei tre intervalli della crisi. Inoltre, l'analisi del registro paleontologico indica chiaramente che uno studio maggiormente dettagliato realizzato a scala mediterranea sarebbe necessario al fine di interpretare in maniera più approfondita la struttura e la composizione delle comunità biotiche che caratterizzarono il Mediterraneo durante la crisi di salinità. The great tragedy of Science-the slaying of a beautiful hypothesis by an ugly fact.
Content may be subject to copyright.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019, 109-140. Modena
ISSN 0375-7633 doi:10.4435/BSPI.2019.04
Living in a deep desiccated Mediterranean Sea:
An overview of the Italian fossil record of the Messinian salinity crisis
Giorgio CA R N E VA L E, Rocco GEN NARI, Francesca LOZAR, Marcello NATALICCHIO, Luca PELLEGRINO &
Francesco DELA PIERRE
G. Carnevale, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; giorgio.carnevale@unito.it
R. Gennari, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; rocco.gennari@unito.it
F. Lozar, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; francesca.lozar@unito.it
M. Natalicchio, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; marcello.natalicchio@unito.it
L. Pellegrino, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; lu.pellegrino@unito.it
F. Dela Pierre, Dipartimento di Scienze della Terra, Università degli Studi di Torino, Via Valperga Caluso 35, I-10125 Torino, Italy; francesco.delapierre@unito.it
KEY WORDS - Microbial life, calcareous nannoplankton, dinoagellates, diatoms, foraminiferans, ostracods, molluscs, shes.
ABSTRACT - The events related to the Messinian salinity crisis have been extensively debated since the early 1970s. The spectacular
scenario of a completely desiccated Mediterranean subsequently partially occupied by freshwater and brackish endorheic basins triggered
a considerable amount of multidisciplinary research for almost ve decades. Although the Italian geological record played a crucial role in
the origin and complex development of the salinity crisis model, due to the hypothesised palaeobiotic apocalypse, the exploration of the fossil
record has been limited or, in certain cases, nearly absent. In this paper, a cursory overview of the Italian fossil record of the Messinian salinity
crisis is provided. The integrative analysis of the (primarily) Italian record of microbes, calcareous nannoplankton, dinoagellates, diatoms,
foraminiferans, ostracods, molluscs (and other invertebrates), and shes reveals the persistence of marine organisms throughout the three
stages of the MSC. Moreover, it clearly indicates that a more detailed exploration of the palaeobiological record at a Mediterranean scale
is necessary to properly interpret the structure and composition of the biotic communities that inhabited the Mediterranean during the MSC.
RIASSUNTO - [La vita in un Mediterraneo completamente disseccato: Uno sguardo al registro paleontologico italiano della crisi di
salinità messiniana] - Gli eventi connessi alla crisi di salinità messiniana sono stati profondamente dibattuti sin dall’inizio degli anni 70. Lo
spettacolare scenario di un Mediterraneo completamente disseccato e successivamente occupato da bacini endoreici dulcicoli e/o salmastri
ha innescato per circa cinque decenni numerose ricerche multidisplinari volte a comprendere le caratteristiche di questo straordinario
evento paleoceanograco. Nonostante il registro geologico italiano abbia giocato un ruolo fondamentale nell’origine e nello sviluppo del
modello della crisi di salinità, principalmente a causa dell’evocata catastrofe paleobiotica, l’esplorazione del registro paleontologico è stata
limitata o, in alcuni casi, del tutto nulla. In questa sede viene fornita una rapida panoramica del registro paleontologico italiano della crisi di
salinità messiniana. L’analisi integrata delle evidenze (principalmente) italiane relative a tracce di vita microbica, nannoplancton calcareo,
dinoagellati, diatomee, foraminiferi, ostracodi, molluschi (e altri invertebrati) e pesci suggerisce la persistenza di organismi marini nei tre
intervalli della crisi. Inoltre, l’analisi del registro paleontologico indica chiaramente che uno studio maggiormente dettagliato realizzato
a scala mediterranea sarebbe necessario al ne di interpretare in maniera più approfondita la struttura e la composizione delle comunità
biotiche che caratterizzarono il Mediterraneo durante la crisi di salinità.
The great tragedy of Science - the slaying of a beautiful hypothesis by an ugly fact.
T.H. Huxley
Remarkable hypotheses require extraordinary proof.
R.D. Dietz & M. Woodhouse
FOREWORD: THE DEEP (ITALIAN) ROOTS
OF THE CONCEPT
Almost 50 year after the publication of the famous
paper “Late Miocene desiccation of the Mediterranean” by
Kenneth J. Hsü, William B. F. Ryan and Maria Bianca Cita
(Hsü et al., 1973a) in which the Messinian salinity crisis

scenario that characterised the Mediterranean during
the development of this fascinating event continues to
stimulate considerable interest and cogent debates in the

Deep Sea Drilling Project (DSDP) Leg 13 were crucial to

al., 1973a, b), the concept of a profound environmental
crisis that occurred at a Mediterranean scale at the end of
the Miocene emerged in the 1950s (Denizot, 1952; Selli,
1954; Ogniben, 1957) and was subsequently developed
in the 1960s especially by Raimondo Selli (Selli, 1960)
and Giuliano Ruggieri (e.g., 1962, 1967) based on
onshore studies carried out throughout Italy and Sicily.

considered this Stage as the interval placed between the
Tortonian and the Pliocene (Zanclean), characterised
throughout the Mediterranean by a “crisis of salinity” and
in Italy primarily by evaporitic sediments originated in
hypersaline environments (Fig. 1). Leo Ogniben (1957)
hypothesised that the Messinian evaporitic deposits were
the direct product of the isolation of the Mediterranean
from the Atlantic during the late Miocene. At the same
S. P. I.
S
O
C
I
E
T
A
'
P
A
L
E
O
N
T
O
L
O
G
I
C
A
I
T
A
L
I
A
N
A
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
110

revealed the existence of vast evaporitic deposits beneath

  
et al., 1971; Ryan et al., 1971), recognizing diapiric
structures similar to salt domes that are rooted in a thick
   
Biscaye et al., 1972). The peculiar fossiliferous deposits

investigated by Giuliano Ruggieri who introduced the term
“Lago-mare” co-opting the term “Lac-mer” of Gignoux
     
that characterised the hypothesised endorheic basins
    
waters according to Ruggieri). These basins developed

Miocene, immediately preceding the Pliocene marine

1965).
Since the publication of the results of the DSDP Leg
   
hypothesis of the latest Miocene environmental and
physiographic evolution of the Mediterranean, many
hundreds of papers dealing with the MSC have been
published, exploring all the aspects and consequences
of this event. Due to its spectacular scenario, with the
Mediterranean that was at times completely desiccated,
this event has received considerable attention and publicity
through books, television programs and popular articles
(e.g., Hsü, 1972a, 1984, 2001) and certainly contributed
to the modern establishment of neocatastrophism.
Overall, the role of the Italian sedimentary record (Fig.
1) has been crucial for the origin of the concept and the
development of the knowledge concerning the complex

the Mediterranean during the MSC. The palaeontological
record, however, has been only partially explored and
investigated or, in some cases, totally neglected. The goal
of this paper, therefore, is to provide a cursory overview of
the Italian fossil record of the MSC, restricted to aquatic

understanding of this spectacular event.
OF SALINE GIANTS AND BRACKISH LAKES:
A QUICK LOOK AT THE EVOLVING SCENARIO
OF THE MESSINIAN SALINITY CRISIS
The analysis and interpretation of the data collected
during the Deep Sea Drilling Project (DSDP) Leg 13
led to the birth of the “deep desiccated basin model”
(Hsü et al., 1973a, b), which postulated a Mediterranean
base level laying a few kilometres below the global sea
level and the subsequent development of a giant salt
desert (the “saline giants” of Hsü, 1972b). A primary
consequence of this remarkable catastrophic event was
the annihilation of the resident biota due to the complete
collapse of the Mediterranean marine ecosystem and the
deposition of thick and extensive evaporite successions
in the entire basin, which removed more than 5% of the
dissolved oceanic salts (e.g., Hsü et al., 1977; Rouchy,
    
and oceanographic patterns (e.g., Thunnell et al., 1987).
As a matter of fact the “deep desiccated basin model”
implies that during the MSC, the Mediterranean was
affected by dramatic changes, with the water body
becoming hypersaline, completely desiccated and, then,
hyposaline. The evaporite accumulation was followed by
the deposition of fresh- to brackish water sediments during
the “Lago-mare” event after which the Mediterranean was

Messinian Flooding) with the consequent complete biotic
and environmental recovery of the basin. The progressive
closure of the Atlantic-Mediterranean gateways through

along the African and Iberian continental margins has been
considered as the principal cause that led to the progressive
isolation of the Mediterranean from the Atlantic and the
consequent desiccation of the basin (e.g., Duggen et al.,
2003; Govers et al., 2009).
The adoption of the astronomical cyclostratigraphic
approach and of modern physical stratigraphic concepts
has improved our interpretation of the progression of the
MSC with an accurate and detailed precessional tuning
of the main palaeoenvironmental events. The calibration
of biostratigraphic and geomagnetic Neogene time scale
     
stage at 7.25 Ma (Hilgen et al., 2000) and its end at 5.33
Ma (Van Couvering et al., 2000). Krijgsman et al. (1999)

Fig. 1 - Schematic map of Italy showing the distribution of the

PB: Piedmont Basin; VdG: Vena del Gesso; Tu: Tuscany; Ma:
Marche; LB: Laga Basin; RB: Rossano Basin; BB: Belice Basin;
Cm: Ciminna; CB: Caltanissetta Basin.
111
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
of the MSC in which the onset and development of the
evaporitic phase was constrained between 5.96 and 5.59
Ma and the post-evaporitic phase, characterised by the
deposition of the so-called Upper Evaporites and the
“Lago-mare” sediments, was bracketed between 5.50 and
5.33 Ma. In this context, the cyclostratigraphic calibration
of evaporitic and post-evaporitic sequences seems to result

between 5.59 and 5.50, corresponding to an interval of

of the Mediterranean from the ocean network (Krijgsman
et al., 1999). The desiccation of the Mediterranean during

the MSC characterised by the deposition of non-marine
sediments of the “Lago-mare” event. The remarkable
change of the peri-Mediterranean drainage pattern
produced by the desiccation eventually resulted in the
capture of brackish or fresh waters of Paratethyan origin

lakes and lagoons (e.g., Cita et al., 1978a; McCulloch &
De Deckker, 1989).
Subsequent comprehensive examination of the onshore
sedimentary record throughout the Mediterranean resulted
   
for the MSC (e.g., Clauzon et al., 1996; Roveri et al.,
2001; Rouchy & Caruso, 2006; Manzi et al., 2007),
which culminated with the publication of a consensus
model (CIESM, 2008) based on the strong integration
of bio-, cyclo- and magnetostratigraphic data with
physical stratigraphy and facies analysis. This consensus
stratigraphic model actually provides a new scenario for
the MSC and consists of three main evolutionary stages,
respectively, 1, 2 and 3 (e.g., Manzi et al., 2013; Roveri
et al., 2014a), with stage 3 subdivided into two substages

et al., 2013), evaporites precipitated only in shallow-water
marginal basin where they are represented by a rhythmic
alternation of up to 16 beds of massive selenite (Primary
Lower Gypsum, PLG; e.g., Lugli et al., 2010) and more
or less laminated shales. The formation of gypsum during
this stage was apparently limited to depths shallower than
200 meters, and its deep-water counterparts are dolostones
or, more commonly, organic-rich shales (Manzi et al.,
2007; Lugli et al., 2010; Dela Pierre et al., 2011, 2012;
Natalicchio et al., 2019). The top of the evaporitic deposits

an erosional surface (commonly known as “Messinian
erosional surface”).
The deposits of the second stage (5.6-5.55 Ma) are
grouped into a heterogeneous unit called Resedimented
Lower Gypsum (RLG; Roveri et al., 2008) and are
represented by halite in Sicily, Calabria and Tuscany and,
more commonly, by clastic gypsum deposits (Fig. 1). The
deposits of this stage document the acme of the MSC
with widespread subaerial exposure and erosion possibly
related to a remarkable sea-level drop associated to two
successive glacial stages (TG 14 and TG 12). This interval
of the MSC was likely characterised by a Mediterranean-
scale tectonic activity related to a reorganization of the
Africa-Eurasia plate boundary zone (see Meulenkamp
& Sissingh, 2003). During this stage the exposed PLG
deposits were uplifted, deformed and strongly eroded
and resedimented in deep-water settings producing
clastic gypsum deposits that in many cases encased the
halite deposits together with the calcareous-dolomitic
microbialitic sediments commonly known as “Calcare di
Base” (see Roveri et al., 2014a).
The third stage of the MSC (5.55-5.33 Ma) was
characterised by the deposition of the Upper Evaporites
and the “Lago-mare” event, evidencing an overall

the previous stage. This stage is documented by alternated
evaporites and clastic sediments containing predominantly
  
appear to be widespread in the Mediterranean basin
(see Orszag-Sperber, 2006). The sedimentary sequence
characteristic of this stage of the MSC exhibits a recurrent
vertical organization that allows to separate this stage
     
al., 2014a), between 5.55 and 5.42 Ma, is characterised
by gypsum alternated with shale beds or by shallow- to
deep-water clastic deposits. The fossiliferous content of
the deposits of this substage is generally scarce and the
low values of the 87Sr/86Sr isotope ratio seem to indicate a
substantial freshwater input throughout the Mediterranean.
The second substage (3.2; Roveri et al., 2014a)
started at 5.42 Ma and roughly corresponds with the
“Lago-mare” event. Both the heterogeneous nature
of the sedimentary record and the impossibility of an

the palaeogeographic and palaeoenvironmental context
of the Mediterranean during the third stage of the MSC
(see, e.g., Roveri & Manzi, 2006). For this reason, a
comprehensive interpretation of the “Lago-mare” event
is extremely problematic and the main physiographic
and palaeoecological features at the Mediterranean scale
have been hypothesised based on the analysis of part
of the available fossil record, represented by peculiar
assemblages of brackish or freshwater molluscs and
ostracods traditionally considered of Paratethyan origin
(e.g., Orszag-Sperber, 2006). The palaeoenvironmental
   
indicate that during the third stage of the MSC non-marine
sedimentation took place in the Mediterranean in a series


the basin. The broad distribution of “Lago-mare” deposits
at a Mediterranean scale is interpreted as the product of
the capture of the Paratethyan brackish waters through a
gateway located somewhere in the Aegean (McCulloch
& De Deckker, 1989; Orszag-Sperber et al., 2000) or the
Balkan (e.g., Suc et al., 2015) region, in a general context
    
2002; Cosentino et al., 2005).
       
instantaneous return to fully marine conditions due
     
abrupt collapse of the Gibraltar sill and the origin of
an enormous rapid or gigantic waterfall (McKenzie,
1999; Garcia-Castellanos et al., 2009). This spectacular
event is often recorded by an organic-rich layer of
  
et al., 2008). The magnitude of the sea-level rise that
apparently characterised the Mio-Pliocene transition in
the Mediterranean is not known because of the actual
absence of reliable palaeobathymetric proxies. However,
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
112

with a very limited amplitude of the sea level rise and
a consequent non-catastrophic Messinian-Zanclean
    
Stoica et al., 2016; Krijgsman et al., 2018; Roveri et al.,
2018).
AN OVERVIEW OF THE ITALIAN
PALAEOBIODIVERSITY INVENTORY OF THE
MESSINIAN SALINITY CRISIS
Microbial life
Because the environmental conditions that developed
during the MSC were apparently problematic for a number
of eukaryote groups (e.g., Cita et al., 1978a; Bellanca et al.,
2001; Blanc Valleron et al., 2002), the macro- (and micro-)
fossil content of the Messinian evaporitic units appears to
be scarce and mostly represented by few “extremophilic”

of these group of prokaryotes is therefore crucial to
decipher the chemical and physical conditions in the
water column and in the sedimentary environments during
the course of this dramatic palaeoceanographic event.
In Messinian deposits the evidence of microbial life is
represented by both body and molecular fossils (Vai &
Ricci Lucchi, 1977; Decima et al., 1988; Kenig et al.,
1995; Sinninghe Damsté et al., 1995; Rouchy & Monty,
2000; Guido et al., 2007; Panieri et al., 2010; Turich &
Freeman, 2011; Dela Pierre et al., 2012, 2015; Schopf
et al., 2012; Allwood et al., 2013; Birgel et al., 2014;
Christeleit et al., 2015; Natalicchio et al., 2017; Perri et al.,
2017), although body fossils are especially concentrated

 - Body fossils of prokaryotes are mostly

“Calcare di Base” in Sicily and Calabria (Decima et al.,
1988; Rouchy & Caruso, 2006; Oliveri et al., 2010; Caruso
et al., 2015; Perri et al., 2017) and in the PLG unit in
Northern Apennines and Piedmont. In the PLG unit they
are known from both the bottom grown selenite crystals
(Vai & Ricci Lucchi, 1977; Panieri et al., 2008, 2010;
Schopf et al., 2012; Dela Pierre et al., 2015) and the shales
interbedded to gypsum (Dela Pierre et al., 2014) or, in
certain cases, in the shales representing the deeper water
counterparts of the evaporites (Dela Pierre et al., 2012).

that they considered of algal origin from the carbonatic
layers of the Colombacci Formation, pertaining to the
upper part of the third stage of the MSC, corresponding to

are observed along the vertical growth band of the crystals
(Dela Pierre et al., 2015) and in the re-entrant angle of
the twins (Panieri et al., 2008, 2010; Fig. 2a-b). Such
distribution indicates that the precursor microorganism
lived adhering to crystal faces, thereby suggesting a
benthic lifestyle. In the shales interbedded to gypsum
and in those representing the deep-water equivalents of
 
form dm- thick laminated microbialitic layers (Dela Pierre

formerly described as “spaghetti-like” structures (Vai
& Ricci Lucchi, 1977), consist of curved and straight

rather uniform diameter throughout their lengths (Schopf et
al., 2012; Dela Pierre et al., 2015; Fig. 2b). Well-preserved

by a sequence of rounded cellular compartments of
uniform shape and size. When exposed to UV light the

content (Fig. 2d). Those preserved in gypsum from the
Piedmont basin contain tiny opaque grains within their

and XRD analyses (Dela Pierre et al., 2015). Interestingly,
micro-Raman analyses revealed that these opaque grains
correspond to aggregates of microcrystalline pyrite and,
in rare cases, of polysulphide (Dela Pierre et al., 2015).
     
    
of benthic algae (Vai & Ricci Lucchi, 1977) or of
cyanobacteria (Rouchy & Monty, 2000; Panieri et
al., 2010), suggesting a shallow water depositional
environment located within the photic zone for the
evaporites and associated sediments. This assignment
     
   
bearing gypsum samples from the Vena del Gesso Basin
(Panieri et al., 2010), which is however a controversial
issue (Schopf et al., 2012; Dela Pierre et al., 2015). Other

in the “Calcare di Base”, interpreted these features
either as faecal pellets of brine shrimps (Schreiber,
1978; Natalicchio et al., 2013), indicating shallow and
hypersaline depositional conditions, or of copepods
(Guido et al., 2007), which point to a relatively deep basin


the “Calcare di Base” and the PLG unit have been referred
to as fossils of giant colorless sulphide-oxidizing bacteria
like Beggiatoa and Thioploca (Oliveri et al., 2010; Dela
Pierre et al., 2012, 2014, 2015; Schopf et al., 2012; Perri
et al., 2017). Such an attribution is based on the following
features: 1) absence of terrigenous grains and/or coccoliths
  

that of living giant colorless sulphide-oxidizing bacteria
(e.g., Gallardo, 1977; Fossing et al., 1995; Mussman et
   
80 m in diameter (Schultz & Jørgensen, 2001); 3)
presence of small aggregates of pyrite and associated
polysulphide, which are considered to result from early
diagenetic transformation of original sulphur globules
stored by the sulphur bacteria within their cells (Bailey
et al., 2009; Dela Pierre et al., 2015). These globules
constitute a relevant diagnostic feature for this group of
prokaryotes, representing an intermediate product of the
oxidation of sulphide to sulphate (e.g., Teske & Nelson,
2006). In particular, in modern representatives of the genus
Beggiatoa, polysulphide derives from the rapid (few days)
transformation of cyclooctosulphur (Berg et al., 2014).
 - Despite the study of the
microbial molecular fossils inventory across the entire

revealed the presence of distinct groups of archaea and
113
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
bacteria that thrived during the MSC (Kenig et al., 1995;
Sinninghe Damsté et al., 1995; Turich & Freeman, 2011;
Birgel et al., 2014; Christeleit et al., 2015; Natalicchio
et al., 2017).
Archaeal molecular fossils are among the predominant
lipids found in the pre-MSC and in the MSC deposits
(Birgel et al., 2014; Natalicchio et al., 2017) primarily
consisting in two groups of compounds, glycerol
dibiphytanyl glycerol tetraethers (GDGTs) and diphytanyl
glycerol diethers (DGDs; Fig. 3). GDGTs are particularly
abundant in the pre-MSC deposits as well as in the deposit

show a pattern, dominated by GDGT-0 and crearchaeol
(Fig. 3) similar to that found in modern seawater as well
as in Cenozoic marine sediments (Schouten et al., 2013)
and resembling the GDGT distributions produced by
mesophilic, planktic Thaumarchaeota; these organisms
represent up to 20% of the marine picoplankton in modern
sea water (Wuchter et al., 2006; Schouten et al., 2013),
preferably living in the deeper, meso- to bathypelagic
zones (Karner et al., 2001). The occurrence of marine
planktic archaea suggests the persistence of normal marine
   




Pollenzo section, Piedmont Basin. (a) and (b) are plane-polarised light photomicrographs; (d) is ultraviolet-light photomicrograph.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
114
conditions in the upper water column at the beginning
of the MSC (Natalicchio et al., 2017; Fig. 3). On the
other side, the DGDs (archaeol and extended archaeol)
provide information about the environmental conditions
at the bottom; these molecular fossils are commonly
produced by extremophilic Archaea (e.g., hypersaline,
methane-rich; Schouten et al., 2013; Birgel et al., 2014)
and extended archaeol, in particular, is only known to be
produced by halophilic Archaea (Dawson et al., 2012).
In the marginal areas of the Piedmont Basin as well as
in the Caltanissetta Basin, these compounds are found to
be especially abundant suggesting the establishment of a
more complex archaeal community at the beginning of the

al., 2014; Natalicchio et al., 2017). Since the conditions
in the upper water column were still favorable for some
algae (see below) and marine archaeal picoplankton (e.g.,
Thaumarchaeota), halophilic Archaea probably inhabited
the water column at, or below, a chemocline as observed
    
et al., 2016).
      
agreement with the occurrence of others peculiar molecular
fossils, such as tetrahymanol (Fig. 3) and his degradation
product gammacerane, in the deposits formed during

et al., 2017) and the Vena del Gesso basins (Kenig et
al., 1995; Sinninghe Damsté et al., 1995; Manzi et al.,
2007). These compounds are common tracers of water
 
Sinninghe Damsté et al., 1995), considered to be sourced
by ciliates (e.g., Harvey & McManus, 1991), anoxygenic

methanotrophs (Banta et al., 2015), which are organisms
commonly living at the chemocline (interface between
oxic and anoxic waters; Wakeham et al., 2007, 2012).
     
