Conference PaperPDF Available

The Evaluation of Chemical Characterization for Selected Wells Water in Mosul – Bahshiqa – Shalalat Area, Ninivah Governorate, Northern Iraq.

Authors:

Abstract

The studied area located in the eastern north of Mosul city in the Mosul – Bahshiqa – Shalalat province. This area is trained topographically from Bahshiqa mountain in the eastern north to the Mosul city in the western south, it is representing a wide depression, with lower elevation in the middle distance between Mosul city and Bahshiqa mountain. This depression represents the catchment area of the precipitation. Thirteen shallow wells were selected to evaluate their water quality. Physical parameters: pH, EC., T.D.S, and T.H. were tested. A well as the chemical composition for cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3-, SO42-, Cl-, NO3-) were analyzed by standard methods. The chemical analyses classified the well into two groups, the first one found within Al-Fat'ha Formation gypsum/anhydrite layers. These kinds of rocks dissolved easily in ground water and cause increasing the salt concentrations. The second group represent ground water found within layers above the evaporates, which are belong to Injanah Formation and recent sediments that derived from the weathered rocks of Al-Fat'ha and Injanah formations. Dissolving the calcareous and gypsiferous materials of these rocks and sediments are enriched ground water with salts. So that the second group ground water show lower concentrations than the first one.

201
 









pHE.C
T.D.S.T.H.

+
, K
+
, Na
2+
, Mg
2+
Ca
-
3
, NO
-
Cl
, -2
4
, SO
-
3
HCO













  
  
      
            

    middle-upper Eiocene   
  

202
Buday, 1980
          
        

Ahmad, 1980 


Al-Jubori and Khattab, 1977
 Upper Miocene 
          
Al-Rawi et al., 1993





203

 


         

  
            
          Al-Mubarak and Yokhanna, 1977


        
.
           

    

         
   
           


      

    


   
             
B1B2B3B4
  B5      B6   

B7B8aB8b

       B9 
B10B11B12


204
Total dissolved solids; T.D.S.Total hardness; T.H.


-
3
, NO
-
, Cl
-
3
, HCO
2+
, Mg
2+
Ca,
+
Na +
Kphotometer-Flame
-2
4
SO




Na%
Sodium Adsorption Ratio, SARResidual Sodium Carbonate, RSC
Na% = Na * 100% / (Na + K + Mg + Ca)
SAR = Na / ((Ca + Mg)/2)0.5
RSC = (CO3 + HCO3) (Ca + Mg)


 
Shah et al., 2000
Deming, 2000
  














B1B5

205





pH (unit)

E.C. (µmhos/cm)

T.D.S. (ppm)

T.H. (ppm)
B1
7.24
3528
3440
1760
B2
6.97
3171
2900
1600
B3
7.01
2898
2660
1480
B4
7.06
5480
5051
2900
B5
7.55
3500
3129
2320







480




3715
436

B6
7.94
1183
1060
780
B7
6.94
1376
1360
1200
B8a
7.24
1271
1060
920
B8b
7.26
1500
1449
1080
B9
7.31
2048
1860
1380
B10
7.33
2268
2048
1160
B11
7.37
1649
1460
1020
B12
7.50
1523
1180
900

6.94
1183
1060
780

7.94





1602
1435


B6B12









206
T.D.S


Todd,
100
200
300
400
500
600
700
6.8 7.2 7.6
HCO3- (mg/l)
0
1000
2000
3000
4000
5000
6000
02000 4000 6000
E.C. ()
TDS ()
0
500
1000
1500
2000
2500
3000
0200 400 600 800
Ca2+ ()
SO42- ()
0
100
200
300
400
500
600
050 100 150 200 250
Mg2+ ()
HCO3- ()
0
50
100
150
200
250
0100 200 300
Na+ ()
Cl- ()
0
500
1000
1500
2000
2500
3000
050 100 150 200 250
Cl- ()
SO42- ()





207
1980








T.H.

