Content uploaded by Kotayba Tawfiq Al-Youzbakey
Author content
All content in this area was uploaded by Kotayba Tawfiq Al-Youzbakey on Apr 20, 2019
Content may be subject to copyright.
201
pHE.C
T.D.S.T.H.
+
, K
+
, Na
2+
, Mg
2+
Ca
-
3
, NO
-
Cl
, -2
4
, SO
-
3
HCO
middle-upper Eiocene
202
Buday, 1980
Ahmad, 1980
Al-Jubori and Khattab, 1977
Upper Miocene
Al-Rawi et al., 1993
203
Al-Mubarak and Yokhanna, 1977
.
B1B2B3B4
B5 B6
B7B8aB8b
B9
B10B11B12
204
Total dissolved solids; T.D.S.Total hardness; T.H.
-
3
, NO
-
, Cl
-
3
, HCO
2+
, Mg
2+
Ca,
+
Na +
Kphotometer-Flame
-2
4
SO
Na%
Sodium Adsorption Ratio, SARResidual Sodium Carbonate, RSC
Na% = Na * 100% / (Na + K + Mg + Ca)
SAR = Na / ((Ca + Mg)/2)0.5
RSC = (CO3 + HCO3) – (Ca + Mg)
Shah et al., 2000
Deming, 2000
B1B5
205
pH (unit)
E.C. (µmhos/cm)
T.D.S. (ppm)
T.H. (ppm)
B1
7.24
3528
3440
1760
B2
6.97
3171
2900
1600
B3
7.01
2898
2660
1480
B4
7.06
5480
5051
2900
B5
7.55
3500
3129
2320
480
3715
436
B6
7.94
1183
1060
780
B7
6.94
1376
1360
1200
B8a
7.24
1271
1060
920
B8b
7.26
1500
1449
1080
B9
7.31
2048
1860
1380
B10
7.33
2268
2048
1160
B11
7.37
1649
1460
1020
B12
7.50
1523
1180
900
6.94
1183
1060
780
7.94
1602
1435
B6B12
206
T.D.S
Todd,
100
200
300
400
500
600
700
6.8 7.2 7.6
pH
HCO3- (mg/l)
0
1000
2000
3000
4000
5000
6000
02000 4000 6000
E.C. ()
TDS ()
0
500
1000
1500
2000
2500
3000
0200 400 600 800
Ca2+ ()
SO42- ()
0
100
200
300
400
500
600
050 100 150 200 250
Mg2+ ()
HCO3- ()
0
50
100
150
200
250
0100 200 300
Na+ ()
Cl- ()
0
500
1000
1500
2000
2500
3000
050 100 150 200 250
Cl- ()
SO42- ()
207
1980
T.H.
carbonate hardness
2+
Ca
Hamil and Bell, 1986
Davis and DeWiest, 1966
2+
Mg
Bouwer, 1978 and Hamil and Bell, 1986
Mg-calcite
208
Chapelle, 2004
Phillips and Castro, 2004
2+
Ca
2+
Mg
+
Na
+
K
-
3
HCO
-2
4
SO
-
Cl
-
3
NO
B1
490
119
217
3
448
1397
219
41
B2
322
127
181
2
388
1116
171
43
B3
492
74
203
2
392
1362
167
28
B4
678
227
245
2
500
2478
159
40
B5
559
164
130
2
344
1759
115
28
322
74
130
678
227
245
B6
231
41
9
2
268
384
33
13
B7
232
70
37
1
376
499
27
3
B8a
252
50
20
1
392
398
31
11
B8b
277
72
20
2
388
556
23
10
B9
252
114
10
1
428
623
74
47
B10
266
87
62
2
412
480
186
47
B11
240
81
30
1
528
509
74
7
B12
168
74
69
1
512
362
68
8
168
41
9
1
268
362
23
3
277
209
+
Na
Hamil and Bell, 1986
+
K
Davis and Dewist, 1966
-
3
HCO
210
Bouwer, 1978
Deming, 2002
-2
4
SO
Toth, 1970
Hamil and Bell, 1986
-
Cl
Chapelle, 2004
<30Hamil and Bell, 1986
211
-
3
NO
Jones, 1997
B9B10
WHOJones, 1997
Wagner, 2011
+
> K
+
> Na
2+
> Mg
2+
Ca
-
3
> NO
-
> Cl
-
3
> HCO
-2
4
SO
hydrochemical facies
4
SO-Ca
3
HCO-Mg-Ca
Aghazadeh and Mogaddam, 2010
C4
C3
212
B10
Na% SAR RSC
S1
Ca2+
Mg2+
Na+
K+
HCO3-
SO42-
Cl-
NO3-
B1
24.45
9.79
9.44
0.08
7.34
29.10
6.18
0.66
43.76
43.29
B2
16.07
10.45
7.87
0.05
6.36
23.25
4.82
0.69
34.44
35.13
B3
24.55
6.09
8.83
0.05
6.43
28.38
4.71
0.45
39.52
39.96
B4
33.83
18.68
10.66
0.05
8.20
51.63
4.49
0.65
63.22
64.95
B5
27.89
13.50
5.65
0.05
5.64
36.65
3.24
0.45
47.10
45.98
B6
11.53
3.37
0.39
0.05
4.39
8.00
0.93
0.21
15.34
13.53
B7
11.58
5.76
1.61
0.03
6.16
10.40
0.76
0.05
18.97
17.37
B8a
12.57
4.12
0.87
0.03
6.43
8.29
0.87
0.18
17.59
15.77
B8b
13.82
5.93
0.87
0.05
6.36
11.58
0.65
0.16
20.67
18.75
B9
12.57
9.38
0.43
0.03
7.02
12.98
2.09
0.76
22.42
22.84
B10
13.27
7.16
2.70
0.05
6.75
10.00
5.25
0.76
23.18
22.76
B11
11.98
6.67
1.30
0.03
8.66
10.60
2.09
0.11
19.97
21.46
B12
8.38
6.09
3.00
0.03
8.39
7.54
1.92
0.13
17.50
17.98
E.C. SAR(B5 ~ B1B10 C4 S1
213
B12 ~ B6B10C3 S1
B1
B2
B3
B4
B5
B6
B7
B8a
B8b
B9
B10
B11
B12
Na%
21.