Sinninghe Damstè et al. (1995) found the compound

del Gesso Basin; isorenieretane is a lipid synthetised by
anaerobic phototrophic bacteria (Chlorobiaceae), whose
    
within the photic zone.
Finally, bacterial-derived molecular fossils, including
short chain fatty acids (n-C16, n-C18 FA and iso and anteiso-
C15-FA) and hopanoids (bacteriohopanepolyols), are also
important constituent of the “Calcare di Base” in Sicily
and Calabria (Guido et al., 2007; Birgel et al., 2014), as
well as in the deeper counterpart of the PLG units in the
Piedmont Basin (Natalicchio et al., 2017; Fig. 3). These
    
including anaerobic sulfate and iron reducers (e.g., Birgel
et al., 2014; Blumenberg et al., 2015) and aerobic bacteria
(Talbot & Farrimond, 2007).
Calcareous nannoplankton
Calcareous nannofossils are relatively uncommon in
sediments accumulated during the MSC. Their remains
have been reported in Italian onshore sections mainly in

Fig. 3 - Microbial life: molecular fossils. Sketch showing the abundance and distribution of molecular fossils derived from archaea, bacteria


indicated. GDGTs: glycerol dialkyl glycerol tetraethers; DGDs: diphytanyl glycerol diethers; br-GDGTs: branched GDGTs, mostly sourced
by bacteria (Schouten et al., 2013); FA: fatty acids; PLG: Primary Lower Gypsum unit; sterols*: some sterols are possibly sourced also by
terrestrial plants (see Natalicchio et al., 2017 for additional information).
115
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
et al. 2007; Lozar et al., 2010, 2018; Violanti et al., 2013),
although they also occur in those belonging to the second
and third stages of the MSC, namely the laminated gypsum
(Rouchy, 1976; ascribed to the RLG unit by Manzi et al.,
2016) and salt member (Bertini et al., 1998) of Sicily,
as well as in “Lago-mare” deposits (Castradori, 1998;
Cosentino et al., 2012). They have also been recorded in
the deep-sea sediments collected during the DSDP-ODP
cruises (e.g., Sites 132, 134, 653, 654; Roveri et al.,
2014a), but the correlation of these occurrences to one of
the MSC stages is very problematic, due to the complete
absence of reliable biostratigraphic markers. Generally,
the nature of the record of calcareous nannofossils in
the three stages of the MSC is highly debated, since
the salinity crisis paradigm involves a sharp increase in

which would result in the development of a basin not
exploitable by the marine biota. Moreover, during the
third stage of the MSC, they occasionally co-occur with
brackish-water ostracods (see, e.g., Cosentino et al., 2012).
In the sediments preceding the MSC onset the structure
     
restriction of the Mediterranean circulation patterns,
and is dominated by small taxa belonging to the family
Noelaerhabdaceae (Reticulofenestra minuta Roth, 1970
and R. haqi Backman, 1978; Negri & Vigliotti, 1995;
Sprovieri et al., 1996; Negri et al., 1999; Kouwenhoven et
al., 2006; Manzi et al., 2007; Morigi et al., 2007; Iaccarino
et al., 2008; Lozar et al., 2010, 2018; Gennari et al., 2013,
2018a; Violanti et al., 2013) and, to a minor extent, to
the Calcidiscaceae (Calcidiscus spp., Umbilicosphaera
rotula [Kamptner, 1956] and U. jafari Muller, 1974); the
assemblage also includes Helicosphaera carteri (Wallich,
1877), Sphenolithus abies
1954, S. moriformis (Brönnimann & Stradner, 1960), and
Syracosphaera spp. Fluctuations of calcareous nannofossil
relative abundances seem to be correlated to lithological
cyclicity, since during the pre-MSC, the nannofossil

Violanti et al., 2013), with small Reticulofenestra spp.
being very abundant in the low insolation (Maximum
Precession) and Discoaster spp. occurring only in the
maximum insolation (Minimum Precession) parts of
the lithologic cycle (Flores et al., 2005; Violanti et al.,
2013). The Noelaerhabdaceae inhabit the upper portion
of the water column and prefer mesotrophic to eutrophic
conditions, suggesting a well-mixed water column and
high nutrient availability at the surface; they are also
regarded as opportunistic taxa, capable of surviving in
waters with anomalous salinity (Wade & Bown, 2006).
In the euxinic shales deposited in intermediate depths
     

among samples that are otherwise dominated by small
Reticulofenestra (< 3 µm). These consist of S. abies in
the Northern Apennines (Fanantello core; up to 60%
of the total assemblage; Manzi et al., 2007) and of S.
abies, H. carteri, U. rotula and U. jafari in the Piedmont
Basin (Pollenzo, Moncalvo and Banengo sections;
Lozar et al., 2010, 2018; Violanti et al., 2013; Fig. 4a-c).
Peaks of S. abies have been recorded in the sediments
just below the MSC onset in Sicily at Falconara (from
6.45 Ma; Sprovieri et al., 1996; Blanc-Valleron et al.,
     
precessional cycles before the onset of the MSC; Manzi
et al., 2007). These peaks are particularly striking in the
northern Mediterranean records (at Fanantello and in the
Piedmont basin) where this taxon, which never exceeds
12% of the total assemblage in the pre-MSC record,
reaches up to 60% of the total assemblage at the MSC
    
Reticulofenestra (Lozar et al., 2018) in the shale, or by
Umbilicosphaera spp. (Lozar et al., 2018) in the indurated
carbonate beds, are recorded in the Piedmont basin in the
interval interpreted as lateral equivalent of the PLG beds
(Dela Pierre et al., 2011; Fig. 4c-d). In the Fanantello core
S. abies peaks have been recorded in
the sediments equivalent to the lower PLG cycles (Manzi
et al., 2007).
Peaks of S. abies have been also observed in the
laminated gypsum of two Sicilian sections, Montedoro and
Siculiana, probably belonging to the second stage of the
MSC (Rouchy, 1982; Rouchy & Caruso, 2006), together
  U. jafari, U.rotula,
Cd. cfr. leptoporus, R. minuta. Additional calcareous
nannofossil assemblages are recorded in the clayey
layers in the Racalmuto salt mine (Bertini et al., 1998),
with small Noelaerhabdaceae and Coccolithus pelagicus
(Wallich, 1877), Sphenolithus spp., U. rotula, Calcidiscus
spp., Pontosphaera spp., Rhabdosphaera spp., H. carteri,
Discoaster quinqueramus Gartner, 1969, Amaurolithus
primus (Bukry & Percival, 1971), A. delicatus Gartner &
Bukry, 1975, Syracosphaera spp., as well as in the shales
intercalated with the gypsum in the Crostolo River section
in the Northern Apennines (Barbieri & Rio, 1974).
In the marls intercalated with the laminated gypsum
in Sicily (balatino-like gypsum, belonging to the second
stage of the MSC), Braarudosphaera spp. have also been
found (Schreiber, 1974), suggesting brackish conditions
in the upper water column as also reported by stable
isotope analyses (Pierre, 1974). In the Caltanissetta Basin

assemblages have been described in the laminated
gypsum, both in the pelitic laminae (Cd. leptoporus
[Murray & Blackman, 1898], S. abies, Scyphosphaera
apsteinii Lohmann, 1902, R. pseudoumbilicus [Gartner,
1967]) and the calcareous laminae (dominated by small
Reticulofenestra spp.; Rouchy, 1982).
In the onshore record of the “Lago-mare” event
(Cosentino et al., 2006, Mondragone well; Cosentino
et al., 2012, Fonte dei Pulcini), coccoliths have been
interpreted as reworked, due to the high abundance of
reworked Cretaceous species, together with Palaeogene
and long ranging taxa (Reticulofenestra spp., Sphenolithus
spp., Coccolithus spp.). This interpretation has been
reconsidered by Pellen et al. (2017), who reported the
occurrence of Ceratolithus acutus Gartner & Bukry, 1974
in the same Fonte dei Pulcini section, thereby suggesting

in uppermost Messinian sediments; the co-occurrence
     
    
during the third stage of the MSC has been hypothesised
by Crescenti et al. (2002) for the S. Nicolao section.
     
Tyrrhenian sites 132, 653B and 654A calcareous
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
116
nannofossils have been reported from the evaporitic unit
(Site 132, cores 21-27; Site 654A, cores 28-35; Müller,
1990) or just above it (Site 653B, core 25; Pierre &
Rouchy, 1990). In the sediments overlying the evaporitic

the presence of dwarfed foraminiferans has also been
reported. The ooze interbedded in the halite in Site 134
(cores 9 and 10) contains an oligotypic assemblage with
D.
challengeri Bramlette & Riedel, 1954 and D. variabilis
Martini & Bramlette, 1963. In Site 654A (cores 26 to
36) Müller (1990) recorded calcareous nannofossils
(of smaller size than normal) co-occuring with gypsum
and dolomite. The assemblages consist mainly of C.
pelagicus, R. pseudoumbilicus, H. carteri, Cd. leptoporus,
S. abies, U. rotula, Cd. macintyrei (Bukry & Bramlette,
1969), and Pontosphaera multipora (Kamptner, 1948 ex
 A. delicatus
and discoasterids are also present.
Dinoagellates
Studies on late Miocene dinoflagellate cysts are
primarily focused on the assemblages recorded in MSC-
related deposits. The late Tortonian and early Messinian
    
conditions with abundant outer platform and oceanic
taxa (e.g., Santarelli et al., 1998; Londeix et al., 2007). At
least in the Caltanissetta Basin, the sediments pertaining

diversity of dinocyst species that provides evidence of
considerable hydrological mixing in the basin suggesting
the coexistence of taxa typical of confined neritic
environments (Homotryblium spp. and Lingulodinium
machaerophorum
indicative of oceanic marine biotopes with normal salinity
and normal to sub-normal hydrology (Impaginidium spp.,
Nematosphaeropsis labyrinthus [Ostenfeld, 1903] and
Spiniferites mirabilis [Rossignol, 1964]). According to
Londeix et al. (2007), these data suggest a Mediterranean
Fig. 4 - Calcareous nannoplankton. Light microscope images from the PLG unit, Pollenzo section, Piedmont Basin. a) Abundance peak of
Sphenolitus abies (thin arrow), together with Umbilicosphaera rotula (thick arrow) and Helicosphaera carteri (empty arrow); scale bar: 10
Sphenolitus abies
Umbilicosphaera rotula (possible coccosphere). d) Tiny Umbilicosphaera spp. and Syracosphaera
117
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
   
stage of the MSC.
Diverse assemblages of dinoflagellate cysts have
also been reported from the clayey layers within the
halite sequences of the Realmonte and, especially, the
Racalmuto salt mines, thereby providing information
about the diversity and abundance of these planktonic
algae during the second stage of the MSC (Bertini et
al., 1998). The taxa recognised in these assemblages
are typical of warm to warm-temperate surface waters.
Overall, these assemblages mostly consist of neritic
(Lingulodinium machaerophorum, Operculodinium
israelianum [Rossignol, 1962], Polysphaeridium zoharyi
[Rossignol, 1962]) and oceanic (Impaginidium sp.,
Nematosphaeropsis labyrinthus, N. lemniscata [Bujak,
1984], Spiniferites hyperacanthus
1955], S. mirabilis, S. ramosus [Ehrenberg, 1838]) taxa
that indicate the presence of normal marine conditions in
the basin during the deposition of the clayey sediments
(Bertini et al., 1998).

is rather sparse in sediments documenting the substage 3.1
and relatively abundant in those accumulated during the
“Lago-mare” event (substage 3.2). In the upper portion of
the Upper Evaporites of the Caltanissetta Basin, Londeix et

reworked assemblages dominated by taxa indicative of
Homotryblium
plectilum [Drugg & Loeblich, 1967]) associated with less
abundant open marine oceanic taxa (Impaginidium spp.).
On the other side, the dinocyst assemblages of the “Lago-
mare” event have been extensively debated (e.g., Londeix
et al., 2007; Popescu et al., 2007, 2009; Pellen et al., 2017;
Grothe et al., 2018) probably because of their problematic
interpretation. As far as concerns the Apennine record,
based on the palaeoecological (and palaeobiogeographic)
 
al. (2017) evidenced a complex scenario with alternated
marine and brackish episodes, of which the latter
were characterised by a relevant contingent of taxa of
  
Formation in Sicily, Londeix et al. (2007) recognised a
remarkable dominance of euryhaline dinocysts with a
subordinate amount of open marine taxa. In the context

taxon Galeacysta etrusca
(as well as its often associated Pyxidinopsis psilata [Wall
& Dale in Wall et al., 1973] and Spiniferites cruciformis
Wall & Dale in Wall et al., 1973), commonly regarded
as a palaeoenvironmental and palaeobiogeographic
marker for the “Lago-mare” event thought to be a
Paratethyan immigrant. The biogeographic history of
this taxon has been recently summarised by Grothe et al.
(2018). According to these authors (Grothe et al., 2018),
Galeacysta etrusca appeared in the Pannonian basin at
about 8 Ma and subsequently dispersed into the Dacic,
Black Sea and Caspian basins at about 6.1 Ma following
the establishment of physical connections between them.
    
apparently occurred in the Mediterranean during the
  
Bertini, 2006; Londeix et al., 2007; Iaccarino et al., 2008;
Cosentino et al., 2012; Pellen et al., 2017), documenting
the existence of physical and ecological conditions that
allowed the dispersal of this Paratethyan taxon into the
Mediterranean between 5.37 and 5.33 Ma.
Diatoms
The Messinian record of diatoms (Bacillariophyceae)
is mostly restricted to the pre-MSC successions (~7-6
Ma), where diatomaceous sediments occur regularly
alternated to sapropels and marls (Pellegrino et al., 2018).

MSC are scattered and consistently thinner (e.g., Müller
& Schrader, 1989; Fourtanier et al., 1991). The limited
accumulation of diatom-rich sediments during the MSC
has been usually explained with the establishment of
hypersaline settings that precluded the proliferation of
diatoms (e.g., Selli, 1954).
This interpretation discouraged a systematic
investigation of the Messinian evaporitic units aimed to the

this reason, the majority of researches concerning the late
to latest Messinian diatom record of the Mediterranean,
are focused on the scattered, intra-evaporitic diatomaceous
layers and on deep-sea, gypsum-free sediments indicative
of a variety of brackish to fully marine environmental
conditions (e.g., Schrader & Gersonde, 1978; Müller &
Schrader, 1989; Fourtanier et al., 1991).
Recently, however, well-preserved diatoms have been
observed in selenitic gypsum (Dela Pierre et al., 2015;
     
Galeacysta etrusca

Bollettino della Società Paleontologica Italiana, 58 (1), 2019
118
in the Piedmont Basin (Banengo section). The diatoms
occur intermingled to brownish-greenish organic remains
   
   
belong to extant families, genera or informal groups
with well-known general ecological habits (Round et al.,
1990). Among them, Chaetoceros sp. vegetative frustules

remains (Fig. 7a-e), together with Biddulphia sp., this
latter often occurring as nicely preserved long chains
(Fig. 6a-e). Naviculoid diatoms have been recorded,
but their small size did not allow a precise generic and

belonging to the genus Grammathophora sp. have been
also observed (Fig. 6g), together with rare specimens of
Stephanodiscaceae, Surirella sp. and Rhizosolenia sp.
(Figs 6i, l and 7f).
The consistently good preservation of the observed
specimens, especially the delicate vegetative frustules
of Chaetoceros sp. with joined setae, allows to rule
out the possibility of reworking, at least for the most
representative component of the assemblage. The epipelic
and epiphytic diatoms were instead reasonably transported

their relatively good preservation, the transport was
probably limited.
It is interesting to note the abundant occurrence of
 Chaetoceros sp.
vegetative frustules in the examined samples. Diatom
blooms are typically followed by biological or physical
aggregation, favoured by the production of sticky
biopolymers (TEP) and by the physical entanglement
of frustules, which promote the rapid sink of diatom
aggregates, preserving them from dissolution and
zooplankton grazing (e.g., Passow et al., 1994; Passow,
2002). However, once reached the sediment-water
interface, the diatom frustules must be rapidly buried in
order to be preserved. Therefore, the fast-growing gypsum
crystals may have favoured the rapid entombment of the
frustules.
These diatom assemblages, characterised by the co-
occurrence of abundant Chaetoceros sp. remains mixed
with planktic, epipelic and epiphytic, marine to freshwater
diatoms, do not support a hypersaline setting linked to a
strongly evaporated water column, but rather a coastal

The overall low amount of diatom specimens in the
Messinian gypsum-bearing sediments can be considered
following two perspectives: it can be a genuine by-product
of limited diatom productivity or, alternatively, the result
of a selective preservation of some specimens. In the

instead of hypersalinity, other triggering factors should
be considered in order to interpret the supposed low rates
of opaline productivity during the late Messinian (e.g.,
reduced bioavailability of limiting factors such as Si,
P, N and Fe). In the second case, conditions favourable
to opal production in the upper water column may
have co-occurred with the establishment of a chemical
environment unfavourable to opal preservation on the
sea-bottom. The possible implications of the second
scenario are intriguing, especially considering the ability
of microbial consortia involved in the sulfur cycle to
modulate the pH of pore waters (e.g., Gallagher et al.,
2012; Pace et al., 2017), a crucial parameter controlling
silica solubility (e.g., Ehrlich et al., 2010). However, only
a wider, more detailed morphological analysis, coupled to
biomarker investigation of gypsum-rich units, may shed
light on this hypothesis.
The deposits of the third stage of the MSC, both the
Upper Evaporites and those recording the “Lago-mare”
event are rarely characterised by the presence of a diatom

(1978) documented poorly diversified assemblages
with shallow water euryhaline taxa, suggesting salinity

Foraminiferans
The foraminiferans record a progressive increase of
stressed conditions in the upper water column and at the


both planktonic and benthic organisms (Blanc-Valleron et
al., 2002; Sierro et al., 2003; Kouwenhoven et al., 2006;
    
as, since the beginning of the Messinian, their absence in

the Falconara section) and the disappearance of oxyphilic
taxa at intermediate depths (Fig. 8; Kouwenhoven et al.,
2003; Iaccarino et al., 2008) seem to be indicative of a
severe oxygen depletion.
A further step at 6.7 Ma marks the increasingly
oligotypic character of the assemblages, which show
a typical precession-driven imprint (e.g., Sierro et
al., 2003). This pattern is given by the dominance of
warm/oligotrophic planktonic and absence of benthic
foraminiferans in the sapropels (tuned to insolation
maxima) and cold/eutrophic planktonic with abundant
benthic in marls or diatomite (insolation minima). From
6.4 Ma, benthic assemblages are dominated by buliminids
and bolivinids (Fig. 8) indicating high organic carbon

salinity and/or low oxygen content (Kouwenhoven et al.,
2003).
As far as concerns the planktonic taxa, the decrease in
diversity is evidenced by the disappearance of the deep
dwelling globorotalids at around 6.7 Ma (Globorotalia
scitula 
and 6.5 Ma (Globorotalia miotumida Jenkins, 1960 and
Globorotalia conomiozea Kennett, 1966, which are
included in the G. miotumida gr.) (Fig. 8). Furthermore,
stressed upper water column conditions are well depicted
by the occurrence of the endemic Mediterranean
Turborotalita multiloba (Romeo, 1965) ranging from
Fig. 6 - Diatoms. The epipelic-epiphytic-planktic marine inshore to freshwater diatom assemblage from the PLG unit, Banengo quarry, Piedmont
Basin. a-e) BiddulphiaBiddulphia sp. and Grammatophora
Grammatophora
Surirella
119
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
120
6.415 to ca. 6.05 Ma (Fig. 8). This morphospecies
is thought to derive from Turborotalita quinqueloba
(Natland, 1938) and adapted to highly eutrophic (Sierro et
al., 2003) or highly saline surface waters (Blanc-Valleron
et al., 2002).
The progressive stressed conditions culminate at
the onset of the MSC, which is usually marked by the
complete disappearance or, at least, by a strong decrease
of either benthic or planktonic foraminiferans with a size
> 125 µm. In most central and peripheral Mediterranean
basins this event well approximates the MSC onset
(Manzi et al., 2007, 2013, 2018; Gennari et al., 2013,
2018a; Violanti et al., 2013). This fact is reported in the
biostratigraphic zonation of the Mediterranean with the
Non Distinctive Zone, which corresponds to the MSC
time interval (5.97-5.33 Ma; Iaccarino et al., 2007). The
apparent disappearance of the marine microfauna at the
onset of evaporite deposition was one of the evidences
that led to the desiccation scenario (Hsü et al., 1973b).
More recently, the foraminifer characterization of MSC
deposits has been considerably improved. In particular,
it has been noted that smaller foraminiferans (mainly T.
quinqueloba and Globigerina bulloides d’Orbigny, 1826
in the 45-125 µm size fraction; Fig. 8) survived and are

stage of the MSC (e.g., Violanti et al., 2013; Corbì &
Soria, 2016; Manzi et al., 2018).
According to Catalano et al. (2016), a different
scenario appears to be recorded in Sicily where the barren
interval extends back before the MSC onset and also
  
the disappearance of calcareous microfossils seems to be

origin in more marginal setting. The environmental
perturbation causing the disappearance of foraminiferans
seems to be diachronous (Bellanca et al., 2001), primarily
related to the proximity to the coast. A strong reduction
in abundance of foraminiferans also predates the onset of

section, Cyprus Island (Eastern Mediterranean) (Gennari
et al., 2018a). This reduction follows a tectonic pulse
which could had promoted increasing terrigenous input
18O
values and 87Sr/86Sr ratios deviating from oceanic values
suggest that the freshening of the upper water column was
the main trigger of foraminiferan decrease.
Data from the deep settings of the central portion of the

MSC. In the Levantine and Tyrrhenian basins the PLG unit
seems to be devoid of foraminiferans, which apparently
disappeared at the onset of the MSC (Roveri et al., 2014b;
Manzi et al., 2018). Studies addressing the foraminiferan
     
concentrated in the westernmost Mediterranean area.
In the Sorbas and Almeria-Nijar basins several authors
observed that foraminiferans are still present in the
pelitic intercalations between the gypsum layers of the

the occurrence of foraminiferans within the pelitic
intercalation of the Yesares Fm. (PLG unit) in the Nijar

to those of the pre-evaporitic sediments and include both
benthic (Ammonia sp., Elphidium sp., Bolivina plicatella
Cushman, 1930, Bolivina spathulata [Williamson,
1858], Bulimina aculeata d’Orbigny, 1826, Cassidulina
spp., Cibicidoides pseudoungerianus [Cushman, 1922],
Uvigerina sp., small epiphytes, miliolids and “fragile
nodosariids”) and planktonic (G. conomiozea, G. scitula,
Neogloboquadrina acostaensis [Blow, 1959], both
sinistral and dextral, T. quinqueloba and small-sized
globigerinids) taxa. However, the strictly marine taxa are
considered to be reworked and only inner shelf euryhaline
taxa or those thriving in shallow lagoonal environments
are regarded as autochthonous (Fig. 8). The occurrence of
G. conomiozea and of sinistral N. acostaensis is considered
as the main evidence of reworking since N. acostaensis
was prevalently dextral in both the Mediterranean and the
Atlantic from 6.34 Ma whereas G. conomiozea is reported
to be extinct in the Mediterranean before the onset of the
MSC (Fig. 8; Van de Poel, 1992). In the same area, Riding
 
sized, marine assemblage in the upper part of the Yesares
Fm. (PLG unit) and in the overlying Sorbas Member.
These assemblages are considered as in situ; however,

the two formations. At an equivalent stratigraphic position
(top of the PLG unit), Aguirre & Sánchez-Almazo (2004)
documented a marine foraminiferan assemblage, yielding
G. miotumida, which is not regarded to be extinct before
the onset of the MSC by the authors. Goubert et al. (2001)
collected samples in the infra-gypsum intercalations of

of the MSC (PLG unit) in the marginal (western) portion
of the Sorbas Basin. They observed that planktonic
foraminiferans are very rare (only Trilobatus trilobus
[Reuss, 1850] was observed) in the marls between the
third and fourth gypsum layer. Ammonia tepida (Cushman,

and second cycles of the PLG unit; in the upper part of
the section Porosononion granosum (d’Orbigny, 1846)
became dominant, thereby suggesting an upward transition
from an infralittoral to inner circalittoral environment. In
the Bajo-Segura Basin, Corbì & Soria (2016a) reported
dwarf-foraminiferans in the marly intervals intercalated
to the gypsum layers of the PLG unit. These small-sized
assemblages also yield dextral N. acostaensis and G.
miotumida gr. specimens. The small globigerinids are
interpreted as the result of stressed marine condition in
     
Ammonia and Elphidium individuals.
The sedimentary products of the second stage of the
MSC are mainly restricted to the central and deep part of
the Mediterranean where few data are available. The salt
mines of Sicily are among the very few places where clay
intercalation within the halite deposits can be examined.
Bertini et al. (1998) examined nine of these intercalations

foraminifer assemblages in three levels (P/B ratio is 90-
Fig. 7 - Diatoms. The planktic marine diatom assemblage from the PLG unit, Banengo quarry, Piedmont Basin. a-e) Chaetoceros sp., vegetative
frustules. f) Rhizosolenia
121
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
122
123
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
95%). Below and above these three levels, the samples
exhibit very low diversity and abundance (scattered T.
quinqueloba and Globigerina sp.) or are completely
barren. The intermediate fossiliferous samples yielded both
long-range taxa (Globigerinoides spp., Globoquadrina
spp. and Orbulina spp.) and a numbers of Late Neogene
globorotalids (both keeled and not-keeled). The latter are
represented by sinistral Globorotalia menardii (Parker,
Jones & Brady, 1865 after d’Orbigny, 1826 nomen
nudum), G. miotumida gr., Globorotalia suterae Catalano
& Sprovieri, 1971, Globorotalia saphoae Bizon & Bizon,
1965 and Globorotalia sphaericomiozea Walters, 1965;
N. acostaensis is also present with predominantly dextral
specimens. Although rather rare, benthic foraminiferans

The third stage of the MSC is the most
controversial in term of foraminifer characterization
and palaeoenvironmental significance. The benthic
euryhaline Ammonia tepida or A. beccarii (Linnaeus,
1758) are generally documented as the most abundant
and widespread taxa. They occur in variable abundance
in successions outcropping in peripheral areas, but also
in DSDP-ODP holes in the more central sectors of the
Mediterranean, where they are usually less common.
Ammonia
intercalated to the selenites of the Upper Evaporites in
Sicily (Bonaduce & Sgarrella, 1999; Grossi et al., 2015)
and in Cyprus (Orszag-Sperber, 2006) or in equivalent
selenite-free deposits underlying the Messinian/Zanclean
boundary (Hole 968A, Blanc-Valleron et al., 1998; sites
375-376, sites 965 to 968, Orszag-Sperber, 2006; Bajo-
Segura Basin, SE Spain, Soria et al., 2008a). Ammonia
often co-occurs with ostracods of the genus Cyprideis; this
biofacies apparently represents a good biostratigraphic
marker of the lower part of the third stage (3.1; Iaccarino
& Bossio, 1999; Grossi & Gennari, 2008). Ammonia can
be associated to other shallow benthic taxa, such as the
euryhaline Elphidium sp. (Site 967, Spezzaferri et al.,

include rare Cribroelphidium sp., Haynesina germanica
(Ehrenberg, 1840), Ammobaculites sp. and Neoconorbina
sp. (e.g., Trave section, Northern Apennines; Iaccarino
et al., 2008). In a few cases, the infralittoral Nonion
boueanum (d’Orbigny, 1846) can co-occur with Elphidium
(Nijar Basin, Bassetti et al., 2006; Montepetra borehole,
Northern Apennines, Grossi & Gennari, 2008). In the
Garruchal Fm. of the Bajo-Segura Basin, Soria et al.
(2008b) also documented a lagoonal palaeoenvironment
with the occurrence of the miliolid Quinqueloculina
laevigata d’Orbigny, 1826 together with Ammonia,
Elphidium spp. and H. germanica.
However, a diversified planktonic and/or benthic

in some cases associated with the shallow benthic taxa
    
deposits were postulated (Cita et al., 1978a, b) during the
examination of the material collected during the DSDP
drillings in the 1970s. In some cases, the planktonic stock
can be considered clearly reworked from older rocks since
it contains a mixture of Cretaceous, Eocene, Oligocene
or early/middle Miocene taxa. Clear examples are those
of the Eraclea Minoa section (Sicily, Italy; Roveri et al.,
2006) and Polemi Basin (Cyprus; Orszag-Sperber et al.,
2006) and Site 967 (Spezzaferri et al., 1998). Instead, the
occurrence of Messinian biostratigraphic markers like
the G. miotumida gr. together with long range Neogene

to Aguirre & Sánchez-Almazo (2004), the deposits of
the third stage of the MSC of the Nijar Basin record
the alternation of marine shelf setting, characterised
by marine pelagic assemblages, and continental/deltaic
setting, characterised by brackish benthic foraminiferans

Bassetti et al. (2006); based on the recognition of G.
menardii gr. 4, other than G. miotumida and the mixing
of shallow and deep-water foraminiferans, the authors
considered the assemblages of the third stage of the Nijar
Basin as entirely reworked. In the Sorbas Basin, the Sorbas
     
stage of the MSC) and record the third stage in a more
marginal setting (Fortuin & Krijgsman, 2003; Roveri et
al., 2019), characterised by the absence of foraminiferans,
except a thin level yielding an almost monogeneric
bolivinid assemblage (Gennari et al., 2018b). According
to Clauzon et al. (2015), the Zorreras Mb. should be
attributed to the Zanclean also based on the occurrence
of Globorotalia margaritae Bolli & Bermudez, 1965 and
Sphaeroidinellopsis specimens in a thin clay layer at the
Sorbas/Zorreras transition. An assemblage composed of
Bolivina cf. paralica Perconig, 1952, Ammonia tepida,
Rosalina sp. and small globigerinids is reported by
Iaccarino & Bossio (1999) at the Messinian/Zanclean
transition of the Balearic Rise (ODP Site 975). The
deposits of the third stage of the MSC are often proposed
to host marine foraminifers heralding the Zanclean full
restoration of marine condition. A transitional fauna
is reported in Hole 969B (Eastern Mediterranean;
Spezzaferri et al., 1998), Montepetra borehole (Northern
Apennine; Grossi & Gennari, 2008), Hole 975 (Balearic
Rise; Iaccarino & Bossio, 1999; Iaccarino et al., 1999),
and Kalamaki (Zakynthos Island, Karakitsios et al., 2017).
These assemblages are all very similar to those found in
Fig. 8 - Foraminiferans. Schematic characterization of the foraminifer assemblages of the MSC in the Mediterranean area. a-j) Planktonic
foraminifera: a) Globorotalia menardii; b) Globorotalia miotumida gr.; c) Globorotalia scitula; d-e) Neogloboquadrina acostaensis sinistral
and dextral coiling, respectively; f) Turborotalita multiloba; g) idealised small globigerinid assemblage; h) ideal basal Zanclean assemblage
composed of the long range taxa Trilobatus trilobus, Globigerina bulloides, Globoturborotalita decoraperta (Takayanagi & Saito, 1962),
Turborotalita quinqueloba, Globigerinita glutinata (Egger, 1893), Neogloboquadrina acostaensis
in the lowermost two precessional cycles, respectively); i) Sphaeroidinellopsis seminulina (Schwager, 1866); j) Globorotalia margaritae.
k-w) Benthic foraminiferans: k) Siphonina reticulataCibicidoides italicus (Di Napoli, 1952); m) Uvigerina cylindrica
gaudryinoides Lipparini, 1932; n) Hanzawaia boueana (d’Orbigny, 1846); o) Bulimina aculeata; p) Bolivina dilatata Reuss, 1850; q) Bolivina
spathulata; r) Ammonia tepida; s) Porosononion granosum; t) Elphidium macellum (Fichtel & Moll, 1798); u) Haynesina germanica; v) Nonion
boueanum; w) A. tepida, Bolivina cf. paralica and Rosalina
(2000), Milker & Schmiedl (2012), Corbì & Soria (2016) and http://www.mikrotax.org/pforams/index.php?dir=pf_cenozoic.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
124
the basal Zanclean and dominated by planktonic genera,
such as Globigerinoides, Globigerina, Globoturborotalita,
Trilobatus and Globigerinita (Iaccarino et al., 1999);

Almázo, 2004), in these transitional assemblages the
G. miotumida gr. is absent and N. acostaensis shows a
prevalently dextral coiling.
Ostracods
Ostracods are among the most extensively studied fossils

the palaeogeographic and palaeoenvironmental features
of the third stage. Decima (1964), Ruggieri & Greco
      
recognised the common occurrence of brackish ostracod
taxa in the peculiar upper Messinian deposits overlying
the evaporites in Sicily and Northern Apennines. An
extensive exploration of Messinian deposits throughout
the Mediterranean area evidenced a substantial change of
the ostracod assemblages with the apparent disappearance
of the fully marine and diverse pre-MSC taxa (see, e.g.,
Benson, 1976; Sissingh, 1976; Benson et al., 1991). The

rarely provided ostracod remains (see, e.g., Decima,
1964), whereas abundant and sometimes diverse
ostracofaunas are well known from the deposits of the
third stage, especially from those documenting the “Lago-
mare” event (e.g., Gliozzi, 1999; Grossi et al., 2008).
The ostracod assemblages typical of the “Lago-mare”
sediments are characterised by Paratethyan taxa that
dispersed into the Mediterranean as a result of the capture

the MSC (e.g., McCulloch & De Deckker, 1989; Bonaduce
& Sgarrella, 1999; Orszag-Sperber, 2006). Although some
authors considered the typical “Lago-mare” ostracod
taxa as Mediterranean endemics (Bassetti et al., 2003),
      
undeniable (e.g., Gliozzi et al., 2007; Stoica et al., 2016).
Carbonnel (1978) defined the Loxoconcha djafarovi
Zone to emphasise the biostratigraphic relevance of the
Paratethyan immigrants in constraining the “Lago-mare”
event. More recently, the biostratigraphic hypothesis
     
Grossi et al. (2011) who provided a new scheme with
Fig. 9 - Ostracods. a-j) Schematic distribution of selected taxa in the second and third stages of the MSC following the biozones proposed by
Grossi et al. (2011). a) Loxoconcha mülleri (Mehes, 1908); b) Tyrrhenocythere pontica (Livental in Agalarova et al., 1961); c) Loxoconcha
eichwaldi; d) Cyprideis agrigentina Decima, 1964; e) Loxocorniculina djafarovi; f) Euxinocythere praebaquana; g) Amnicythere propinqua;
h) Caspiocypris pontica (Sokac, 1972); i) Tyrrhenocythere ruggierii Devoto in Colacicchi, Devoto & Praturlon, 1967. Scale bar: 0.1 mm.

125
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
two biozones, the Loxoconcha mülleri Biozone spanning
from 5.59 to 5.40 Ma and the Loxocorniculina djafarovi
Biozone, which covers the uppermost portion of the third
stage of the MSC from 5.40 to 5.33 Ma (Fig. 9). Both

species. The effectiveness of this ostracod-based
biostratigraphy is rather problematic since the appearance
of the Paratethyan taxa throughout the Mediterranean is
possibly diachronous (see, e.g., Carbonnel, 1980), as also
suggested by the occurrence of typical “Lago-mare” taxa
Amnicythere propinqua [Livental,
1929], Euxinocythere praebaquana [Livental in Agalarova
et al., 1940], Loxocauda limata [Schneider in Agalarova
et al., 1940], Loxoconcha eichwaldi Livental, 1929,
Loxocorniculina djafarovi [Schneider in Suzin, 1956],
Zalanyiella venusta [Zalanyi, 1929]) in deposits clearly

Marmolaio; Caponi, 2008).
The Italian late Miocene fossil record includes
numerous brackish ostracod assemblages, many of which
preceding the “Lago-mare” event (Gliozzi et al., 2005,
2007; Faranda et al., 2007; Ligios et al., 2012; Colombero
et al., 2014). These assemblages are currently well known
and provide a good opportunity to interpret the structure
and composition of the ostracod faunas characteristic
      
MSC. Although the taxonomic composition of the late
Tortonian and early Messinian ostracod assemblages is
    
faunas, several brackish taxa (genera or species) of
clear Paratethyan affinity (Amnicythere, Bakunella,
Camptocypria, Chartocythere, Labiatocandona,
Lineocypris, Loxoconchissa, Mediocytherideis,
Propontoniella) can be documented in Italy at least
since the Tortonian (e.g., Gliozzi et al., 2007; Ligios
      
are also documented in late Serravallian deposits of
the Ebro Basin, Spain (Gliozzi et al., 2005, 2007).
According to Gliozzi et al. (2007), the presence of
    
Tortonian or early Messinian should be related to episodic
passive dispersal events via aquatic birds, whereas the
successive diverse “Lago-mare” contingent represents
the unambiguous evidence of the establishment of direct
geographic connections that allowed an active dispersal
from the Paratethys into the Mediterranean during the
final stage of the MSC. The possibility of episodic
passive dispersal via aquatic birds is evocated due to
the lack of evidence for a direct connection between the
Mediterranean and Paratethys before the “Lago-mare”
event. However, although passive dispersal via aquatic
birds is a well-known dispersal strategy for freshwater
ostracods characterised by parthenogenetic reproduction
or for sexually reproducing species in which females
exhibit internal brood care (e.g., Whatley, 1990, 1992),
the majority of the hemicytherids, leptocytherids and
loxoconchids genera (likely including those reported
in late Tortonian and early Messinian Italian deposits)
reproduces sexually and not retains the fertilised eggs
within the carapace (see, e.g., Boomer et al., 1996),
making them not particularly susceptible to transport
by aquatic birds. Consequently, their arrival in the
Mediterranean necessarily implies the existence of one or
more direct brackish connection(s), at least temporarily
open, that allowed the immigration from the Paratethys.
Such connection(s) possibly promoted the arrival of
the typical “Lago-mare” taxa at least in the complex
palaeogeographic context that occurred in the hinterland
     
stage of the MSC, whereas the humid climatic phase and
widespread development of marginal and satellite basins
throughout the Mediterranean during the “Lago-mare”

remarkable demographic explosion of these Paratethyan
immigrants (see Carnevale et al., 2018).
Molluscs (and other invertebrates)
Together with the ostracods, molluscs are among
the most extensively studied fossils from MSC-related
deposits, particularly those of the third stage documenting
the “Lago-mare” event.
Just before the onset of the MSC a diverse marine
mollusc fauna inhabited the Mediterranean (e.g.,
Compagnoni, 1964; Ruggieri et al., 1969). According to
   

interval just preceding the onset of the MSC exhibited a
Mio-Pliocene Atlantic-Proto-Mediterranean distribution,
whereas the other taxa can be referred to as Miocene
Proto-Mediterranean endemics, some of which became
extinct at the end of the Miocene. Assemblages of fully
marine infralittoral and circalittoral molluscs are known

Italy and Spain (e.g., Bossio et al., 1978; Montenat et al.,
1980; Lacour et al., 2002; Néraudeau et al., 2002), and
provide a further evidence to the persistence of marine
conditions during this part of the crisis. The fossiliferous

the Sorbas Basin and also contain remains of bryozoans,
polychaete tubes, decapod crustaceans and abundant sea
urchins (e.g., Montenat et al., 1980; Néraudeau et al.,
2001; Lacour & Néraudeau, 2002). Bryozoan remains
are also known from the clayey strata intercalated to the
selenitic gypsum layers at Cava Marmolaio in Tuscany
(Caponi, 2008).
Brackish and freshwater molluscs are well-known
from Messinian deposits (e.g., Esu & Girotti, 1989;
Ligios et al., 2012), especially from those documenting
the “Lago-mare” event. The mollusc assemblages
characteristic of the “Lago-mare” event are known from
several localities in Italy (and Sicily), as well in other
Peri-Mediterranean sectors. As far as the Italian localities
are concerned, these peculiar mollusc assemblages have
been reported since the end of the XIX century (e.g.,
Capellini, 1879, 1880; Sacco, 1886). The “Lago-mare”
mollusc assemblages exhibit a peculiar composition with
abundant bivalves of the genus Dreissena and the cardiid
subfamily Lymnocardiinae and a variety of continental
and brackish gastropods (Fig. 10), including the very
common Melanoides, Melanopsis, Saccoia and Theodoxus
(e.g., Esu & Girotti, 1989; Harzhauser et al., 2015). These
assemblages are usually indicative of oligo- and meso-
haline waters and have been traditionally considered as
the product of a massive dispersal from the Paratethyan
basins into the Mediterranean during the latest part of the
MSC (e.g., Orszag-Sperber, 2006; Esu, 2007). However,
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
126
recent studies have revealed that some presumed “Lago-
mare” taxa occurred in the Mediterranean well before the
MSC (e.g., Ligios et al., 2012), and most of them actually
represents Mediterranean endemics (Esu & Popov,
2012; Harzhauser et al., 2015; Colombero et al., 2017).
Moreover, the analysis of the geochemical signature of
these molluscs indicates that the paralic palaeobiotopes

with thalassogenic waters (Grunert et al., 2016).
Fishes and other vertebrates

Sicilian deposits originated during the MSC, representing
a largely unexploited source of palaeoenvironmental
information about the faunal and ecological structure
of the Messinian aquatic palaeobiotopes. As a matter
of fact, the (often neglected) relevance of fishes in
palaeoenvironmental studies lies in their bio-ecological
characteristics; because of their mobility and migratory
behaviour, fishes can provide valuable information
about a vast array of contiguous biotopes, whereas their
trophic level attribution is unambiguously indicative of
the relative size and complexity of the aquatic food web.
These bio-ecological features can be extremely useful to
contribute to the interpretation of the palaeogeographic
and palaeoenvironmental context of the Mediterranean at
least during the intervals of the MSC for which these are

resolution and/or extremely heterogenous nature of the
sedimentary products.
    
both neritic and oceanic, are known from the Messinian
deposits predating the onset of the MSC (e.g., Landini &
Menesini, 1984; Gaudant, 2002; Carnevale, 2003, 2004,
2006; Carnevale & Bannikov, 2006; Carnevale & Pietsch,
2006). The palaeoichthyological record is particularly rich
in Italy (e.g., Sturani & Sampò, 1973; Bradley & Landini,
1984; Bedini et al., 1986) and Sicily (e.g., Arambourg,
1925; Leonardi, 1959; Gaudant et al., 1996), where

sapropels or diatomites, which accumulated (everywhere
in the Mediterranean) during the pre-MSC interval of the
Messinian stage in response to the precessional forcing of


dates back to earliest part of the XIX century when the
Fig. 10 - Molluscs. a-g) Gastropods and bivalves from the “Lago-mare” deposits of Moncucco Torinese, Piedmont Basin: a) Theodoxus
mutinensis (D’Ancona, 1869); b) Melanoides curvicosta (Deshayes, 1835); c) Melanopsis narzolina d’Archiac in Viquesnel, 1846; d) Saccoia
oryza Brusina, 1893; e) Euxinicardium subodessae (Sinzov, 1877); f) Pontalmyra bollenensis (Mayer, 1871); g) Dreissena ex gr. rostriformis

127
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
prominent Swiss naturalist Louis Agassiz (1832) described
the cyprinodontid Aphanius (= Lebias) crassicaudus
(Agassiz, 1832) based on material collected from the

outcropping near Senigallia. Since that time a considerable
amount of Messinian palaeoichthyological data has
been accumulated and abundant fossils of Aphanius
crassicaudus have been documented for the three stages
of the MSC in all the sectors of the Mediterranean (Fig.
11). For this reason, this extinct cyprinodontid species is
commonly regarded as an icon of the MSC palaeontology
(e.g., Gaudant, 1979; Sorbini & Tirapelle Rancan, 1979;
Gaudant et al., 1988; Landini & Sorbini, 1989; Carnevale
et al., 2018).
A taxonomic and ecologically heterogenous fish
     