22.
22.3
16.
12.0
2.
8.
4.9
4.2
1.9
11.6
6.5
17.
SAR
2.
2.
2.
2.
1.2
0.1
0.
0.3
0.
0.1
0.8
0.4
1.1
RSC
-26.9
-20.
-24.2
-44.3
-35.
-10.5
-11.
-10.
-13.
-14.9
-13.
-
-6.
214
Aghazadeh, N. and Mogaddam, A.A., (2010) Assessment of Groundwater Quality
and its Suitability for Drinking and Agricultural Uses in the Oshnavieh Area,
Northwest of Iran. Journal of Environmental Protection, Scientific research
Published, 1, 30-40
Ahmad, N.M., (1980) Facies of the Fossiliferous Limestone Beds of Lower Fars
Formation at some Localities in Northern Iraq. Unpublished M.Sc. Thesis,
Mosul university.
Al-Jubori, Z. A. and Khattab, S. I., (1977) The Dissolution of Calcium Sulphate
Rocks below the Foundation of a large Hydraulic Structure. Raf. Jour. Sci.,
Vol. 8, pp 63-73.
Al-Mubarak, M.A.R. and Yokhanna, R.Y., (1977) Report of the regional geology
mapping of Al-Fatha – Mosul, S.O.M. Library, Baghdad, Iraq.
A-Rawi, Y. T., Sayyeb, A.S., Jassim, J.A., Tamar-Agha, Al-Sammerai, A.I., Karim,
S.A., Basi, M.A., Dhiab, S.H., Faris, F.M. and Anwer, F., (1993) New Names
for some of the Middle Miocene – Pliocene formations of Iraq. (fat ha',
Injana, Mukdadiya and Bai Hassan formations) Iraqi Jour. Vol. 26, pp 108-
121.
Buday, T., (1980) The Regional Geology of Iraq. Stratigraphy and Paleogeography.
Edited by Kassab, I.I.M. and Jassim, S.Z., Dar Al-Kutub Pub., Mosul
University.
Bouwer, H., (1978) Ground Water Hydrology. McGraw-Hill, New York, 480P.
Chapelle, F.H., (2004) Geochemistry of Groundwater. In: Holland, H.D. and
Turekian, K.K. TREATISE on GEOCHEMISTRY, Surface and Ground
Water, Weathering and Soils, 5: 425-449.
Deming, D., (2000) Introduction to Hydrogeology. McGraw-Hill Co. 468P.
215
Davis, S.N. and Dewiest, R.J.M., (1966) Hydrogeology. John Wiley & Sons, New
York, 108P.
Hamil, L. and Bell, F.G., (1986) Ground water resource development, Butterworth,
London, 344P.
Jones, J.A.A., (1997) Global Hydrology, Processes, resources and environmental
management. Longman. England, 399P.
Phillips, F.M. and Castro, M. C., (2004) Groundwater Datimg and Residence-time
Measurements. In: Holland, H.D. and Turekian, K.K. (2004) TREATISE on
GEOCHEMISTRY, Surface and Ground Water, Weathering and Soils, 5:
451-497.
Shah, T., Molden, D., Sakthivadivel, R. and Seckler, D., (2000) The Global
Groundwater Situation: Overview of Opportunities and Challenges.
International Water Management Institute. Colombo, Sri Lanka. ISBN 92-
9090-402-X. 19P.
Toth, J.A., (1970) A conceptual model of groundwater regime and the
hydrogeological environment. Jour. Hydro., 10, 164-167.
Wagner, W., (2011) Groundwater in Arab Middle East. Springer-Verlag, Berlin,
Heidelberg, 443p.
Walton, W.G., (1970) Ground water resource evaluation, McGraw Hill Co. New
York, 222P.
216
The Evaluation of Chemical Characterization for
Selected Wells Water in Mosul – Bahshiqa – Shalalat
Area, Ninivah Governorate, Northern Iraq
Kotayba T. Al-Youzbakey Ali M. Sulaiman Daa'ad A. Ismaeel
Dams and water Resources Researches Center – Mosul University
ABSTRACT
The studied area located in the eastern north of Mosul city in the Mosul
– Bahshiqa – Shalalat province. This area is trained topographically from
Bahshiqa mountain in the eastern north to the Mosul city in the western
south, it is representing a wide depression, with lower elevation in the middle
distance between Mosul city and Bahshiqa mountain. This depression
represents the catchment area of the precipitation.
Thirteen shallow wells were selected to evaluate their water quality.
Physical parameters: pH, EC., T.D.S, and T.H. were tested. A well as the
chemical composition for cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3-,
SO42-, Cl-, NO3-) were analyzed by standard methods.
The chemical analyses classified the well into two groups, the first one
found within Al-Fat'ha Formation gypsum/anhydrite layers. These kinds of
rocks dissolved easily in ground water and cause increasing the salt
concentrations. The second group represent ground water found within layers
above the evaporates, which are belong to Injanah Formation and recent
sediments that derived from the weathered rocks of Al-Fat'ha and Injanah
formations. Dissolving the calcareous and gypsiferous materials of these
rocks and sediments are enriched ground water with salts. So that the second
group ground water show lower concentrations than the first one.