Oreochromis lorenzoi,
Borgo Tossignano (PLG unit), Northern Apennines, scale bar: 10 mm; b) Mugil cf. cephalus Linnaeus, 1758, Cava Serredi (“Lago-mare”
deposits), Tuscany, scale bar: 10 mm; c) Lichia  amia, left cleithrum, Borgo Tossignano (PLG unit), Northern Apennines, scale bar:
50 mm; d, Aphanius crassicaudus, left lateral view, Pollenzo section (RLG unit), Piedmont Basin, scale bar: 10 mm; e) Diaphus befralai
Brzobohaty & Nolf, 2000, Cava Serredi (“Lago-mare” deposits), Tuscany, scale bar: 1 mm; f) Diaphus splendidus (Brauer, 1904), Podere
Torricella (“Lago-mare” deposits), Tuscany, scale bar: 1 mm; g) Myctophum tchi (Schwarzhans, 1979), Podere Torricella (“Lago-mare”
deposits), Tuscany, scale bar: 1 mm; h) Hoplostethus cf. mediterraneus, Moncucco Torinese (“Lago-mare” deposits), Piedmont Basin, scale
bar: 1 mm; i) Diaphusrubus Girone, Nolf & Cavallo, 2010, Moncucco Torinese (“Lago-mare” deposits), Piedmont Basin, scale bar:
1 mm; j) Gadiculus labiatus, Podere Torricella (“Lago-mare” deposits), Tuscany, scale bar: 1 mm; k) Physiculus sp., Moncucco Torinese
(“Lago-mare” deposits), Piedmont Basin, scale bar: 1 mm.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
128
(Fig. 11), documented by a number of localities in the
Piedmont basin (Castagnito, Cherasco, Costigliole d’Asti,
Guarene d’Alba, Monticello d’Alba, Piobesi d’Alba, Santa
Vittoria d’Alba, Scaparoni), Northern Apennines (Borgo
Tossignano, Brisighella, Monte delle Formiche, Monte
Faeti, Pietralacroce, San Lazzaro di Savena, Senigallia,
Sirolo) and Tuscany (Cava Marmolaio, Cava Migliarino).
From an ecological point of view, this assemblage is
dominated by marine (e.g., Lepidopus spp., Lichia
amia [Linnaeus, 1758], Microchirus abropteryx [Sauvage,
1870], Mugil sp., Sarda sp., Sardina sp., Scorpaena cf.
minima Kramberger, 1882, Spratelloides sp., Trachurus
spp., Thunnini indet.) and estuarine (Aphanius spp.,
Atherina spp., Atherinomorus? etruscus [Gaudant, 1978],
Gobius spp.) taxa, although a few freshwater (Lates
cf. niloticus Linnaeus, 1758, Oreochromis lorenzoi
Carnevale, Sorbini & Landini, 2003, Paleoleuciscus cf.
oeningensis [Agassiz, 1832], Salvelinus oliveroi Gaudant
in Cavallo & Gaudant, 1987) and diadromous (Alosa
crassa Sauvage, 1873, Clupeonella maccagnoi Gaudant
in Cavallo & Gaudant, 1987) species are also present (e.g.,
Sturani, 1973; Gaudant, 1981; Cavallo & Gaudant, 1987;
Landini & Sorbini, 1989; Carnevale et al., 2003, 2008a).
Fish remains are reported from the deposits of
the second stage of the MSC in the Piedmont Basin
(Carbonara Scrivia), Northern Apennines (Cajariccia,
Camignone, Lunano, Monte Sant’Angelo, Monte
Castellaro) and Tuscany (Saline di Volterra), and in
the Caltanissetta Basin in Sicily (Aragona, Canicattì,
Castrogiovanni, Feudo Muscini, Montedoro, Portella di
Pietro, Realmonte, San Cataldo, Solfara Casino, Solfara
di Palagonia) and are usually represented by monotypic
assemblages with abundant remains of the estuarine
cyprinodontid Aphanius crassicaudus (e.g., D’Erasmo,
1928; Sorbini & Tirapelle Rancan, 1979; Gaudant et al.,
1988; Landini & Sorbini, 1989; Fig. 11). The marine
round herring Spratelloides lemonei Arambourg, 1927
is also relatively common in these deposits. The most

is that of Monte Castellaro (Sorbini, 1988; Landini &
Sorbini, 1989) that includes a variety of marine neritic
(Epinephelus sp., Harengula sp., Microchirus abropteryx,
Spratelloides sp., Zeus primaevus Cocchi in Massalongo
& Scarabelli, 1859) and oceanic (Capros arambourgi
Baciu, Bannikov & Santini, 2005, Maurolicus muelleri
[Gmelin, 1789]) taxa together with some rare freshwater
euryhaline (Lates niloticus, Oreochromis lorenzoi) and
estuarine (Aphanius crassicaudus, Atherina boyeri Risso,
1810) species.
Carnevale et al. (2018) recently summarised the
available data about the ichthyofaunal assemblage of the
       
remains are primarily represented by otoliths, which are
known from at least six localities (Cava Serredi, Capanne
di Bronzo, Ciabot Cagna, Podere Torricella, Moncucco
Torinese, Le Vicenne) recording the “Lago-mare” event
(Carnevale et al., 2006a, b, 2008b, 2018; Colombero et
al., 2017); a single locality pertaining to the substage 3.1,

remains (Colombero et al., 2014). About 50 species-level
taxa are known from this stage, among which marine
neritic (e.g., Aphia minuta Risso, 1810, Argyrosomus sp.,
Batrachoididae indet., Blennius sp., Grammonus sp., Liza
sp., Pagellus sp., Spratelloides sp., Sprattus sp., Umbrina
sp.) and oceanic (Benthosema spp., Bolinichthys italicus
[Anfossi & Mosna, 1971], Ceratoscopelus sp., Diaphus
spp., Gadiculus labiatus [Schubert, 1905], Hoplostethus
cf. mediterraneus Cuvier in Cuvier & Valenciennes,
1829, Hygophum spp., Lampadena gracile [Schubert,
1912], Myctophum coppa Girone, Nolf & Cavallo, 2010,
Physiculus

(Leptosciaena caputoi Bannikov, Schwarzhans &
Carnevale, 2018, Trewasciaena kokeni [Schubert, 1902])

with the Paratethyan basins (e.g., Bannikov et al., 2018).
    

mare” event) seems to provide unambiguous evidence
of the presence of normal marine conditions in the
Mediterranean before the Messinian-Zanclean boundary,
demonstrating that a new interpretation of the “Lago-
mare” event is necessary.
Overall, the palaeoichthyological record of the MSC
indicates a remarkable degree of ecological homogeneity
throughout the three stages of the crisis, with a nearly
continuous presence of marine steno- and euryhaline taxa.
Such a faunal continuity seems to be suggested also by
the comparative analysis of the taxonomic composition of
the late Miocene (pre-MSC) and Zanclean ichthyofaunas
(see Carnevale et al., 2018).

of the MSC, cranial remains of a whale have been recently
found in the Terminal Carbonate Complex of the island of
Mallorca (Mas et al., 2018). Despite the age of Terminal
Carbonate Complex is rather controversial (e.g., Roveri et
al., 2009), Mas et al. (2018) suggested a correlation with
the second stage of the MSC.
SYNTHESIS
The picture emerging from the integrative analysis of
the data provided herein reveals that the palaeontological
record of the MSC (Fig. 12) is not fully complete for

the same time, it is certainly not inadequate to contribute
to the interpretation of the patterns of palaeoenvironmental
evolution of the Mediterranean between 5.97 and 5.33
Ma. To date, only a limited role has been attributed to the
fossil record in the characterization of the environmental
scenario of the MSC (e.g., Roveri et al., 2014a). The
evocated incompleteness of the record itself related to the
catastrophic biotic annihilation, and the apparent peculiar
composition of certain fossil assemblages have been
used as key arguments for excluding a large part of the
potentially available palaeontological information from
the discussion about the palaeoenvironmental evolution of
the Mediterranean. The apparent inadequacy of the fossil
documentation is certainly related to the nature of the

the widespread development of “stressed” environmental
(and depositional and taphonomic) conditions at least

development of unfavourable environmental conditions
in the water column began before the onset of the MSC
129
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
and eventually resulted in the apparent extinction of
the euhaline benthic biota as well as of the calcareous
plankton, with the exception of the small-sized foraminifer
assemblages that seems to survive. During the past decades,
the absence of these components of the aquatic ecosystem
was roughly interpreted as the palaeobiological evidence
of the catastrophic hydrological and geomorphological

In concrete terms, because of the catastrophic scenario
evocated for the MSC, the sudden disappearance of
euhaline benthos and calcareous plankton was implicitly
considered as the product of the ecological collapse of
the Mediterranean marine biome and of the complete
annihilation of the aquatic biota. This approach, however,
is based on the assumption that the palaeontological record
is always reasonably complete and that the absence of
record necessarily corresponds to the reliable record of
the (original) absence. Moreover, as mentioned above, the
negative palaeobiological evidence used to support the
catastrophic scenario did not include all the components
of the original biota potentially available in the record and
in part reported herein.
The cursory survey of the Italian fossil record of
      
    
information and, consequently, to remark the necessity
to properly include the fossil record in the (still) cogent
debate about the MSC. The palaeontological data discussed
above suggest an almost continuous presence of aquatic
organisms throughout the MSC (Fig. 12), implying that
complex and heterogenous aquatic biotopes persistently
occurred between 5.97 and 5.33 Ma. This conclusion
is in large part consistent with the modern views about
the palaeoenvironmental evolution during the MSC
(e.g., Roveri et al., 2014a), which are mostly based on
stratigraphic, sedimentological and geochemical data and
suggest that a waterbody was present in the Mediterranean
at least for most of the crisis. The chemical nature and
structure of the waterbody, as well as its cyclic variation

of the waterbody has been recently demonstrated for the

c), the chemical features of the Mediterranean waters for
the third stage are still poorly understood. The benthic
assemblages with ostracods and molluscs have been
used to postulate the “Lago-mare” scenario with the
    
waters of Paratethyan origin (e.g., Cita et al., 1978a), despite

of the groups of fossils discussed in the text in the Italian fossil record. See text for a detailed explanation. Solid line indicates common
occurrence while dashed line indicates episodic or rare occurrence. APTS: astronomical polarity time scale; m.f.: molecular fossils.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
130
the limited knowledge of the palaeobiological features of
these taxa. The recurrent benthic assemblages characterised
  
“Lago-mare” biofacies actually represent local indicators
of marginal shallow and brackish water conditions. The
typical “Lago-mare” benthic assemblages are generally
found in marginal or satellite basins (e.g., Gliozzi, 1999),
which largely developed during the Messinian, as a result
   
tectonic deformation of the Neogene (Roveri et al., 2001)
     
These assemblages have been occasionally reported also
in a few of the many deep-sea sites drilled, where they are
probably reworked from the marginal basins (Riding et
al., 1998). As mentioned above, because of their mobility

about a vast array of contiguous biotopes, in this case about
those present in the open marine area scarcely documented
in the onshore sedimentary record. Fish remains suggest
that heterogeneous and highly diverse marine biotic
communities were present during the third stage of the
MSC, providing a clear evidence that the Mediterranean
never transformed into a brackish lake system (Carnevale
et al., 2018). The calcareous plankton (nannoplankton
and foraminiferans) that often occurs in the deposits of
the third stage (in the whole Mediterranean), especially
those recording the “Lago-mare” event, is commonly
considered as reworked from older rocks, or, at the very
least, as evidence of short-living marine ingressions (e.g.,
Spezzaferri et al., 1998; Iaccarino & Bossio, 1999; Iaccarino
et al., 1999; Rouchy et al., 2001). In a number of cases,
there is no evidence of reworking, due to the lack of the
typical features such as size sorting or mixing of species of

 
the ecologically diverse ichthyofaunas and their associated
calcareous plankton necessarily imply the re-establishment
of the whole marine biota and their complex ecological
intrarelationships (see Carnevale et al., 2006b).
Summarizing this long discussion, it is reasonable
to conclude that the persistence of marine organisms
throughout the three stages of the MSC is indicative of
the persistence of a marine Mediterranean during this
crucial interval of the Cenozoic history. Therefore, the
   
of the Mediterranean in some ways similar to the so-
called “deep-water deep-basin” hypothesis postulated
by Schmalz (1969, 1991) and corroborated by the ideas
of Debenedetti (1982) and Roveri et al. (2014c). In this
context, the peculiar sedimentary products of the MSC
should be regarded, at least in part, as the result of the


Atlantic gateways, tectonic activity, climate and eustasy
(see Roveri et al., 2014c).
FUTURE DIRECTIONS
The considerable amount of papers dedicated to the
      
of the spectacular scenario evocated for this late
Cenozoic event. Several aspects of this breath-taking
event have been explored in great detail also outside
    

by the MSC model that has represented an apparently
remarkable explanatory mechanism for the present
disjunct geographical distribution of continental peri-
Mediterranean organisms (e.g., Bocquet et al., 1978;
Bernini, 1984; Bianco, 1990; Zardoya & Doadrio, 1999).
Together with the considerable media promotion, the vast
use of the model by biologists contributed to strengthen the
plausibility of this hypothesis as a remarkable geological
discovery that has achieved textbook stature (e.g., Stanley,
1989). Paradoxically, despite a number of stratigraphical,
sedimentological, geodynamical, geochemical and
geophysical (etc.) investigations have been devoted to
characterise the MSC, the contribution of palaeontology
has been comparatively limited and primarily focused at
supporting the catastrophic scenario of an “oceanographic
apocalypse” (e.g., Taviani, 2002) at the end of the
Miocene. The survey of the Italian fossil record presented
herein, although far from being exhaustive, demonstrates
that the palaeontological information potentially available
is abundant and qualitatively adequate to contribute
to the discussion. The analysis of the record suggests
that a relevant environmental perturbation certainly
took place in the Mediterranean between 5.97 and 5.33
Ma but, at the same time, clearly indicates that marine
organisms persisted throughout the three stages of the
MSC. However, a more detailed exploration of the fossil
record of the MSC at Mediterranean scale is necessary
to expand our knowledge about the structure and
composition of the Mediterranean biotic communities.
Moreover, a comprehensive comparative examination of
the pre-MSC and Zanclean Mediterranean and Eastern
Atlantic (Morocco, Portugal, Spain) fossil record would
be crucial to properly interpret the biotic continuity vs
turnover across the MSC (see Neraudeau et al., 2001) and
to evaluate the plausibility of the western Mediterranean
“sanctuaries” or “refugia” that allowed the Pliocene
survival of the Miocene endemics (e.g., Grecchi, 1978;
David & Pouyet, 1984; Moisette & Pouyet, 1987; Di
Geronimo, 1990).
ACKNOWLEDGEMENTS
We are particularly obliged to Richard W. Jordan (Department
of Earth and Environmental Sciences, Yamagata University,
Yamagata) for useful comments and discussion about diatom
  
constructive suggestions for its improvement, we are particularly
grateful to Konstantina Agiadi (Department of Historical Geology
and Palaeontology, National and Kapodistrian University, Athens),
Walter Landini (Dipartimento di Scienze della Terra, Università di

Sciences, Prague), and an anonymous reviewer. The research was
supported by grants (ex-60% 2016-2017 and 2018) to G.C. of the
Università degli Studi di Torino.
REFERENCES
Agalarova D.A., Dzhafarov D.I. & Khalilov D.M. (1940).
Spravocknik po Mikofaune tretichniykh otlozheniy
Apsheronskogo poluostrova. 135 pp. Azerbaijan State Publisher,
Baku. [in Russian]
131
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
Agalarova D.A., Kadyrova Z.K. & Kulijeva S.A. (1961). Ostrakody
pliotsenovykh i postpliotsenovykh otlozeniy Azerbaydzhana.
420 pp. Azerbaijan State Publisher, Baku. [in Russian]
Agassiz L. (1832). Untersuchungen über die fossilen Süsswasser-
Fische der tertiärean Formationen. Jahrbuch für Mineralogie,
Geognosie, Geologie und Petrefaktenkunde, 3: 129-138.
Aguirre J. & Sánchez-Almazo I.M. (2004). The Messinian post-
evaporitic deposits of the Gafares area (Almeria-Nijar basin,
Sedimentary
Geology, 168: 71-95.
Alinat J. & Cousteau J. (1962). Accidents de terrain en mer de
Ligurie. In Océanographie géologique et géophysique de la
Mediterranée occidentale. Colloque National de CNRS: 121-
123.
Allwood A.C., Burch I.W., Rouchy J.M. & Coleman M. (2013).
Morphological biosignatures in gypsum: diverse formation
processes of Messinian (6.0 Ma) gypsum stromatolites.
Astrobiology, 13: 870-886.
Anfossi G. & Mosna S. (1971). Alcuni otoliti del Miocene medio-
superiore tortonese. Atti dell’Istituto Geologico dell’Università
di Pavia, 21: 137-147.
Arambourg C. (1925). Révision des poissons fossils de Licata
(Sicile). Annales de Paléontologie, 14: 39-132.
Arambourg C. (1927). Les poissons fossiles d’Oran. Matériaux
pour la Carte géologique de l’Algérie, 1er Série-Paléontologie,
6: 1-218.
Auzende J.M., Bonnin J., Olivet J.-L. & Pautot G. (1971). Upper
Miocene salt layer in the western Mediterranean. Nature, 230:
82-84.
Baciu D.-S., Bannikov A.F. & Santini F. (2005). A new species of
Caproidae (Acanthomorpha, Teleostei) from the Messinian
(upper Miocene) of Oran (Algerie). Geodiversitas, 27: 381-390.
Backman J. (1978). Late Miocene - Early Pliocene nannofossil
biochronology and biogeography in the Vera Basin, SE Spain.
Stockholm Contributions in Geology, 32: 93-114.
Bailey J.V., Orphan V.J., Joye S.B. & Corsetti F.A. (2009).
Chemotrophic microbial mats and their potential for preservation
in the rock record. Astrobiology, 9: 843-859.
Bannikov A.F., Schwarzhans W. & Carnevale G. (2018). Neogene
Paratethyan croakers (Teleostei, Sciaenidae). Rivista Italiana
di Paleontologia e Stratigraa, 124: 535-571.
Banta A.B., Wei J.H. & Welander P.V. (2015). A distinct pathway
for tetrahymanol synthesis in bacteria. Proceedings of the
National Academy of Sciences of the United States of America,
112: 13478-13483.
Barbieri F. & Rio D. (1974). Calcareous nannoplankton from the
Upper Miocene (Messinian) of the Crostolo Torrent (W. Emily).
Acta Naturalia de l’Ateneo Parmense, 10: 15-28.
Bassetti M.A., Miculan P. & Ricci Lucchi F. (2003). Ostracod faunas
and brackish-water environments of the late Messinian Sapigno
section. Palaeogeography, Palaeoclimatology, Palaeoecology,
198: 335-352.
Bassetti M.A., Miculan P. & Sierro F.J. (2006). Evolution of
depositional environments after the end of Messinian salinity
crisis in Nijar basin (SE Betic Cordillera). Sedimentary Geology,
188-189: 279-295.
Bedini E., Francalacci P. & Landini W. (1986). I pesci fossili del
   .
Memorie del Museo Civico di Storia Naturale di Verona, Sezione
Scienze della Terra, 3: 1-66.
Bellanca A., Caruso A., Ferruzza G., Neri R., Rouchy J.-M.,
Sprovieri M. & Blanc-Valleron M.M. (2001). Transition from
marine to hypersaline conditions in the Messinian Tripoli
Formation from the marginal areas of the central Sicilian Basin.
Sedimentary Geology, 140: 87-105.
Benson R.H. (1976). Changes in the ostracodes of the Mediterranean
with the Messinian Salinity Crisis. Palaeogeography,
Palaeoclimatology, Palaeoecology, 20: 147-170.
Benson R.H., Rakic-El Bied K. & Bonaduce G. (1991). An important

Tortonian-Messinian boundary: the end of the Tethys Ocean.
Paleoceanography, 6: 164-192.
Berg J.S., Schwedt A., Kreutzmann A.C., Kuypers M.M.M.
      
Beggiatoa spp. Applied and
Environmental Microbiology, 80: 629-636.
Bernini F. (1984). Main trends of oribatid mite biogeography in
the central-west Mediterranean. In
C.E. (eds), Acarology VI, Hellis Horwood Publishers: 932-940.
Bertini A. (2006). The Northern Apennines palynological record
as a contribute for the reconstruction of the Messinian
paleoenvironments. Sedimentary Geology, 188-189: 235-258.
Bertini A., Londeix L., Maniscalco R., Di Stefano A., Suc J.-P.,
Clauzon G., Gautier F. & Grasso M. (1998). Paleobiological
evidence of depositional conditions in the Salt Member,
  
Sicily. Micropaleontology, 44: 413-433.
Bianco P.G. (1990). Potential role of the paleohistory of the
Mediterranean and Paratethys basins on the early dispersal
of Euro-Mediterranean freshwater fishes. Ichthyological
Exploration of the Freshwaters, 1: 167-184.
Birgel D., Guido A., Liu X., Hinrichs K.-U., Gier S. & Peckmann J.
(2014). Hypersaline conditions during deposition of the Calcare
di Base revealed from archaeal di- and tetraether inventories.
Organic Geochemistry, 77: 11-21.
Biscaye P., Ryan W.B.F. & Wezel F.C. (1972). Age and nature of the
In Stanley D.J. (ed.),
The Mediterranean Sea, Dowden, Hutchinson & Ross: 83-90.
Bizon J.-J. & Bizon G. (1965). L’Helvetien et le Tortonien de
la region de Parga (Epire continentale, Grece). Revue de
Micropaléontologie, 7: 242-256.
Blanc-Valleron M.-M., Pierre C., Caulet J.P., Caruso A., Rouchy
J.-M., Cespuglio G., Sprovieri R., Pestrea S. & Di Stefano E.
(2002). Sedimentary, stable isotope and micropaleontological
records of paleoceanographic change in the Messinian Tripoli
Formation (Sicily, Italy). Palaeogeography, Palaeoclimatology,
Palaeoecology, 185: 255-286.
Blanc-Valleron M.-M., Rouchy J.M., Pierre C., Badaut-Trauth
D. & Schuler M. (1998). Evidence of Messinian non-marine
deposition at Site 968 (Cyprus Lower Slope). Proceedings of
the Ocean Drilling Program, Scientic Results, 160: 437-445.
Blow W.H. (1959). Age, correlation, and biostratigraphy of the upper
Tocuyo (San Lorenzo) and Pozon Formations, eastern Falcon,
Venezuela. Bulletins of American Paleontology, 39: 67-251.
Blumenberg M., Kruger M., Nauhaus K., Talbot H.M., Oppermann
B.I., Seifert R., Pape T. & Michaelis W. (2006). Biosynthesis of
hopanoids by sulfate-reducing bacteria (genus Desulfovibrio).
Environmental Microbiology, 8: 1220-1227.
Bocquet G., Widler B. & Kiefer H. (1978). The Messinian

Mediterranean area. Candollea, 33: 269-287.
Bolli H.M. & Bermudez P. J. (1965). Zonation based on planktonic
foraminifera of Middle Miocene to Pliocene warm-water
sediments. Bolletin Informativo, Asociacion Venezolana de
Geologia, Mineria y Petroleo, 8: 119-149.
Bonaduce G. & Sgarrella F. (1999). Paleoecological interpretation
of the latest Messinian sediments from southern Sicily (Italy).
Memorie della Società Geologica Italiana, 54: 83-91.
Boomer I., Whatley R. & Aladin N.V. (1996). Aral Sea Ostracoda
as environmental indicators. Lethaia, 29: 77-85.
Bossio A., Esteban M., Giannelli L., Longinelli A., Mazzanti R.,
Mazzei R., Ricci Lucchi F. & Salvatorini G. (1978). Some
aspects of the Upper Miocene in Tuscany. Messinian Seminar,
4: 1-88.
Bradley F. & Landini W. (1984). I fossili del “tripoli” messiniano di
Gabbro (Livorno). Palaeontographia Italica, 73: 5-33.
Brady H.B. (1882). Report on the Foraminifera. In Tizard and Murray
(eds), Exploration of the Faroe Channel, during the summer
of 1880, in H.M.S. “Knight Errant,” with subsidiary reports.
Proceedings of the Royal Society of Edinburgh, 11: 708-717.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
132
Bramlette M.N. & Riedel W.R. (1954). Stratigraphic value of
discoasters and some other microfossils related to Recent
coccolithophores. Journal of Paleontology, 28: 385-403.
Brauer A. (1904). Die Gattung Myctophum. Zoologischer Anzeiger,
28: 377-404.
Brönnimann P. & Stradner H. (1960). Die Foraminiferen- und
Discoasteriden-zonen von Kuba und ihre interkontinentale
Korrelation. Erdoel-Zeitschrift, 76: 364-369.
Brusina S. (1893). Saccoia - Nuovo genere di Gasteropodi terziari
Italo-Francesi. Bollettino della Società Malacologica Italiana,
18: 49-54.
Brzobohatý R. & Nolf D. (2000). Diaphus otoliths from the
European Neogene (Myctophidae, Teleostei). Bulletin de
l’Institut Royal des Sciences Naturelles de Belgique, Sciences
de la Terre, 70: 185-206.

    
Micropaleontology, 30: 180-212.
Bukry D. & Bramlette M.N. (1969). Some new and stratigraphically
useful calcareous nannofossils of the Cenozoic. Tulane Studies
in Geology, 7: 131-142.
Bukry D. & Percival S.F. (1971). New Tertiary calcareous nannofossils.
Tulane Studies in Geology and Paleontology, 8: 123-146.
Capellini G. (1879). Gli strati a Congeria e le marne compatte
mioceniche dei dintorni di Ancona. Memorie della Reale
Accademia dei Lincei, 3: 139-162.
Capellini G. (1880). Gli strati a Congerie o la formazione gessoso-
      
Memorie della Reale Accademia dei Lincei, 5: 3-55.
Caponi C. (2008). Il Messiniano post-evaporitico di Cava Marmolaio
(Bacino del Fiume Fine, Toscana): caratteri paleontologici ed
implicazioni nell’evento “Lago-Mare”. 92 pp. MSc Thesis,
Università di Pisa.
Carbonnel G. (1978). La zone a Loxoconcha djafarovi Schneider
(Ostracoda, Miocène supèrieur) ou le Messinien de la Vallée du
Rhône. Revue de Micropaléontologie, 21: 106-118.
Carbonnel G. (1980). L’ostracofaune du Messinien: une preuve de la
vidange de la Paratéthys. Géologie Méditerranéenne, 7: 19-24.
Carnevale G. (2003). Redescription and phylogenetic relationships
of Argyropelecus logearti (Teleostei: Stomiiformes:
Sternoptychidae) with a brief review of fossil Argyropelecus.
Rivista Italiana di Paleontologia e Stratigraa, 109: 63-76.
Carnevale G. (2004). The first fossil ribbonfish (Teleostei,
Lampridiformes, Trachipteridae). Geological Magazine, 141:
573-582.
Carnevale G. (2006). Morphology and biology of the Miocene
Chaetodon cheuri (Teleostei: Chaetodontidae).
Zoological Journal of the Linnean Society, 146: 251-267.
Carnevale G. & Bannikov A.F. (2006). Description of a new
Acta
Palaeontologica Polonica, 51: 489-497.
Carnevale G., Caputo D. & Landini W. (2006a). 
otoliths from the Colombacci Formation (Northern Apennines,
Italy): Implications for the Messinian ‘Lago-mare’ event.
Geological Journal, 41: 537-555.
Carnevale G., Caputo D. & Landini W. (2008a). 
Carangidae) from the Messinian evaporites of the Vena del
Gesso basin (Romagna Apennines, Italy): Paleogeographical
and paleoecological implications. Bollettino della Società
Paleontologica Italiana, 47: 169-176.
Carnevale G., Dela Pierre F., Natalicchio M. & Landini W.
(2018).   
the Mediterranean ever transformed into a brackish lake?
Newsletters on Stratigraphy, 51: 57-72.
Carnevale G., Landini W. & Sarti G. (2006b). Mare versus Lago-

end of the Messinian Salinity Crisis. Journal of the Geological
Society, London, 163: 75-80.
Carnevale G., Longinelli A., Caputo D., Barbieri M. & Landini

the Mio-Pliocene boundary? Paleontological and geochemical
evidence from upper Messinian sequences of Tuscany, Italy.
Palaeogeography, Palaeoclimatology, Palaeoecology, 257:
81-105.

genus Antennarius (Teleostei: Lophiiformes: Antennariidae),
from the Miocene of Algeria. Journal of Zoology, London,
270: 448-457.
Carnevale G., Sorbini C. & Landini W. (2003). †Oreochromis
lorenzoi sp. nov., a new species of Tilapiine Cichlid from the late
Miocene of Central Italy. Journal of Vertebrate Paleontology,
23: 508-516.
Caruso A., Pierre C., Blanc-Valleron M.-M. & Rouchy J.-M. (2015).
Carbonate deposition and diagenesis in evaporitic environments:
The evaporative and sulphur-bearing limestones during the
settlement of the Messinian Salinity Crisis in Sicily and
Calabria. Palaeogeography, Palaeoclimatology, Palaeoecology,
429: 136-162.
Castradori D. (1998). Calcareous nannofossils in the basal Zanclean
of the Eastern Mediterranean Sea: remarks on paleoceanography
and sapropel formation. Proceedings of the Ocean Drilling
Project, Scientic Reports, 160: 113-123.
Catalano R., Di Stefano E., Sprovieri R., Lena G. & Valenti
V. (2016). The barren Messinian Tripoli in Sicily and its
palaeoenvironmental evolution: suggestions on the exploration
potential. Petroleum Geosciences, 22: 322-332.

Saheliane (Messiniano inferiore) in Sicilia. In Farinacci A. &
Matteucci R. (eds), Proceedings of the II Planktonic Conference,
Edizioni Tecno-Scienza, Rome: 211-249.
Cavallo O. & Gaudant J. (1987). Observations complémentaires
sur l’ichthyofaune des marnes messiniennes de Cherasco
(Piemont): implications géodynamique. Bollettino della Società
Paleontologica Italiana, 26: 177-198.
Christeleit E.C., Brandon M.T. & Zhuang G. (2015). Evidence for
deep-water deposition of abyssal Mediterranean evaporites
during the Messinian salinity crisis. Earth and Planetary Science
Letters, 427: 226-235.
CIESM (2008). The Messinian salinity crisis from mega-deposits
to microbiology. CIESM Workshop Monographs, 33: 1-168.
     
problems. Initial Reports of the Deep Sea Drilling Project,
13: 1045-1073.
Cita M.B., Ryan W.B.F. & Kidd R.B. (1978b). Sedimentation rates
in Neogene deep-sea sediments from the Mediterranean and
geo-dynamic of their changes. Initial Report of the Deep Sea
Drilling Project, 42: 991-1002.
Cita M.B., Wright R.C., Ryan W.B.F. & Longinelli A. (1978a).
Messinian paleoenvironments. Initial Reports of the Deep Sea
Drilling Project, 42: 1003-1035.
Clauzon G., Suc J.P., Do Couto D., Jouannic G., Melinte-Dobrinescu
M.C., Jolivet L., Quillévéré F., Lebret N., Mocochain L.,
Popescu S.-M., Martinell J., Doménech R., Rubino J.-L.,
Gumiaux C., Warny S., Bellas S.M., Gorini C., Bache F.,
Rabineau M. & Estrada F. (2015). New insights on the Sorbas
Basin (SE Spain): the onshore reference of the Messinian
salinity crisis. Marine and Petroleum Geology, 66: 71-100.
Clauzon G., Suc J.P., Gautier F., Berger A. & Loutre M.F. (1996).
Alternate interpretation of the Messinian salinity crisis,
controversy resolved? Geology, 24: 363-366.
Colacicchi R., Devoto G. & Praturlon A. (1967). Depositi messiniani
oligoalini al bordo orientale del Fucino e descrizione di
Tyrrhenocythere ruggierii Devoto, nuova specie di ostracode.
Bollettino della Società Geologica Italiana, 86: 21-37.
Colombero S., Alba D.M., D’Amico C., Delfino M., Esu D.,
Giuntelli P., Harzhauser M., Mazza P.P.A., Mosca M., Neubauer
T.A., Pavia G., Pavia M., Villa A. & Carnevale G. (2017). Late
Messinian mollusks and vertebrates from Moncucco Torinese,
north-western Italy. Paleoecological and paleoclimatological
implications. Palaeontologia Electronica, 20.1.10A: 1-66.
133
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
Colombero S., Angelone C., Bonelli E., Carnevale G., Cavallo

Mazza P. (2014). The upper Messinian assemblages of fossil
vertebrate remains of Verduno (NW Italy): Another brick for a
latest Miocene bridge across the Mediterranean. Neues Jahrbuch
für Geologie und Paläontologie, Abhandlungen, 272: 287-324.
Compagnoni B. (1964). Malacofauna infralitorale di Monte S.
Giovanni Campano. Geologica Romana, 3: 251-278.
      
planktonic foraminifer event-stratigraphy of the Bajo Segura
basin: A complete record of the western Mediterranean. Marine
and Petroleum Geology, 77: 1010-1027.
    
Messinien-Pliocène dans la coupe de Cava Serredi, Toscane,
Italie. Bulletin des Centres de Recherche Exploration-
Production Elf-Aquitaine, 12: 221-236.
Cosentino D., Bertini A., Cipollari P., Florindo F., Gliozzi E.,
Grossi F., Mastro S.L. & Sprovieri M. (2012). Orbitally forced
paleoenvironmental and paleoclimate changes in the late
postevaporitic Messinian of the central Mediterranean Basin.
Geological Society of America Bulletin, 124: 499-516.
Cosentino D., Cipollari P., Lo Mastro S. & Giampaolo C. (2005).
High-frequency ciclicity in the latest Messinian Adriatic
foreland basin: insight into paleoclimate and paleoenvironments
of the Mediterranean Lago-Mare episode. Sedimentary Geology,
171: 31-53.
Cosentino D., Federici I., Cipollari P. & Gliozzi E. (2006).
Environments and tectonic instability in central Italy (Garigliano
Basin) during the late Messinian Lago-Mare episode: New data
from the onshore Mondragone 1 well. Sedimentary Geology,
188: 297-317.
  The S.
Nicolao section (Montagna della Maiella): a reference section
for the Miocene-Pliocene boundary in the Abruzzi area.
Bollettino della Società Geologica Italiana, volume speciale
1: 509-516.
Cushman J.A. (1922). The foraminifera of the Byram Calcareous
Marl at Byram, Mississipi. In White D. (ed.), Shorter
Contributions to General Geology. United States Geological
Survey Professional Papers, 129E: 82-281.
Cushman J.A. (1926). Foraminifera of the genera Siphogenerina
and Pavonina. Proceedings of the United States National
Museum, 67: 1-24.
Cushman J.A. (1930). The Foraminifera of the Atlantic Ocean. Part
7. Nonionidae, Camerinidae, Peneroplidae and Alveolinellidae.
Bulletin of the United States National Museum, 104: 1-79.
Cuvier G. & Valenciennes A. (1829). Histoire naturelle des poissons.
Tome quatrième. Livre quatrième. Des acanthoptérygiens à joue
cuirassée. 518 pp. F.G. Levrault, Paris.

des Wiener Beckens. Haidinger’s Natur-wissenschaftliche
Abhandlungen, 2: 137-150.
D’Ancona C. (1869). Sulle Neritine fossili dei terreni terziari
superiori dell’Italia centrale. Bollettino Malacologico Italiano,
2: 43-50.
D’Archiac A. In Viquesnel M.A. (1846). Journal d’un voyage dans
la Turquie d’Europe. Mémoires de la Société Géologique de
France, ser. 2, 1: 207-303.
David L. & Pouyet S. (1984). Les bryozoaires Méditerranéens du
    
paléoécologique, essai biogéographique. Annales Géologiques
des Pays Helléniques, 32: 129-139.
Dawson K.S., Freeman K.H. & Macalady J.L. (2012). Molecular
characterization of core lipids from halophilic archaea grown
   Organic Geochemistry,
48: 1-8.
Debenedetti A. (1982). The problem of the origin of the salt
deposits in the Mediterranean and of their relations to the other
salt occurrences in the Neogene formations of the contiguous
regions. Marine Geology, 49: 91-114.
Decima A. (1964). Ostracodi del genere Cyprideis Jones nel
Neogene e Quaternario italiani. Palaeontographia Italica, 57:
81-133.
Decima A., McKenzie J.A. & Schreiber B.C. (1988). The origin of
“evaporative” limestones: an example from the Messinian of
Sicily. Journal of Sedimentary Petrology, 58: 256-272.
 
Australian Late Mesozoic and Tertiary sediments. Australian
Journal of Marine and Freshwater Research, 6: 242-313.
Deflandre G. & Fert C. (1954). Observations sur les
coccolithophoridés actuels et fossiles en microscopie ordinaire
et électronique. Annales de Paléontologie, 40: 115-176.
Dela Pierre F., Bernardi E., Cavagna S., Clari P., Gennari R., Irace
A., Lozar F., Lugli S., Manzi V., Natalicchio M., Roveri M. &
Violanti D. (2011). The record of the Messinian salinity crisis
in the Tertiary Piedmont Basin (NW Italy): the Alba section
revisited. Palaeogeography, Palaeoclimatology, Palaeoecology,
310: 238-255.
Dela Pierre F., Clari P., Bernardi E., Natalicchio M., Costa E.,
Cavagna S., Lozar F., Lugli S., Manzi V., Roveri M. & Violanti
D. (2012). Messinian carbonate-rich beds of the Tertiary
Piedmont Basin (NW Italy): microbially-mediated products
straddling the onset of the salinity crisis. Palaeogeography,
Palaeoclimatology, Palaeoecology, 344-345: 78-93.
Dela Pierre F., Clari P., Natalicchio M., Ferrando S., Giustetto R.,
Lozar F., Lugli S., Manzi V., Roveri M. & Violanti D. (2014).
Flocculent layers and bacterial mats in the mudstone interbeds
of the Primary Lower Gypsum unit (Tertiary Piedmont basin,
NW Italy): Archives of palaeoenvironmental changes during the
Messinian salinity crisis. Marine Geology, 355: 71-87.
Dela Pierre F., Natalicchio M., Ferrando S., Giustetto R., Birgel
D., Carnevale G., Gier S., Lozar F., Marabello D. & Peckmann
J. (2015).    
    
Geology, 43: 855-858.
Denizot G. (1952). Le Pliocène dans la vallée du Rhône. Révue de
Geographie de Lyon, 27: 327-357.
D’Erasmo G. (1928). L’ittiofauna fossile di Racalmuto in Sicilia.
Giornale della Società di Scienze Naturali ed Economiche di
Palermo, 35: 73-110.
Deshayes G.-P. (1835). Mollusques. In 

   
Morée. Section des sciences physiques. Tome III, 1.re partie.
Zoologie. Première section. Animaux vertébrés, mollusques et
polypiers: 81-203.
Di Geronimo I. (1990) Biogeografia dello zoobenthos del
Mediterraneo: origine e problematiche. Oebalia, 16 (Supplement
1): 31-49.
Di Napoli Alliata E. (1952). Nuove specie di foraminiferi nel
Pliocene e nel Pleistocene della zona di Castell´Arquato
(Piacenza). Rivista Italiana di Paleontologia e Stratigraa,
58: 95-110.
Do Couto D., Popescu S.-M., Suc J.-P., Melinte-Dobrinescu M.C.,
Barhoun N., Gorini C., Jolivet L., Poort J., Jouannic G. &
Auxetre J.-L. (2014). Lago Mare and the Messinian Salinity
Crisis: Evidence from the Alboran Sea (S. Spain). Marine and
Petroleum Geology, 52: 57-76.
d’Orbigny A. (1826). Tableau methodique de la Classe de
Cephalopodes. Annales des Sciences Naturelles, 7: 245-314.
d’Orbigny A. (1846). Die fossilen Foraminiferen des tertiären
Beckens von Wien. 312 pp. Gide et Comp., Paris.
Drugg W.S. & Loeblich A.R. Jr. (1967). Some Eocene and Oligocene
phytoplankton from the Gulf Coast, U.S.A. Tulane Studies in
Geology, 5: 181-194.
Duggen S., Hoernle K., van den Bogaard P., Rüpke L. & Phipps-
Morgan J. (2003). Deep roots of the Messinian salinity crisis.
Nature, 422: 602-606.
Egger J.G. (1893). Foraminiferen aus Meeresgrundproben, gelothet
von 1874 bis 1876 von S.M. Sch. “Gazelle”. Abhandlungen
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
134
der Mathematisch-Physikalischen Classe der Königlich
Bayerischen Akademie der Wissenschaften, 18: 193-458.
Ehrenberg C.G. (1838). Über das Massenverhältniss der jetzt lebenden
Kiesel-Infusorien und über ein neues Infusorien-Conglomerat
als Polierschiefer von Jastraba in Ungarn. Königlich Akademie
der Wissenschaften zu Berlin, Abhandlungen, 1: 109-135.
Ehrenberg C.G. (1840). Eine weitere Erläuterung des Organismus
mehrerer in Berlin lebend beobachteter Polythalamien der
Nordsee. Bericht über die zur Bekanntmachung geeigneten
Verhandlungen der Königlich-Preussischen Akademie der
Wissenschaften zu Berlin, 1840: 18-23.
Ehrlich H., Demadis K.D., Pokrovsky O.S. & Koutsoukos P.G.
(2010). Modern views on desilicication: biosilica and abiotic
silica dissolution in natural and articial environments.
Chemical Review, 110: 4656-4689.
Esu D. (2007). Lates Messinian “Lago-Mare” Lymnocardiinae from
Italy: Close relations with the Pontian fauna from the Dacic
Basin. Geobios, 40: 291-302.
Esu D. & Girotti O. (1989). Late Miocene and Early Pliocene
continental and oligohaline molluscan faunas in Italy. Bollettino
della Società Paleontologica Italiana, 28: 253-263.
Esu D. & Popov S.V. (2002). Revision of late Messinian
Lymnocardiinae (Bivalvia) from Piedmont (NW Italy). Rivista
Italiana di Paleontologia e Stratigraa, 118: 343-356.
Faranda C., Gliozzi E. & Ligios S. (2007). Late Miocene brackish
Loxoconchidae (Crustacea, Ostracoda) from Italy. Geobios,
40: 303-324.
Fichtel L.v. & Moll J.P.C. (1798). Testacea microscopia, aliaque
minuta ex generibus Argonauta et Nautilus, ad naturam
delineata et descripta. 123 pp. A. Pichler, Wien.
Filippelli G.M., Sierro F.J., Flores J.A., Vazquez A., Utrilla R.,
Perez-Folgado M. & Latimer J.C. (2003). A sediment-nutrient-
oxygen feedback responsible for productivity variations in Late
Miocene sapropel sequences of the western Mediterranean.
Palaeogeography, Palaeoclimatology, Palaeoecology, 190:
335-348.
Flores J.A., Sierro F.J., Filippelli G.M., Barcena M.A., Perez-
Folgado M., Vazquez A. & Utrilla R. (2005). Surface water
dynamics and phytoplankton communities during deposition
of cyclic late Messinian sapropel sequences in the western
Mediterranean. Marine Micropaleontology, 56: 50-79.
Fortuin A.R. & Krijgsman W. (2003). The Messinian of the Nijar
Basin (SE Spain): sedimentation, depositional environment
and paleogeographic evolution. Sedimentary Geology, 160:
213-242.
Fossing H., Gallardo V.A., Jørgensen B.B., Hüttel M., Nielsen
L.P., Schulz H., Canfield D.E., Forster S., Glud R.N.,
Gundersen J.K., Küver J., Ramsing N.B., Teske A., Thamdrup
B. & Ulloa O. (1995). Concentration and transport of nitrate
by the mat-forming sulphur bacterium Thiophloca. Nature,
374: 713-715.
Fourtanier E., Gaudant J. & Cavallo O. (1991). La diatomite de
Castagnito (Piémont): une nouvelle prevue de l’existence
d’oscillations modérées du niveau marin pendant le Messinien
évaporitique. Bollettino della Società Paleontologica Italiana,
30: 79-95.
Gallagher K.L., Kading T.J., Braissant O., Dupraz C. & Visscher
P.T. (2012). Inside the alkalinity engine: the role of electron
donors in the organomineralization potential of sulfate-reducing
bacteria. Geobiology, 10: 518-530.
Gallardo V.A. (1977). Large benthic microbial communities in
sulphide biota under Peru-Chile subsurface counter current.
Nature, 286: 331-332.
Garcia-Castellanos D., Estrada F., Jiménez-Munt I., Gorini C.,
Fernàndez M., Vergés J. & De Vicente R. (2009). Catastrophic

Nature, 462: 778-781.
Gartner S. (1967). Calcareous nannofossils from Neogene of
Trinidad, Jamaica, and Gulf of Mexico. Paleontological
Contributions. University of Kansas, 29: 1-7.
Gartner S. (1969). Correlation of Neogene planktonic foraminifera
and calcareous nannofossil zones. Transactions of the Gulf
Coast Association of Geological Societies, 19: 585-599.
Gartner S. & Bukry D. (1974). Ceratolithus acutus Gartner and
Bukry n. sp. and Ceratolithus amplicus Bukry and Percival
 Tulane Studies in Geology and
Paleontology, 11: 115-118.
Gartner S. & Bukry D. (1975). Morphology and phylogeny of the
coccolithophycean family Ceratolithaceae. Journal of Research
of the United States Geological Survey, 3: 451-465.
Gaudant J. (1978). L’ichthyofaune des marnes messiniennes
des environs de Gabbro (Toscane, Italie): signification
paleoecologique. Geobios, 11: 905-911.
Gaudant J. (1979). “Pachylebiascrassicaudus (Agassiz)
(Poisson téléostéen, Cyprinodontiforme), un constituant
majeur de l’ichthyofaune du Messinien continental du bassin
méditerranéen. Geobios, 12: 47-73.
Gaudant J. (1981). L’ichthyofaune du Messinien continental
d’Italie septentrionale et sa signification geodynamique.
Palaeontographica A, 172: 72-102.
Gaudant J. (2002). La crise messinienne et ses effets sur
l’ichthyofaune néogène de la Méditerranée: le témoignage des
squelettes en connexion de poissons téléostéens. Geodiversitas,
24: 691-710.
Gaudant J., Caulet J.-P., Di Geronimo I., Di Stefano A., Fourtanier E.,
Romeo M. & Venec-Peyre M.-T. (1996). Analyse séquentielle
d’un nouveau gisement de poissons fossiles du Messinien marin
diatomitique: Masseria il Salto près de Caltagirone (Province
de Catane, Sicile). Géologie Méditerranéenne, 23: 117-153.
Gaudant J., Guerrera F. & Savelli D. (1988). Nouvelles données sur le
Messinien de Méditerranée occidentale: les gisements à Aphanius
crassicaudus (Agassiz). Geodinamica Acta, 2: 185-196.
Gennari R., Darling K.F., Lugli S., Manzi V., Reghizzi M., Rossi
F.P., Roveri M. & Smart C.W. (2018b). Biserial foraminifera
in the Messinian Lago Mare of the Western Mediterranean:
the tychopelagic lifestyle as a proxy of ephemeral marine
connections. On-line abstract, Forams2018, Edinburgh 17-22
June 2018.
Gennari R., Iaccarino S.M., Di Stefano A., Sturiale G., Cipollari P.,
Manzi V., Roveri M. & Cosentino D. (2008). The Messinian-
Zanclean boundary in the Northern Apennine. Stratigraphy,
5: 307-322.
Gennari R., Lozar F., Turco E., Dela Pierre F., Manzi V., Natalicchio
M., Lugli S., Roveri M., Schreiber B.C. & Taviani M. (2018a).
Integrated stratigraphy and paleoceanographic evolution of
the pre-evaporitic phase of the Messinian salinity crisis in the
Eastern Mediterranean as recorded in the Tokhni section (Cyprus
island). Newsletters on Stratigraphy, 51: 33-55.

A., Faranda C., Gliozzi E., Lugli S., Menichetti E., Rosso A.,
Roveri M. & Taviani M. (2013). A shallow water record of the
onset of the Messinian salinity crisis in the Adriatic foredeep
(Legnagnone section, Northern Apennines). Palaeogeography,
Palaeoclimatology, Palaeoecology, 386: 145-164.
Gignoux M. (1936). Géologie Stratigraphique, 2eme edition. 709
pp. Masson, Paris.
Girone A., Nolf D. & Cavallo O. (2010). Fish otoliths from the
pre-evaporitic (Early Messinian) sediments of northern Italy:
Facies,
56: 399-432.
Gliozzi E. (1999). A late Messinian brackish water ostracod fauna
of Paratethyan aspect from the Le Vicenne Basin (Abruzzi,
central Apennines, Italy). Palaeogeography, Palaeoclimatology,
Palaeoecology, 151: 191-208.
Gliozzi E., Ceci M.E., Grossi F. & Ligios S. (2007). Paratethyan
Ostracod immigrants in Italy during the Late Miocene. Geobios,
40: 325-337.
Gliozzi E., Rodriguez-Lazaro J., Nachite D., Martin-Rubio M.
& Bekkali R. (2005). An overview of Neogene brackish
leptocytherids from Italy and Spain: Biochronological
135
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
and palaeogeographical implications. Palaeogeography,
Palaeoclimatology, Palaeoecology, 225: 283-301.
Gmelin J.F. (1789). Caroli a Linné ... Systema Naturae per regna
tria naturae, secundum classes, ordines, genera, species; cum
   Editio decimo
tertia, aucta, reformata. Vol. 1, pt. 3: 1033-1516.
Gornals G.M. (2013).    
Olles Formation (Lago Mare, upper Messinian) on the island
of Mallorca (Balearic Islands, western Mediterranean). Bolleti
de la Societat d’Historia Natural de les Balears, 56: 209-232.
Goubert E., Néraudeau D., Rouchy J.M. & Lacour D. (2001).
Foraminiferal record of environmental changes: Messinian of
the Los Yesos area (Sorbas basin, SE Spain). Palaeogeography,
Palaeoclimatology, Palaeoecology, 175: 61-78.
Govers R., Meijer P. & Krijgsman W. (2009). Regional isostatic
response to Messinian Salinity Crisis event. Tectonophysics,
463: 109-129.
Grecchi G. (1978). Problems connected with the recorded
occurrence of some mollusks of Indo-Pacific affinity in
the Pliocene of the Mediterranean area. Rivista Italiana di
Paleontologia, 84: 797-812.
     
late Miocene climate of North Africa and the Mediterranean.
Palaeogeography, Palaeoclimatology, Palaeoecology, 182:
65-91.
Grossi F., Cosentino D. & Gliozzi E. (2008). Late Messinian
Lago-Mare ostracods and palaeoenvironments of the central
and eastern Mediterranean Basin. Bollettino della Società
Paleontologica Italiana, 47: 131-146.
Grossi F. & Gennari R. (2008). Palaeoenvironmental reconstruction
across the Messinian/Zanclean boundary by means of ostracods
and foraminifers: the Montepetra borehole (northern Apennine,
Italy). Atti del Museo Civico di Storia Naturale di Trieste, 53:
67-88.
Grossi F., Gliozzi E., Anadón P., Castorina F. & Voltaggio M. (2015).
Is Cyprideis agrigentina Decima a good paleosalinometer
for the Messinian Salinity Crisis? Morphometrical and
geochemical analyses from the Eraclea Minoa section (Sicily).
Palaeogeography, Palaeoclimatology, Palaeoecology, 419:
75-89.
Grossi F., Gliozzi E. & Cosentino D. (2011). Paratethyan ostracod
immigrants mark the biostratigraphy of the Messinian Salinity
Crisis. Joannea, Geologie und Paläontologie, 11: 66-68.
Grothe A., Sangiorgi F., Brinkhuis H., Stoica M. & Krijgsman W.
Galeacysta etrusca and
its implications for the Messinian Salinity Crisis. Newsletters
on Stratigraphy, 51: 73-91.
Grunert P., Harzhauser M., Rosenthal Y. & Carnevale G. (2016).
Estuarine Lago Mare fauna from the Tertiary Piedmont
Basin indicates episodic Atlantic/Mediterranean exchange
      
Palaeogeography, Palaeoclimatology, Palaeoecology, 457:
70-79.
Guido A., Jacob J., Gautret P., Laggoun-Defarge F., Mastandrea A.
& Russo F. (2007). Molecular fossils and other organic markers
as palaeoenvironmental indicators of the Messinian Calcare
di Base Formation: normal versus stressed marine deposition
(Rossano Basin, northern Calabria, Italy). Palaeogeography,
Palaeoclimatology, Palaeoecology, 255: 265-283.
Harvey H.R. & Mcmanus G.B. (1991). Marine ciliates as a
widespread source of tetrahymanol and hopan-3-ol in
sediments. Geochimica et Cosmochimica Acta, 55: 3387-3390.
Harzhauser M., Neubauer T.A., Georgopoulou E., Esu D.,
D’Amico C., Pavia G., Giuntelli P. & Carnevale G. (2015).
Late Messinian continental and Lago-Mare gastropods from
the Tertiary Piedmont Basin, NW Italy. Bollettino della Società
Paleontologica Italiana, 54: 1-53.
Hilgen F.J., Bissoli L., Iaccarino S., Krijgsman W., Meijer R.,
Negri A. & Villa G. (2000). Integrated stratigraphy and
astrochronology of the Messinian GSSP at Oued Akrech
(Atlantic Morocco). Earth and Planetary Science Letters,
182: 237-251.
Hsü K.J. (1972a). When the Mediterranean dried up. Scientic
American, 227: 44-51.
Hsü K.J. (1972b). Origin of Saline Giants: a critical review after
the discovery of the Mediterranean evaporite. Earth-Science
Reviews, 8: 371-396.
Hsü K.J. (1984). The Mediterranean Was a Desert: A Voyage of
the Glomar Challenger. 197 pp. Princeton University Press,
Princeton.
Hsü K.J. (2001). Gaia and the Mediterranean Sea. Scientia Marina,
65 (supplement 2): 133-140.
Hsü K.J., Cita M.B. & Ryan W.B.F. (1973b). The origin of
Mediterranean evaporites. Initial Reports of the Deep Sea
Drilling Project 13, 2: 1203-1231.
Hsü K.J., Montadert L., Bernoulli D., Cita M.B., Erikson A.,
Garrison R.E., Kidd R.B., Mélières F., Müller C. & Wright R.
(1977). History of the Mediterranean Salinity Crisis. Nature,
267: 399-403.
Hsü K.J., Ryan W.B.F. & Cita M.B. (1973a). Late Miocene
desiccation of the Mediterranean. Nature, 242: 240-244.
Iaccarino S.M., Bertini A., Di Stefano A., Ferraro L., Gennari
R., Grossi F., Lirer F., Manzi V., Menichetti E., Ricci Lucchi
M., Taviani M., Sturiale G. & Angeletti L. (2008). The Trave
section (Monte dei Corvi, Ancona, Central Italy): an integrated
paleontological study of the Messinian deposits. Stratigraphy,
5: 281-306.
Iaccarino S. & Bossio A. (1999). Paleoenvironment of uppermost
Messinian sequences in the Western Mediterranean (sites 974,
975 and 978). Proceedings of the Ocean Drilling Program,
Scientic Results, 161: 529-541.
Iaccarino S., Cita M.B., Gaboardi S. & Gruppini G.M. (1999).
High resolution biostratigraphy at the Miocene/Pliocene
boundary in holes 974B and 975B, Western Mediterranean.
Proceedings of the Ocean Drilling Program, Scientific
Results, 161: 197-222.
Iaccarino S.M., Premoli-Silva I., Biolzi M., Foresi L.M., Lirer F.,
Turco E. & Petrizzo M.R. (2007). Practical Manual of Neogene
Planktonic Foraminifera. International School on Planktonic
Foraminifera, 6th Course. 142 pp. Università degli Studi di
Perugia, Perugia.
Jenkins D.G. (1960). Planktonic foraminifera from the Lakes
Entrance oil shaft, Victoria, Australia. Micropaleontology, 6:
345-371.
Jessen G.L., Lichtschlag A., Struck U., Boetius A., Reese B.K.,
Texas A. & Christi M.U. (2016). Distribution and composition of

m water depth, Crimea margin). Frontiers in Microbiology,
7: 1-14.
Kamptner E. (1956). Zur Systematik und Nomenklatur der
Coccolithineen. Anzeiger de Osterreichischen Akademie
der Wissenschaften Mathematisch-Naturwissenschaftliche
Klasse, 93: 4-11.
Karakitsios V., Roveri M., Lugli S., Manzi V., Gennari R.,
Antonarakou A., Triantaphyllou M., Agiadi K., Kontakiotis G.,
Kafousia N. & De Rafelis M. (2017). A Record of the Messinian
Salinity Crisis in the Eastern Ionian Tectonically Active Domain
(Greece, Eastern Mediterranean). Basin Research, 29: 203-233.
Karner M.B., DeLong E.F. & Karl D.M. (2001). Archaeal dominance
     Nature, 409:
507-510.
Kenig F., Sinninghe Damsté J., Frewin N.L., Hayes J.M. & De Leeuw
J.W. (1995). Molecular indicators for palaeoenvironmental
change in a Messinian evaporitic sequence (Vena del Gesso,
Italy). II: High-resolution variations in abundances and 13C
contents of free and sulphur-bound carbon skeletons in a single
marl bed. Organic Geochemistry, 23: 485-526.
Kennett J.P. (1966). The Globorotalia crassaformis bioseries in north
Westland and Marlborough, New Zealand. Micropaleontology,
12: 235-245.
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
136
Kouwenhoven T.J. (2000). Survival under stress: benthic
foraminiferal patterns and Cenozoic biotic crises. Geologica
Ultraiectina, 186: 1-206.
Kouwenhoven T.J., Hilgen F.J. & van der Zwaan G.J. (2003).
   

foraminiferal and geochemical data. Palaeogeography,
Palaeoclimatology, Palaeoecology, 198: 303-319.
Kouwenhoven T.J., Morigi C., Negri A., Giunta S., Krijgsman W.
& Rouchy J.-M. (2006). Paleoenvironmental evolution of the
eastern Mediterranean during the Messinian: Constraints from
integrated microfossil data of the Pissouri Basin (Cyprus).
Marine Micropaleontology, 60: 17-44.
Kramberger (Gorjanovic´-Kramberger) D. (1882). Die jungtertiare
Fischfauna Croatiens I. Beiträge zur Paläontologie Österreich-
Ungarns und des Orients, 1: 86-135.
Krijgsman W., Capella W., Simon D., Hilgen F.J., Kouwenhoven
T.J., Meijer P.T., Sierreo F.J., Tulbure M.A., van den Berg
B.C.J., van der Schee M. & Flecker R. (2018). The Gibraltar
Corridor: Watergate of the Messinian Salinity Crisis. Marine
Geology, 403: 238-246.
Krijgsman W., Gaboardi S., Hilgen F.J., Iaccarino S., de Kaenel E. &
van der Laan E. (2004). Revised astrochronology for the Ain el
Beida section (Atlantic Morocco): no glacio-eustatic control for
the onset of the Messinian salinity crisis. Stratigraphy, 1: 87-101.

Chronology, causes and progression of the Mediterranean
salinity crisis. Nature, 400: 652-655.
Lacour D., Lauriat-Rage A., Saint-Martin J.-P., Videt B., Néraudeau
D., Goubert E. & Bongrain M. (2002). Les associations de
bivalves (Mollusca, Bivalvia) du Messinien du bassin de Sorbas
(SE Espagne). Geodiversitas, 24: 641-657.
 
Brissopsis (Echinoida, Spatangoida) en Méditerranée depuis
la “crise messinienne”: application paléoécologique aux B.
lyrifera intragypses de Sorbas (SE Espagne). Geodiversitas,
22: 509-523.
Landini W. & Menesini E. (1984). Messinian marine fish
communities of the Mediterranean Sea. Atti della Società
Toscana di Scienze Naturali, Serie A, 91: 279-290.
Landini W. & Sorbini L. (1989). Ichthyofauna of the evaporitic
Messinian in the Romagna and Marche regions. Bollettino della
Società Paleontologica Italiana, 28: 287-293.
Leonardi A. (1959). L’ittiofauna del “tripoli” del Miocene superiore
di Bessima (Enna). Palaeontographia Italica, 54: 115-173.
Ligios S., Anadón P., Castorina F., D’Amico C., Esu D., Gliozzi
E., Gramigna P., Mola M. & Monegato G. (2012). Ostracoda
and Mollusca biodiversity and hydrochemical features in Late
Miocene brackish basins in Italy. Geobios, 45: 351-367.
Linnaeus C. (1758). Systema Naturae per regna tria naturae,
secundum classes, ordines, genera, species, cum characteribus,
. Editio decima, reformata. 812 pp.
Laurentius Salvius: Holmiae.
Lipparini T. (1932). Foraminiferi delle “Argille Scistose Brune”,
Tortoniane della Val di Savena (Bologna). Giornale di Geologia,
7: 75-82.
Livental V.E. (1929). Ostracoda of Akchagilian and Apsheronian
beds of the Babazan section. 58 pp. Izvestiya Azerbajdzahnskogo
Politekhnischeskogo Instituta, Baku. [in Russian]
Lohmann H. (1902). Die Coccolithophoridae, eine Monographie
der Coccolithen bildenden Flagellaten, zugleich ein Beitrag zur
Kenntnis des Mittelmeerauftriebs. Archiv für Protistenkunde, 1:
89-165.
Londeix L., Benzakour M., Suc J.-P. & Turon J.-L. (2007).
Messinian palaeoenvironments and hydrology in Sicily (Italy):
Geobios, 40: 233-250.
Lozar F., Violanti D., Bernardi E., Dela Pierre F. & Natalicchio M.
(2018). Identifying the onset of the Messinian salinity crisis:
a reassessment of the biochronostratigraphic tools (Piedmont
Basin, NW Italy). Newsletters on Stratigraphy, 51: 11-31.
Lozar F., Violanti D., Dela Pierre F., Bernardi E., Cavagna S., Clari
P., Irace A., Martinetto E. & Trenkwalder S. (2010). Calcareous
nannofossils and foraminifers herald the Messinian salinity
crisis: the Pollenzo section (Alba, Cuneo; NW Italy). Geobios,
43: 21-32.
Lugli S., Manzi V., Roveri M. & Schreiber B.C. (2010). The
Primary Lower Gypsum in the Mediterranean: a new facies

crisis. Palaeogeography, Palaeoclimatology, Palaeoecology,
297: 83-99.
Manzi V., Gennari R., Hilgen F., Krijgsman W., Lugli S., Roveri M.
& Sierro F.J. (2013). 
crisis onset in the Mediterranean. Terra Nova, 25: 315-322.
Manzi V., Gennari R., Lugli S., Minelli N., Roveri M., Reghizzi M.
& Schreiber B.C. (2016). Comment on “Carbonate deposition
and diagenesis in evaporitic environments: The evaporative
and sulphur-bearing limestones during the settlement of the
Messinian Salinity Crisis in Sicily and Calabria” by Caruso
et al., 2015. Palaeo3, 429, 136-162. Palaeogeography,
Palaeoclimatology, Palaeoecology, 459: 585-596.
Manzi V., Gennari R., Lugli S., Persico D., Reghizzi M., Roveri M.,
Schreiber B.C., Calvo R., Gavrieli I. & Gvirtzman Z. (2018).
The onset of the Messinian salinity crisis in the deep Eastern
Mediterranean basin. Terra Nova, 30: 189-198.
     
S., Iaccarino S.M., Lanci L., Lugli S., Negri A., Riva
A., Rossi M.E. & Taviani M. (2007). The deep-water
counterpart of the Messinian Lower Evaporites in the Apennine
foredeep: the Fanantello section (Northern Apennines, Italy).
Palaeogeography, Palaeoclimatology, Palaeoecology, 251:
470-499.
Martini E. & Bramlette M.N. (1963). Calcareous nannoplankton from
the experimental Mohole drilling. Journal of Paleontology, 37:
845-855.
Mas G., Bisconti M., Torres-Roig E., Juárez J. & Sacarès J.
(2018). L’última balena del Messinià. Primera cita d’un cetaci
misticet relacionat amb la Crisi de Salinitat Messiniana de la
Mediterrània. In VII Jornades de Medi Ambient de les Illes
Balears: 112-115.

     


Cahiers Oceanographiques de France, 22: 33-40.
Mayer C. (1871). Découverte des couches à Congéries dans le
bassin du Rhône. Vierteljahrsschrift der Naturforschenden
Gesellschaft in Zürich, 16: 185-203.
McCulloch M.T. & De Deckker P. (1989). Sr isotope constrains
on the Mediterranean environment at the end of the Messinian
salinity crisis. Nature, 342: 62-65.
McKenzie J.A. (1999). From desert to deluge in the Mediterranean.
Nature, 400: 613-614.
Mehes G. (1908). Beitrage zur Kenntnis der pliozanen Ostrakoden
Ungarns. II. Die Darwinulidaeen und Cytheridaeen der
unterpannonischen Stufe. Foldtany Kozlony, 38: 601-635.
Meulenkamp J.E. & Sissingh W. (2003). Tertiary palaeogeography
and tectonostratigraphic evolution of the Northern and
Southern Peri-Tethys platforms and the intermediate domains
  
Palaeogeography, Palaeoclimatology, Palaeoecology, 196:
209-228.
Milker Y. & Schmiedl G. (2012). A taxonomic guide to modern
benthic shelf foraminifera of the western Mediterranean Sea.
Palaeontologia Electronica, 15: 16A.
Moisette P. & Pouyet S. (1987). Bryozoan faunas and the Messinian
salinity crisis. Annales Instituti Geologici Publici Hungarici,
70: 447-453.
      
record and the dawn of the eastern Atlantic biogeography.
Palaeogeography, Palaeoclimatology, Palaeoecology, 297: 1-11.
137
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
Montadert L., Sancho J., Fail J.P., Debyser J. & Winnock E.
(1970). De l’âge tertiaire de la série salifère responsible des
structures diapiriques en Mèditerranée Occidentale (Nord-Est
des Baléares). Comptes Rendus de l’Académie des Sciences,
271: 812-815.
Montenat C., Ott d’Estevou P., Plaziat J.C. & Chapel J. (1980). La

messiniennes dans le Sud-Est de l’Espagne. Conséquences pour
l’interpretation des conditions d’isolement de la Méditerranée
occidentale. Géologie Méditerranéenne, 7: 81-90.
Morigi C., Negri A., Giunta S., Kouwenhoven T., Krijgsman W.,
Blanc-Valleron M.M., Orszag-Sperber F. & Rouchy J.-M.
(2007). Integrated quantitative biostratigraphy of the latest
Tortonian-early Messinian Pissouri section (Cyprus): An
evaluation of calcareous plankton bioevents. Geobios, 40:
267-279.
Müller C. (1974). Nannoplankton aus dem Mittel-Miozän von
Walbersdorf (Burgenland). Senckenbergiana lethaea, 55:
389-405.
Müller C. (1990). Nannoplankton biostratigraphy and
Paleoenvironmental interpretation from theTyrrhenian Sea,
ODP Leg 107 (Western Mediterranean). Proceedings of the
Ocean Drilling Project, Scientic Report, 107: 495-512.
Müller D.W. & Schrader H.J. (1989). Diatoms of the Fortuna Basin,
southeast Spain: evidence for the intra-Messinian inundation.
Paleoceanography and Paleoclimatology, 4: 75-86.
Murray G. & Blackman V.H. (1898). On the nature of the
Coccospheres and Rhabdospheres. Philosophical Transactions
of the Royal Society of London (B), 190: 427-441.
Mussman M., Schulz H.N., Strotmann B., Kyær T., Nielsen L.P.,
Rossellò-Mora R.A., Amann R.I. & Jørgensen B.B. (2003).
Phylogeny and distribution of nitrate-storing Beggiatoa spp.
in coastal marine sediments. Environmental Microbiology, 5:
523-533.
Natalicchio M., Birgel D., Peckmann J., Lozar F., Carnevale G.,
Liu X., Hinrichs K.-U. & Dela Pierre F. (2017). An archaeal
biomarker record of paleoenvironmental change across
the onset of the Messinian salinity crisis in the absence of
evaporites (Piedmont Basin, Italy). Organic Geochemistry,
113: 242-253.
Natalicchio M., Dela Pierre F., Birgel D., Brumsack H., Carnevale
G., Gennari R., Gier S., Lozar F., Pellegrino L., Sabino M.,
Schnetger B. & Peckmann J. (2019). Paleoenvironmental
change in a precession-paced succession across the onset of the
Messinian salinity crisis: insight from element geochemistry
and molecular fossils. Palaeogeography, Palaeoclimatology,
Palaeoecology, 518: 45-61.
Natalicchio M., Dela Pierre F., Clari P., Birgel D., Cavagna S.,
Martire L. & Peckmann J. (2013). Hydrocarbon seepage
during the Messinian salinity crisis. Palaeogeography,
Palaeoclimatology, Palaeoecology, 390: 68-80.
   
West Coast of North America and from the Later Tertiary
of the Los Angeles Basin. Bulletin of the Scripps Institute of
Oceanography, Technical Series, 4: 137-164.
Negri A., Giunta S., Hilgen F., Krijgsman W. & Vai G.B. (1999).
Calcareous nannofossil biostratigraphy of the M. del Casino
section (northern Apennines, Italy) and paleoceanographic
conditions at times of Late Miocene sapropel formation. Marine
Micropaleontology, 36: 13-30.
Negri A. & Vigliotti L. (1995). Calcareous nannofossil biostratigraphy
and paleomagnetism of the Monte Tondo and Monte del Casino
sections (Romagna Apennine, Italy). In Montanari A., Odin
G.S. & Coccioni R. (eds), Miocene Stratigraphy: An Integrated
Approach. Developments in Palaeontology and Stratigraphy,
15: 477-493.
Néraudeau D., Goubert E., Lacour D. & Rouchy J.-M. (2001).
Changing biodiversity of Mediterranean irregular echinoids
from the Messinian to Present-Day. Palaeogeography,
Palaeoclimatology, Palaeoecology, 175: 43-60.
Néraudeau D., Videt B., Courville P., Goubert E. & Rouchy J.-M.
(2002). Corrélation des niveaux fossilifères marins interstratifés
dans les gypses messiniens, entre la carrière de Molinos de
Aguas (bassin de Sorbas, SE Espagne). Geodiversitas, 24:
659-667.
      
considerazioni geologiche relative. Memorie Descrittive della
Carta Geologica Italiana, 33: 1-275.
Oliveri E., Neri R., Bellanca A. & Riding R. (2010). Carbonate
stromatolites from a Messinian hypersaline setting in the
Caltanissetta Basin, Sicily: petrographic evidence of microbial
activity and related stable isotope and rare earth element
signatures. Sedimentology, 57: 142-161.
Orszag-Sperber F. (2006). Changing perspectives in the concept
of “Lago-Mare” in Mediterranean Late Miocene evolution.
Sedimentary Geology, 188-189: 259-277.
Orszag-Sperber F., Rouchy J.-M. & Blanc-Valleron M.-M. (2000).
La transition Messinien-Pliocène en Méditerranée orientale
Comptes
Rendus de l’Academie des Sciences de Paris, Sciences de la
Terre et des Planètes, 331: 483-490.
Ostenfeld C.H. (1903). Phytoplankton from the sea around
the Faeröes. Botany of the Faeröes Based Upon Danish
Investigations, 2: 558-612.
Pace A., Bourillot R., Bouton A., Vennin E., Braissant O., Dupraz
C., Duteil T., Bundeleva I., Patrier P., Galaup S., Yokoyama Y.,
Franceschi M., Virgone A. & Visscher P.T. (2017). Formation
of stromatolite lamina at the interface of oxygenic-anoxygenic
photosynthesis. Geobiology, 15: 1-21.
Panieri G., Lugli S., Manzi V., Palinska A. & Roveri M. (2008).
Microbial communities in Messinian evaporites of the Vena del
Gesso (Northern Apennines, Italy). Stratigraphy, 5: 343-352.
Panieri G., Lugli S., Manzi V., Roveri M., Schreiber B.C. &
Palinska A. (2010). Ribosomal RNA fragments from fossilized
cyanobacteria identified in primary gypsum from the late
Miocene, Italy. Geobiology, 8: 101-111.
Parker W.K., Jones T.R. & Brady H.B. (1865). On the nomenclature
of the foraminifera. X cont: The Species enumerated by
d’Orbigny in the ‘Annales des Sciences Naturelles’, vol. 7,
1826 The Species illustrated by Models. Annals and Magazine
of Natural History, 3: 15-41.
Passow U. (2002). Transparent exopolymer particles (TEP) in
aquatic environments. Progress in Oceanography, 55: 287-333.
Passow U., Alldredge A.L. & Logan B.E. (1994). The role of

blooms. Deep-Sea Research I, 41: 335-357.
Pellegrino L., Dela Pierre F., Natalicchio M. & Carnevale G. (2018).
The Messinian diatomite deposition in the Mediterranean and its
relationships to the global silica cycle. Earth-Science Reviews,
178: 154-176.
Pellen R., Popescu S.M., Suc J.-P., Melinte-Dobrinescu M.C.,
Rubino J.L., Rabineau M., Marabini S., Loget N., Casero P.,
Cavazza W., Head M.J. & Aslanian D. (2017). The Apennine

competing brackish and marine conditions based on calcareous
Geobios, 50: 237-257.
Perconig E. (1952). Faune di transizione da ambienti marini nel
Neogene della Pianura Padana. In Atti del VII Convegno
Nazionale del Metano e del Petrolio, Ente Nazionale del
MetanoTaormina: 1-131.
Perri E., Gindre-Chanu L., Caruso A., Cefalà M., Scopelliti G.
& Tucker M. (2017). Microbial-mediated pre-salt carbonate
deposition during the Messinian salinity crisis (Calcare di
Base fm., Southern Italy). Marine and Petroleum Geology,
88: 235-250.
Pierre C. (1974). Contribution à l’étude sédimentologique et isotopique
des évaporites messiniennes de la Méditerranée: implications
géodynamiques. 273 pp. Ph.D Thesis, Université Paris VI.
Pierre C. & Rouchy J.M. (1990). Sedimentary and diagenetic
evolution of Messinian evaporites in the Tyrrhenian Sea (ODP
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
138
Leg 107, Sites 652, 653, and 654): petrographic, mineralogical,
and stable isotope records. Proceedings of the Ocean Drilling
Project, Scientic Reports, 107: 187-210.
Popescu S.-M., Dalesme F., Jouannic G., Escarguel G., Head
M.J., Melinte-Dobrinescu M.C., Süto-Szentai M., Bakrac K.,
Clauzon G. & Suc J.-P. (2009). Galeacysta etrusca complex:
Dinoflagellate cyst marker of Paratethyan influxes to the
Mediterranean Sea before and after the peak of the Messinian
Salinity Crisis. Palynology, 33: 105-134.
Popescu S.-M., Melinte M.C., Suc J.-P., Clauzon G., Quillévéré
F. & Süto-Szentai M. (2007). Earliest Zanclean age for the
Colombacci and uppermost Di Tetto formations of the “latest
Messinian” northern Apennines: New palaeoenvironmental
data from the Maccarone section (Marche Province, Italy).
Geobios, 40: 359-373.
Reuss A.E. (1850). Neue Foraminiferen aus den Schichten des
österreichischen Tertiärbeckens. Denkschriften der Kaiserlichen
Akademie der Wissenschaften, 1: 365-390.
Riding R., Braga J.C., Martin J.M. & Sanchez-Almazo I.M.
(1998). Mediterranean Messinian salinity crisis: constraints
from a coeval marginal basin, Sorbas, southern Spain. Marine
Geology, 146: 1-20.
Risso A. (1810). Ichthyologie de Nice, ou histoire naturelle des
poissons du Département des Alpes Maritimes. 388 pp. F.
Schoell, Paris.
Romeo M. (1965). “Globigerina multiloba” nuova specie del
Messiniano della Calabria e Sicilia. Rivista Italiana di
Paleontologia e Stratigraa. 71: 1265-1268.
Rossignol M. (1962). Analyse pollinique de sédiments marins
quaternaires en Israël II - Sédiments pleistocènes. Pollen et
Spores, 4: 121-148.
Rossignol M. (1964). Hystrichosphères du Quaternaire en
Méditerranée orientale, dans les sédiments Pléistocènes et les
boues marines actuelles. Revue de Micropaléontologie, 7: 83-99.
Roth P.H. (1970). Oligocene calcareous nannoplankton
biostratigraphy. Eclogae Geologicae Helvetiae, 63: 799-881.
Rouchy J.-M. (1976). Mise en evidence de nannoplancton calcaire

terminal de Sicile et consequences sur la genèse des evaporites
méditerranéennes de cet age. Comptes Rendus Académie
Science Paris, 282: 13-16.
Rouchy J.-M. (1982). La genèse des évaporites messiniennes
de Méditerranée. Memoire du Muséum National d’Histoire
Naturelle Paris, Science de la Terre, 50: 1-280.
Rouchy J.-M. & Caruso A. (2006). The Messinian salinity crisis
in the Mediterranean basin: a reassessment of the data and an
integrated scenario. Sedimentary Geology, 188: 35-67.
Rouchy J.-M. & Monty C. (2000). Gypsum microbial sediments:
Neogene and modern examples. In Riding R. & Awramik S.M. (eds),
Microbial Sediments, Springer-Verlag, Berlin Heidelberg: 209-216.
Rouchy J.-M., Orszag-Sperber F., Blanc-Valleron M.-M., Pierre
C., Rivière M., Combourieu-Nebout N. & Panayides I. (2001).
Paleoenvironmental changes at the Messinian-Pliocene
boundary in the eastern Mediterranean (southern Cyprus
Sedimentary
Geology, 145: 93-117.
Round F.E., Crawford R.M. & Mann D.G. (1990). The Diatoms
- Biology & Morphology of the Genera. 747 pp. Cambridge
University Press, Cambridge.
Roveri M., Bassetti M.A. & Ricci Lucchi F. (2001). The
Mediterranean Messinian Salinity Crisis: An Apennine foredeep
perspective. Sedimentary Geology, 140: 201-214.

Sierro F.J., Bertini A., Camerlenghi A., De Lange G., Rovers R.,
Hilgen F.J., Hübscher C., Meijer P.T. & Stoica M. (2014a). The
Messinian Salinity Crisis: Past and future of a great challenge
for marine sciences. Marine Geology, 352: 25-58.
Roveri M., Gennari R., Lugli S. & Manzi (2009). The Terminal
Carbonate complex: the record of sea-level changes during the
Messinian salinity crisis. GeoActa, 8: 57-71.
Roveri M., Gennari R., Persico D., Rossi F.P., Lugli S., Manzi V.,
Reghizzi M. & Taviani M. (2019). A new chronostratigraphic
and palaeoenvironmental framework for the end of the
Messinian salinity crisis in the Sorbas Basin (Betic Cordillera,
southern Spain). Geological Journal, 54: 1-21.
Roveri M., Lugli S., Manzi V., Gennari R. & Schreiber B.C. (2014b).
High-resolution strontium isotope stratigraphy of the Messinian
deep Mediterranean basins: implications for marginal to central
basins correlation. Marine Geology, 349: 113-125.
Roveri M., Lugli S., Manzi V. & Schreiber B.C. (2008). The
Messinian Sicilian stratigraphy revisited: toward a new scenario
for the Messinian salinity crisis. Terra Nova, 20: 483-488.
Roveri M. & Manzi V. (2006). The Messinian salinity crisis: looking
for a new paradigm? Palaeogeography, Palaeoclimatology,
Palaeoecology, 238: 386-398.
Roveri M., Manzi V., Bergamasco A., Falcieri F.M., Gennari R.,
Lugli S. & Schreiber B.C. (2014c). Dense shelf water cascading
and Messinian canyons: A new scenario for the Messinian
salinity crisis. American Journal of Science, 314: 751-784.
Roveri M., Manzi V., Lugli S., Schreiber B.C., Caruso A., Rouchy
J.M., Iaccarino S.M., Gennari R. & Vitale F.P. (2006). Clastic
vs. primary precipitated evaporites in the Messinian Sicilian
basins. Acta Naturalia de l’Ateneo Parmense, 42: 125-199.
Ruggieri G. (1962). La serie marina pliocenica e quaternaria della
Val Marecchia. Atti dell’Accademia di Scienze, Lettere e Arti
di Palermo, 19: 1-169.
Ruggieri G. (1967). The Miocene and later evolution of the
Mediterranean Sea. In Adams C.G. & Ager A.V. (eds), Aspects
of Tethyan Biogeography. Systematics Association Publication,
7: 283-290.
Ruggieri G. & Greco A. (1965). Studi geologici e paleontologici su
Capo Milazzo con particolare riguardo al Milazziano. Geologica
Romana, 4: 41-88.
Ruggieri G., Torre D., Moroni M.A. & Aruta L. (1969). Miocene
superiore (Saheliano) nei dintorni di Bonfornello (Palermo).
Atti dell’Accademia Gioenia di Scienze Naturali, Catania, 1:
175-193.
Ryan W.B.F., Stanley D.CJ., Hersey J.B., Fahlquist D.A. & Allan
T.D. (1971). The tectonics and geology of the Mediterranean
Sea. In Maxwell A.E. (ed.), The Sea, Wiley-Interscience, New
York: 387-492.
Sacco F. (1886). Rivista della fauna malacologica fossile, terrestre,
lacustre e salmastra del Piemonte. Bollettino della Società
Malacologica Italiana, 12: 135-203.
Santarelli A., Brinkhuis H., Hilgen F.J., Lourens L-J., Versteegh
G.J.M. & Visscher H. (1998). Orbital signature in a Late
     Marine
Micropaleontology, 33: 273-297.
Sauvage H.-E. (1870). Synopsis des poissons tertiaries de
Licata (Sicile). Annales des Sciences Naturelles (Zoologie et
Paléontologie), 14: 1-25.
Sauvage H.-E. (1873). Mémoire sur la faune ichthyologique de la
période tertiaire et plus spécialement sur les poissons fossiles
d’Oran (Algérie) et sur ceux découverts par M.R. Alby à Licata
en Sicile. Annales des Sciences Géologiques, 4: 1-272.
Savelli D. & Wezel F.-C. (1978). Schema geologico del Messiniano
del Pesarese. Bollettino della Società Geologica Italiana, 97:
165-188.
Schmalz R.F. (1969). Deep-water evaporite deposition, a genetic
model. American Association of Petroleum Geologists Bulletin,
53: 798-823.
Schmalz R.F. (1991). The Mediterranean salinity crisis: Alternative
hypotheses. Carbonates and Evaporites, 6: 121-126.
Schopf W.J., Farmer J.D., Foster I.S., Kudryavtsev A.B., Gallardo
V.A. & Espinoza C. (2012). Gypsum-permineralized
microfossils and their relevance for the search for life on Mars.
Astrobiology, 12: 619-633.
Schouten S., Hopmans E.C. & Sinninghe Damsté J.S. (2013). The
organic geochemistry of glycerol dialkyl glycerol tetraether
lipids: A review. Organic Geochemistry, 54: 19-61.
139
G. Carnevale et alii - Fossil record of the Messinian salinity crisis
Schrader H.J. (1975). Correlation of the neostratotype of the
     
sections based on marine planktonic diatoms. In Sixth Congress
of the Regional Committee of Mediterranean Neogene
Stratigraphy, Bratislava: 403-405.
Schrader H.J. & Gersonde R. (1978). The late Messinian
Mediterranean brackish to freshwater environment, diatom
Initial Reports of the Deep Sea Drilling Project,
42: 761-775.
Schreiber B.C. (1974). Upper Miocene (Messinian) evaporites
deposits of the Mediterranean basin and their depositional
environments. 395 pp. Ph.D Thesis, Rensselaer Polytechnic
Institute, New York.
Schreiber B.C. (1978). Environments of sub-aqueous evaporites. In
Dean W.E. & Schreiber B.C. (eds), Marine Evaporites. SEPM
Short Course, 4: 1-5.
Schubert R.J. (1902). Die Fischotolithen des österr.-ungar. Tertiärs.
I. Die Sciaeniden. Jahrbuch der Kaiserlich Königlichen
Geologischen Reichsanstalt, 51: 301-316.
Schubert R.J. (1905). Die Fischotolithen des österr.-ungar. Tertiärs.
II. Macruriden und Beryciden. Jahrbuch der Kaiserlich
Königlichen Geologischen Reichsanstalt, 55: 613-638.
Schubert R.J. (1912). Die Fischfauna der Schliermergel von Bingia
fargeri (bei Fangario) in Sardinien. Verhandlungen der Kaiserlich-
Königlichen Geologischen Reichsanstalt, 1912: 160-165.
Schulz H.N. & Jørgensen B.B. (2001). Big bacteria. Annual Review
of Microbiology, 55: 105-137.
Schwager C. (1866). Fossile Foraminiferen von Kar Nikobar,
Reise der Oesterreichischen Fregatte Novara um Erde in den
Jahren 1857, 1858, 1859 unten den Befehlen des Commodore
B. Von Wuellerstorf-Urbair. Geologischer Theil, Geologische
Beobachtung no. 2, Palaeontologische Mittheilung, 2: 187-268.
Schwarzhans W. (1979). Otolithen aus dem Unter-Pliozän von Süd-
Sicilien und aus der Toscana. Berliner Geowissenschaftliche
Abhandlungen, A, 8: 1-52.
Selli R. (1954). Il Bacino del Metauro. Giornale di Geologia, 24:
1-294.
Selli R. (1960). Il Messiniano Mayer-Eymar 1867. Proposta di un
neostratotipo. Giornale di Geologia, 28: 1-33.
Selli R. (1973). An outline of the Italian Messinian. In Drooger
C.W. (ed.), Messinian Events in the Mediterranean. Koninklijke
Nederalndse Akademie van Wetenschappen: 150-171.
Sierro F.J., Flores J.A., Civis J., Delgado J.A.G. & Francés G.
(1993). Late Miocene globorotaliid event-stratigraphy and
biogeography in the NE-Atlantic and Mediterranean. Marine
Micropaleontology, 21: 143-168.
Sierro F.J., Flores J.A., Francés G., Vazquez A., Utrilla R.,
Zamarreño I., Erlenkeuser H. & Barcena M.A. (2003).
Orbitally-controlled oscillations in planktic communities
and cyclic changes in western Mediterranean hydrography
during the Messinian. Palaeogeography, Palaeoclimatology,
Palaeoecology, 190: 289-316.
Sinninghe Damsté J.S., Kenig F., Koopmans M.P., Köster J.,
Schouten S., Hayes J.M. & de Leeuw J.W. (1995). Evidence

Geochimica et Cosmochimica Acta, 59: 1895-1900.
Sinzov I.F. (1877). Description of new and weakly studied shells
from Tertiary deposits of Novorossia. Notes of Novorossian
Nature, 5: 61-83. [in Russian]
Sissingh W. (1976). Aspects of the Late Cenozoic evolution
of the South Aegean ostracode fauna. Palaeogeography,
Palaeoclimatology, Palaeoecology, 20: 131-145.
Sokac A. (1972). Pannonian and Pontian ostracode fauna from Mt.
Medvednica. Palaeontologia Jugoslavica, 11: 1-140.
Sorbini L. (1988). Biogeography and climatology of Pliocene and
     Bollettino del
Museo Civico di Storia Naturale di Verona, 14: 1-85.
Sorbini L. & Tirapelle Rancan R. (1979). 
of the Mediterranean. Palaeogeography, Palaeoclimatology,
Palaeoecology, 29: 143-154.
 
Tent-Manclús J.E., Viseras C. & Yébenes A. (2008a). The
Messinian-early Pliocene stratigraphic record in the southern
Bajo Segura basin (betic Cordillera, Spain). Implications for
the Mediterranean salinity crisis. Sedimentary Geology, 203:
267-288.
 
Tent-Manclús J.E. & Yébenes A. (2008b). The Bajo Segura
basin (SE Spain): implications for the Messinian salinity crisis
in the Mediterranean margins. Stratigraphy, 5: 257-263.
Spezzaferri S., Cita M.B. & McKenzie J.A. (1998). The Miocene/
Pliocene boundary in the Eastern Mediterranean: results from
Sites 967 and 969. Proceedings of the Ocean Drilling Program,
Scientic Results, 160: 9-28.
Sprovieri R., Di Stefano E., Caruso A. & Bonomo S. (1996). High
resolution stratigraphy in the Messinian Tripoli Formation in
Sicily. Paleopelagos, 6: 415-435.
Stanley S.M. (1989). Earth and Life Through Time. 2nd Edition. 698
pp. W.H. Freeman & Co., New York.
Stoica M., Krijgsman W., Fortuin A. & Gliozzi E. (2016).
Paratethyan ostracods in the Spanish Lago-Mare: More
evidence for intrabasinal exchange at high Mediterranean sea
level. Palaeogeography, Palaeoclimatology, Palaeoecology,
441: 854-870.
Sturani C. (1973). A fossil eel (Anguilla sp.) from the Messinian
of Alba (Tertiary Piedmont Basin). Paleoenvironmental and
paleogeographic implications. In Drooger C.W. (ed.), Messinian
Events in the Mediterranean. Koninklijke Nederalndse
Akademie van Wetenschappen: 243-255.
Sturani C. & Sampò M. (1973). Il Messiniano inferiore in facies
diatomitica nel Bacino Terziario Piemontese. Memorie della
Società Geologica Italiana, 12: 335-358.
Suc J.-P., Popescu S.-M., Do Couto D., Clauzon G., Rubino
J.-L., Melinte-Dobrinescu M.C., Quillévéré F., Brun J.-P.,

Marine gateway
Marine
and Petroleum Geology, 66: 231-245.
Suzin A.V. (1956). Ostracodny treticnyh otlozenij Severnogo
Predkavkazia. 191 pp. Gostoptehizdat, Moscow. [in Russian]
Takayanagi Y. & Saito T. (1962). Planktonic foraminifera from
the Nobori formation, Shikoku, Japan. Science Reports of the
Tohoku University, 2: 67-105.
Talbot H.M. & Farrimond P. (2007). Bacterial populations recorded
in diverse sedimentary biohopanoid distributions. Organic
Geochemistry, 38: 1212-1225.
Taviani M. (2002). The Mediterranean benthos from Late Miocene
up to present: ten million years of dramatic climatic and geologic
vicissitudes. Biologia Marina Mediterranea, 9: 445-463.
Teske A. & Nelson D.C. (2006). The genera Beggiatoa and
Thioploca. Prokaryotes, 6: 784-810.
Thunnell R.C., Williams D.F. & Howell M. (1987). Atlantic-
Mediterranean water exchange during the late Neogene.
Paleoceanography, 2: 661-678.
Turich C. & Freeman K.H. (2011). Archaeal lipids record
paleosalinity in hypersaline systems. Organic Geochemistry,
42: 1147-1157.
Vai G.B. & Ricci Lucchi F. (1977). Algal crusts, autochthonous and
clastic gypsum in a cannibalistic evaporite basin; a case history
from the Messinian of Northern Apennine. Sedimentology, 24:
211-244.
Van Couvering J.A., Castradori D., Cita M.B., Hilgen F.J. & Rio
D. (2000). The base of the Zanclean Stage and of the Pliocene
Series. Episodes, 23: 179-187.
Van de Poel H.M. (1992). Foraminiferal biostratigraphy and

Basin (SE Spain). Scripta Geologica, 102: 1-32.
Violanti D., Lozar F., Dela Pierre F., Natalicchio M., Bernardi E.,
Clari P. & Cavagna S. (2013). Stress-tolerant microfossils of a
Messinian succession from the Northern Mediterranean basin
Bollettino della Società Paleontologica Italiana, 58 (1), 2019
140
(Pollenzo section, Piedmont, northwestern Italy). Bollettino
della Società Paleontologica Italiana, 52: 45-54.
Wade B.S. & Bown P.R. (2006). Calcareous nannofossils in extreme
environment: the Messinian Salinity Crisis, Polemi Basin,
Cyprus. Palaeogeography, Palaeoclimatology, Palaeoecology,
233: 271-286.
Wakeham S.G., Amann R., Freeman K.H., Hopmans E.C., Jørgensen
B.B., Putnam I.F., Schouten S., Sinninghe Damsté J.S., Talbot

water column of the Black Sea as revealed by a comprehensive
biomarker study. Organic Geochemistry, 38: 2070-2097.
Wakeham S.G., Turich C., Schubotz F., Podlaska A., Li X.N.,
Varela R., Astor Y., Sáenz J.P., Rush D., Sinninghe Damsté
J.S., Summons R.E., Scranton M.I., Taylor G.T. & Hinrichs
K.-U. (2012). Biomarkers, chemistry and microbiology show
chemoautotrophy in a multilayer chemocline in the Cariaco
Basin. Deep-Sea Research I, 63: 133-156.
Wall D., Dale B. & Harada K. (1973). Descriptions of new fossil
      
Micropaleontology, 19: 18-31.
Wallich G.C. (1877). Observations on the coccosphere. Annals and
Magazine of Natural History, 19: 342-350.
Walters R. (1965). The Globorotalia zealandica and G. miosea
lineages. New Zealand Journal of Geology and Geophysics,
8: 109-127.
Whatley R. (1990). The relationship between extrinsic and intrinsic
events in the evolution of Mesozoic non-marine Ostracoda. In

Earth History, Springer, Berlin: 253-263.
Whatley R. (1992). The reproductive and dispersal strategies of
Cretaceous nonmarine Ostracoda: the key to Pandemism.
In Mateer N.J. & Chen Pei-ji (eds), Aspects of Nonmarine
Cretaceous Geology, China Ocean Press, Beijing: 177-192.
Williamson W.C. (1858). On the recent Foraminifera of Great
Britain. 107 pp. The Ray Society, London.
Wuchter C., Abbas B., Coolen M.J.L., Herfort L., van Bleijswijk
J., Timmers P., Strous M., Teira E., Herndl G.J., Middelburg
J.J., Schouten S. & Sinninghe Damsté J.S. (2006). Archaeal
Proceedings of the National Academic
of Sciences of the United States of America, 103: 12317-12322.
Zalanyi B. (1929). Morpho-systematische Studien uber fossile
Muschelkrebse. Geologica Hungarica, Series Palaeontologia,
5: 1-181.
Zardoya R. & Doadrio I. (1999). Molecular evidence on the
evolutionary and biogeographical patterns of European
cyprinids. Journal of Molecular Evolution, 49: 227-237.
Manuscript received 12 February 2019
Revised manuscript accepted 20 March 2019
Published online 30 April 2019
Guest Editors Massimo Bernardi & Giorgio Carnevale
... S1 and S2) (34,35) to obtain evidence of changes in the taxonomic diversity of the Mediterranean marine biota that took place from the time of the initiation of the Mediterranean-Atlantic gateway restriction in the late Tortonian (36), until the reestablishment of a fully marine environment in the Zanclean. Investigations of the fossil record from the MSC beds have been presented elsewhere, indicating that stenohaline marine organisms appeared in various levels (37,38). In our investigation, we exclude the MSC interval because these fossil records are very limited compared to the records before and after the crisis and insufficient for the present biodiversity analysis. ...
... Last, we excluded from the present study the limited fossil record from the MSC stages because it was not sufficient for this type of analysis, and, therefore, we cannot quantify in absolute terms the Mediterranean marine biodiversity during the MSC. Overcoming this limitation through further research in the future would be challenging, as taphonomic reasons certainly contributed to the scarcity of the fossil record, and evaporite deposition is not conducive to carbonate or siliceous fossil preservation (37). In addition, the abundance of marine organisms was probably low as well. ...
... Halophiles have been identified from the evaporites (72) and the intercalated marls of the first stage of the MSC (5.86 to 5.6 Ma), potentially inhabiting the bottom part of the water column (73). Simultaneously, marine fossils are rare to uncommon, and their presence has been debated, particularly in the final MSC stage, because they co-occur with fossils of brackish-water species (23,37). ...
Article
Full-text available
Understanding deep-time marine biodiversity change under the combined effects of climate and connectivity changes is fundamental for predicting the impacts of modern climate change in semi-enclosed seas. We quantify the Late Miocene-Early Pliocene [11.63 to 3.6 million years (Ma)] taxonomic diversity of the Mediterranean Sea for calcareous nannoplankton, dinocysts, foraminifera, ostracods, corals, molluscs, bryozoans, echinoids, fishes, and marine mammals. During this time, marine biota was affected by global climate cooling and the restriction of the Mediterranean's connection to the Atlantic Ocean that peaked with the Messinian salinity crisis. Although the net change in species richness from the Tortonian to the Zanclean varies by group, species turnover is greater than 30% in all cases, reflecting a high degree of reorganization of the marine ecosystem after the crisis. The results show a clear perturbation already in the pre-evaporitic Messinian (7.25 to 5.97 Ma), with patterns differing among groups and subbasins.
... The catastrophic nature of the MSC has been questioned by several lines of evidence, first of all, by the abundance of fossil remains, which suggests a rather deep-water column and salinity fluctuations, spanning from brackish to normal marine (e.g. Landini and Sorbini, 1989;Fourtanier et al., 1991;Goubert et al., 2001;Saint Martin et al., 2001;Néraudeau et al., 2002;Carnevale et al., 2008aCarnevale et al., , 2008bCarnevale and Schwarzhans, 2022; for more detail refer to Carnevale et al., 2019). Also, the presence of marine diatoms and low-salinity fluid inclusions in the gypsum strongly hint for the absence of hypersalinity (Natalicchio et al., 2014;Evans et al., 2015;Costanzo et al., 2019;Pellegrino et al., 2021). ...
Article
Full-text available
The pace and nature of paleoenvironmental dynamics leading to the Messinian Salinity Crisis (MSC) remain debated, with conflicting interpretations from the fossil and geochemical proxies. This study focuses on two key sections in the Piedmont Basin (NW Italy), Pollenzo and Govone, representing the northernmost Mediterranean sector during the Messinian. By implementing the previously published calcareous nannofossil assemblages with new data and analyzing carbon and oxygen stable isotopes from benthic and planktic foraminifers, this research aims at understanding surface and bottom water conditions around the MSC onset (5.97 Ma). In this gypsum-free part of the basin, calcareous nannofossil abundance remained stable for ~40 kyrs into the MSC, before disappearing, likely due to taphonomic bias. Isotopic records from the benthic foraminifer Bolivina dilatata suggest variations in living depth, remineralization, temperature and isotopic composition of water. Oxygen isotope data from planktic foraminifer show little variation between the 6.83–6.79 Ma and 6.05–5.99 Ma intervals, suggesting only moderate salinity and/or temperature fluctuations between the different time intervals. These findings interpreted in the light of previous records including organic geochemistry, fish, pollen, and dinocyst fossils pointing to salinity fluctuations between normal marine to brackish—suggest that hypersaline conditions did not characterize the early phase of the MSC in this part of the basin. These insights challenge the traditional view of widespread hypersalinity during the MSC onset, highlighting the need to integrate multiple datasets to better understand the Messinian environments in the Mediterranean Basin.
... Towards the end of the Messinian, the tectonic activity in the Alboran Sea resulted in reducing the water exchanges between the Mediterranean Sea and the Atlantic Ocean, thus leading to the Messinian salinity crisis (MSC) (5.97 to 5.33 Ma) [116] and the basinwide deposition of evaporites [117][118][119]. This unparalleled event led to a major crisis in Mediterranean ecosystems whose extent and magnitude has long been, and still is, debated [120][121][122]. ...
Article
Full-text available
The lower Messinian Calcare di Rosignano Formation (Tuscany, Italy, 43° N) preserves one of the youngest and northernmost examples of coral reefs in the Mediterranean. The outcropping succession of the Acquabona quarry consists of four main facies, namely, in ascending stratigraphic order: (1) coral boundstone, (2) coralline algal rudstone, (3) serpulid floatstone to packstone, and (4) peloidal packstone to grainstone. The succession displays a trend toward increasingly more shallow conditions and progressively more restricted water circulation. The coral reef displays a limited coral biodiversity and a remarkable abundance of heterotrophs, similar to modern coral reefs developed at the edges of the ecological niche of symbiont-bearing colonial corals. The widespread presence of coral colonies pervasively encrusted by coralline algae and benthic foraminifera suggests that short-term environmental perturbations caused temporary shutdowns of the coral-dominated carbonate factory. Moving upwards, there are fewer corals and more highly adaptable carbonate producers like coralline algae and serpulids. This suggests that the decline of corals had been caused by the conditions in the basin becoming more stressful, up to the collapse of the coral community. The overall succession indicates that coral-dominated ecosystems located at the edges of the coral zone are very sensitive; they can be affected even by minor perturbations and easily collapse if negative conditions persist.
... Here, we provide a database of the revised marine fossil record of the Mediterranean Basin, before and after the MSC. The fossil record during the MSC has been addressed in previous work (Carnevale et al., 2019;Carnevale and Schwarzhans, 2022) and is not included here because it is much more limited spatially and temporally and cannot be used to assess large-scale changes statistically. This open-access dataset adheres to the FAIR (findable, accessible, interoperable, and reusable) principles (Wilkinson et al., 2016). ...
Article
Full-text available
The Messinian salinity crisis and its precursor events have been the greatest environmental perturbation of the Mediterranean Sea to date, offering an opportunity to study the response of marine ecosystems to extreme hydrological change and a large-scale biological invasion. The restriction of the marine connection between the Mediterranean and the Atlantic Ocean resulted in stratification of the water column and high-amplitude variations in seawater temperature and salinity already from the early Messinian. Here, we present a unified and revised marine fossil record of the Mediterranean (10.5281/zenodo.13358435, Agiadi et al., 2024) that covers the Tortonian stage, the pre-evaporitic Messinian stage, and the Zanclean stage and encompasses 23 032 occurrences of calcareous nannoplankton, dinoflagellates, foraminifera, corals, ostracods, bryozoans, echinoids, mollusks, fishes, and marine mammals. This record adheres to the FAIR principles, is updated in terms of taxonomy, and follows the currently accepted stratigraphic framework. Based on this record, knowledge gaps are identified, which are due to spatiotemporal inconsistencies in sampling effort and the distribution of sedimentary facies, as well as the inherent differences in the preservation potential between the groups. Additionally, sampling bias in old records may have distorted the record in favor of larger, more impressive taxa within groups. This record is now ready to be used to answer both geological and biological questions about the Mediterranean Sea and beyond and is amendable when new fossil data are brought to light.
... As well as preserving micro and macrofaunal assemblages, the sediments preserve organic molecules, some of them can be biomarkers of specific organisms that inhabited the location and can be related to environmental conditions. A great advantage of these so-called molecular fossil is that they tend to be well-preserved in the sediments during the Quaternary period and beyond (Naafs et al., 2018;Carnevale et al., 2019;McClymont et al., 2023). Molecular biomarkers can be particularly useful in studies where other proxies, such as microfossils, is less sensitive, lacking, or degraded (Bendle et al., 2009;Thomas et al., 2023). ...
Article
Intertidal salt production sites existed continuously around the Mediterranean since classical antiquity, and their remains are present in large numbers along the Dalmatian (east Adriatic) coast. Most of them are preserved and dated to medieval times. This study aims to develop complementary proxies identifying the salt production layer in submerged ancient saltpans of Lavsa, a remote island on the central Dalmatian coast, to date the saltwork units by optically stimulated luminescence (OSL) and use them to infer changes in sea level. The significance of the study is in the application of molecular fossil analyses identifying the hypersaline layer in the sediments from a core drilled in the saltpan's site. The molecular fossil analyses correlate with the results of micro and macrofossil analyses and geochemical findings, all representing the saltwork unit. The depth of the hypersaline layers and the OSL dates provide relative sea level (RSL) lower limiting points of −145 ± 5 cm at 1309 ± 33 CE, probably the time when salt production started in Lavsa, and −115 ± 5 cm at 1364 ± 52 CE when saltwork activities ended. These limiting points extend the known RSL index point in Lavsa Island of −92 ± 8 cm, with an updated average age of 1337 ± 62 CE, correlating with the historical records. Medieval lower sea levels were also observed in the northern and southern parts of the east Adriatic coast as well as in other parts of the Mediterranean, probably driven by climate-related events, generating centennial-scale fluctuations in past sea levels that cannot be predicted by glacial isostatic adjustment (GIA) models.
Article
Due to their fast precipitation rate, sulfate evaporites represent excellent repositories of past life on Earth and potentially on other solid planets. Nevertheless, the preservation potential of biogenic remains can be compromised by extremely fast early diagenetic processes. The upper Miocene, gypsum‐bearing sedimentary successions of the Mediterranean region, that formed ca. 6 million years ago during the Messinian salinity crisis, represent an excellent case study for investigating these diagenetic processes at the expense of organic matter and associated biominerals. Several gypsum crystals from the Northern Mediterranean were studied by means of destructive and non‐destructive techniques in order to characterize their solid inclusion content and preservation state. In the same crystal, excellently preserved microfossils coexist with strongly altered biogenic remains. Altered remains are associated with authigenic minerals, especially clays. The results demonstrate that a significant fraction of organic matter and associated biominerals (notably biogenic silica) underwent early diagenetic modification. The latter was likely triggered by bottom sulfidic conditions when the growth of gypsum was interrupted. These results have significant implications for the interpretation of the Messinian Salt Giant.
Article
Full-text available
An enigmatic deposit at Pavone d’Alessandria provided, at the end of the 19th century, about one hundred plant macrofossils, considered to be Oligocene in age. That material is no longer available, but a few animal (an insect and a fish) and plant remains have recently been recovered from this locality. A single remnant of Aphanius crassicaudus is considered relevant, in combination with a recent assessment of the geology in the studied area, to propose a Messinian age for the deposit. The taxonomic composition of the 19th century plant assemblage, only documented by sketchy drawings, is difficult to re-interpret, but its possible relationship with Messinian plant assemblages studied in the last 30 years is discussed in the light of recent observations. A few plant taxa that can be recognized on the basis of elementary morphological traits, e.g., Fagus gussonii, support a Messinian rather than Oligocene age.
Article
Massive salt accumulations, or salt giants, have formed in highly restricted marine basins throughout geological history, but their impact on biodiversity has been only patchily studied. The salt giant in the Mediterranean Sea formed as a result of the restriction of its gateway to the Atlantic during the Messinian Salinity Crisis (MSC) 5.97 to 5.33 million years ago. Here, we quantify the biodiversity changes associated with the MSC based on a compilation of the Mediterranean fossil record. We conclude that 86 endemic species of the 2006 pre-MSC marine species survived the crisis, and that the present eastward-decreasing richness gradient in the Mediterranean was established after the MSC.
Article
Full-text available
Microorganisms inhabiting gypsum have been observed in environments that differ greatly in water availability. Gypsum colonized by microorganisms, including cyanobacteria, eukaryotic algae, and diverse heterotrophic communities, occurs in hot, arid or even hyperarid environments, in cold environments of the Antarctic and Arctic zones, and in saline and hypersaline lakes and ponds where gypsum precipitates. Fossilized microbial remnants preserved in gypsum were also reported. Gypsum protects the endolithic microbial communities against excessive insolation and ultraviolet radiation, while allowing photosynthetically active radiation to penetrate through the mineral substrate. We here review the worldwide occurrences of microbially colonized gypsum and the specific properties of gypsum related to its function as a substrate and habitat for microbial life on Earth and possibly beyond. Methods for detecting and characterizing endolithic communities and their biomarkers in gypsum are discussed, including microscopic, spectroscopic, chemical, and molecular biological techniques. The modes of adaptation of different microorganisms to life within gypsum crystals under different environmental conditions are described. Finally, we discuss gypsum deposits as possible targets for the search for microbial life or its remnants beyond Earth, especially on Mars, where sulfate-rich deposits occur, and propose strategies to detect them during space exploration missions.
Article
The Mediterranean Sea is a semi-enclosed oceanic basin that communicates with the Atlantic Ocean and can be subdivided into seven geographical regions. It is considered a hotspot of biodiversity and is characterised by high rates of endemism. Over the past decades, many studies showed the presence of potential geographical breaks both across the Atlanto-Mediterranean transition and within the Mediterranean Sea. These investigations led to the identification of three distinct types of population genetic structures: (1) populations characterized by panmixia; (2) Atlanto-Mediterranean geographical partitioning; and (3) possible further subdivision between East and West Mediterranean basins. In this review, mainly focused on Christoph Schubart’s works and interests, we summarize the different patterns of gene flows across the Atlanto-Mediterranean transition and within the Mediterranean Sea, recorded for decapod species living in littoral zones. Although some species share similar biological traits, larval dispersal mechanisms and habitat preferences, differences in their phylogeographic and population genetic structures do emerge. These findings confirm the complex nature of gene flows across the Atlanto-Mediterranean transition and within the Mediterranean basin and how difficult it is to achieve a generalised picture of the phylogeographical patterns of Atlantic-Mediterranean species.
Conference Paper
Full-text available
Abstract: We report about the discovery of a mysticete cetacean neurocranium located inside a block of oolitic limestone, corresponding to the Terminal Carbonate Complex (TCC) of the island of Mallorca. This unit is directly related to the Messinian Salinity Crisis (MSC) that occurred in the Mediterranean 5.97-5.33 Ma ago. The importance of the finding lies mainly in that it is the first and only record, so far known, of a fossil whale in the Messinian through the Mediterranean, since it is assumed that as a consequence of extreme environmental conditions during MSC, the great cetaceans went temporarily extinct from the Mediterranean. The record of the MSC in the Balearic Islands is nearer and consistent to the models that suggest two evaporitic episodes, separated by a brief restitution of sea-level would have occurred (5.77-5.60 Ma) likely provoked the deposition of the TCC in the marginal zones, thus possibly allowing the sporadic entrance of cetacean in the Messinian Mediterranean. Key words: Mysticeti, Messinian Salinity Crisis, Terminal Carbonate Complex, Mallorca, Western Mediterranean.
Article
Full-text available
The fossil record of sciaenid fishes (based on both otoliths and osteological finds) from the Neoge-ne of the Paratethys is reviewed. The species Labrax (=Morone) multipinnatus Gorjanović-Kramberger, 1882 from the Sarmatian of Croatia (Sv. Nedelja) that was originally described as a sea bass of the family Moronidae is reassigned to the extant croaker genus Argyrosomus. Two new genera and species of sciaenid fishes are described based on a single skeleton each, namely Landinisciaena popovi gen. et sp. nov. from the Tarkhanian (Lower/Middle Miocene) North Shir-vanskaya Formation exposed along the Pshekha River, North Caucasus, Russia, and Croatosciaena krambergeri gen. et sp. nov. from the Sarmatian s.s. (Middle Miocene) deposits of Dolje in the nearby of the city of Zagreb, Croatia. The holotype of the former taxon possesses a well-preserved saccular otolith in situ (first record of in situ croaker otolith in Europe) similar to the otoliths of the extant genus Atractoscion. The otolith-based Ottnangian species Atractoscion elongatissimus Schwarzhans, 1993 is transferred to the genus Landinisciaena gen. nov. A comprehensive revision of the Neogene otholith-based sciaenid record from Paratethys resulted in the recognition of three new genera (Chaoia gen. nov., Pontosciaena gen. nov. and Leptosciaena gen. nov.) as well as in the description of a new species L. caputoi sp. nov. from the uppermost Messinian (Lago-mare phase) of Italy. A number of known otholith-based species were either synonymized or assigned to a new generic affiliation. The complex biogeographic history of the Neogene Paratethyan sciaenids (based on both otoliths and skeletal records) is discussed, resulting in the recognition of a vanished "sciaenid bioprovince".
Article
Full-text available
In modern stromatolites, mineralization results from a complex interplay between microbial metabolisms, the organic matrix, and environmental parameters. Here, we combined biogeochemical, mineralogical, and microscopic analyses with measurements of metabolic activity to characterize the mineralization processes and products in an emergent (<18 months) hypersaline microbial mat. While the nucleation of Mg silicates is ubiquitous in the mat, the initial formation of a Ca‐Mg carbonate lamina depends on (i) the creation of a high‐pH interface combined with a major change in properties of the exopolymeric substances at the interface of the oxygenic and anoxygenic photoautotrophic layers and (ii) the synergy between two major players of sulfur cycle, purple sulfur bacteria, and sulfate‐reducing bacteria. The repetition of this process over time combined with upward growth of the mat is a possible pathway leading to the formation of a stromatolite.
Article
In marginal Mediterranean sub-basins, the early phase of the Messinian salinity crisis (MSC) is recorded by cyclic successions of gypsum and shales, which in deeper parts of the sub-basins make lateral transition into organic-rich shales, marls, and carbonates. The cyclic stacking pattern of the gypsum-bearing sequences is assumed to reflect periodic paleoenvironmental change induced by precession-driven climate perturbations, with the assumption that shales reflect humid climate (precession minima) while gypsum reflects arid conditions (precession maxima). However, this correlation has not been verified to date, mostly because of the scarcity of microfossils, the most commonly used tools for the reconstruction of precession-driven paleoenvironmental change. Such change can, instead, be reconstructed through the study of the deeper water counterparts of gypsum (marly and carbonate layers) with geochemical indicators (major and trace elements, molecular fossils), which provide insight on climate and aquatic productivity. We used this approach to study a section from the Piedmont Basin (NW Italy) where the onset of the MSC is archived in a sequence of organic-rich sediments. This sequence displays distinct lithological cyclicity, evidenced by the repetition of couplets of organic-rich shales and marls, either bioturbated (in the pre-MSC part of the section) or laminated (during the MSC). The influence of orbitally-driven (precession) climate oscillations is demonstrated by fluctuations of Ti/Al, Si/Al, Mg/Al, K/Al, Zr/Al, and Ba/Al ratios that are in phase with lithological cyclicity. These fluctuations are interpreted to reflect alternation of humid (shales, deposited during precession minima) and arid (bioturbated and laminated marls, deposited during precession maxima) phases, dominated by fluvial and aeolian transport of detrital material, respectively. The cyclicity of the element ratios is mirrored by changes in organic carbon content and molecular fossil inventory. In particular, the distribution of long-chain n-alkanes and their degree of preservation reveal that humid phases at times of precession minima were typified by the maximum input of degraded terrestrial organic matter driven by enhanced riverine runoff, which promoted water column stratification. Coeval increase in Ba content, a common paleoproductivity proxy, agrees with enhanced nutrient supply during humid periods, promoting phases of eutrophication in the basin. Lithological and geochemical changes are observed in MSC sediments deposited at times of precession maxima, evidenced by the replacement of pre-MSC bioturbated marls by laminated marls rich in filamentous fossils corresponding to the remains of probable colorless sulfide-oxidizing bacteria. Such changes reflect an intensification of water column stratification after the onset of the MSC, possibly related to the combined effect of persistent freshwater inflow and basin isolation, preluding the advent of gypsum precipitation.
Article
Un nouveau gisement de poissons fossiles est décrit dans le Messinien diatomitique des environs de Caltagirone (Province de Catane, Sicile). Pour la première fois est réalisée l'étude pluridisciplinaire d'un gisement fossilifère dont l'ichthyofaune est constituée pour près des 3/4 par des Myctophidae. Les diatomées, les foraminifères planctoniques et benthiques, les nannofossiles calcaires et les radiolaires sont examinés en même temps que l'ichthyofaune. Cette étude conduit à mettre en évidence des indices d'upwellings, ce qui confirme l'hypothèse avancée précédemment par le premier auteur pour expliquer la formation des gisements de poissons fossiles messi-niens dans lesquels les Myctophidae sont prédominants.
Article
New palaeontologic, sedimentologic, and Sr isotope data allow to reconstruct a high‐resolution chronostratigraphic and palaeoenvironmental framework of the continentalmarine transition at the Miocene–Pliocene boundary in the Sorbas Basin (Betic Cordillera, South‐eastern Spain). The presence of Reticulofenestra zancleana, Ceratolithus acutus, and R. pseudoumbilicus in a marine horizon sharply overlying the continental deposits of the Zorreras Member indicates that the Messinian salinity crisis ended in the Sorbas Basin synchronously with the other Mediterranean basins at the base of the Zanclean, within the MNN12a biozone. Our results suggest that the Zanclean flooding turned the Sorbas Basin into a shallow bay with limited exchange with the main Mediterranean basin, probably through narrow seaways connecting also the Almeria, Nijar, and Vera basins. Our results do not confirm previous hypotheses envisaging an older age for the return to fully marine conditions in the Sorbas Basin and is in a good agreement with the reconstructions suggesting that the Zorreras Mb. continental deposits are the local time‐equivalent of the latest Messinian Lago‐Mare phase during the last stage of the salinity crisis.
Article
The First Occurrence of the cysts of the dinoflagellate Galeacysta etrusca is a well-known marker for the final stage of the Messinian Salinity Crisis in the Mediterranean Basin. This taxon originated from the Paratethys in the north and migrated in a stepwise fashion towards the Mediterranean. Using the First Occurrence of this species throughout different Paratethyan basins and the Mediterranean, we here update and revise its migration path. We show that G. etrusca rapidly migrated from the Pannonian Basin into the Dacian, Black Sea and Caspian basins after the Pontian flooding at ~ 6.1 Ma. During the final stage of the Messinian Salinity Crisis (5.37-5.33 Million year ago), G. etrusca simultaneously appeared in the Mediterranean, indicating a single phase of Paratethyan water spilling into the Mediterranean. We propose to reimpose this single brackish water dominated unit/phase at the end of the MSC as the only valid 'Lago Mare' event.