carbonate hardness










2+
Ca

Hamil and Bell, 1986



Davis and DeWiest, 1966







2+
Mg        


Bouwer, 1978 and Hamil and Bell, 1986

Mg-calcite

208



Chapelle, 2004
Phillips and Castro, 2004





2+
Ca
2+
Mg
+
Na
+
K
-
3
HCO
-2
4
SO
-
Cl
-
3
NO

B1
490
119
217
3
448
1397
219
41
B2
322
127
181
2
388
1116
171
43
B3
492
74
203
2
392
1362
167
28
B4
678
227
245
2
500
2478
159
40
B5
559
164
130
2
344
1759
115
28

322
74
130





678
227
245













B6
231
41
9
2
268
384
33
13
B7
232
70
37
1
376
499
27
3
B8a
252
50
20
1
392
398
31
11
B8b
277
72
20
2
388
556
23
10
B9
252
114
10
1
428
623
74
47
B10
266
87
62
2
412
480
186
47
B11
240
81
30
1
528
509
74
7
B12
168
74
69
1
512
362
68
8

168
41
9
1
268
362
23
3

277















209







+
Na














Hamil and Bell, 1986





+
K



           
Davis and Dewist, 1966





-
3
HCO   




210


Bouwer, 1978

           
Deming, 2002
        

    
            




-2
4
SO          
          

          
Toth, 1970

       


             
       

            
Hamil and Bell, 1986

-
Cl
           

 Chapelle, 2004 
            

<30Hamil and Bell, 1986

           
 
    


211
            




 
-
3
NO         

           

            
Jones, 1997






B9B10  


WHOJones, 1997

          

Wagner, 2011            

+
> K
+
> Na
2+
> Mg
2+
Ca
-
3
> NO
-
> Cl
-
3
> HCO
-2
4
SO
hydrochemical facies

4
SO-Ca
3
HCO-Mg-Ca
        
Aghazadeh and Mogaddam, 2010
          
   
C4

         C3  

        
            

212


B10

          
          

Na%   SAR    RSC 


           
S1








Ca2+
Mg2+
Na+
K+
HCO3-
SO42-
Cl-
NO3-
B1
24.45
9.79
9.44
0.08
7.34
29.10
6.18
0.66
43.76
43.29
B2
16.07
10.45
7.87
0.05
6.36
23.25
4.82
0.69
34.44
35.13
B3
24.55
6.09
8.83
0.05
6.43
28.38
4.71
0.45
39.52
39.96
B4
33.83
18.68
10.66
0.05
8.20
51.63
4.49
0.65
63.22
64.95
B5
27.89
13.50
5.65
0.05
5.64
36.65
3.24
0.45
47.10
45.98
B6
11.53
3.37
0.39
0.05
4.39
8.00
0.93
0.21
15.34
13.53
B7
11.58
5.76
1.61
0.03
6.16
10.40
0.76
0.05
18.97
17.37
B8a
12.57
4.12
0.87
0.03
6.43
8.29
0.87
0.18
17.59
15.77
B8b
13.82
5.93
0.87
0.05
6.36
11.58
0.65
0.16
20.67
18.75
B9
12.57
9.38
0.43
0.03
7.02
12.98
2.09
0.76
22.42
22.84
B10
13.27
7.16
2.70
0.05
6.75
10.00
5.25
0.76
23.18
22.76
B11
11.98
6.67
1.30
0.03
8.66
10.60
2.09
0.11
19.97
21.46
B12
8.38
6.09
3.00
0.03
8.39
7.54
1.92
0.13
17.50
17.98
          
        
E.C. SAR(B5 ~ B1B10 C4 S1      

213

B12 ~ B6B10C3 S1 





B1
B2
B3
B4
B5
B6
B7
B8a
B8b
B9
B10
B11
B12
Na%
21.
22.
22.3
16.
12.0
2.
8.
4.9
4.2
1.9
11.6
6.5
17.
SAR
2.
2.
2.
2.
1.2
0.1
0.
0.3
0.
0.1
0.8
0.4
1.1
RSC
-26.9
-20.
-24.2
-44.3
-35.
-10.5
-11.
-10.
-13.
-14.9
-13.
-
-6.

    



  

           

     
            


       

  




             





214


 
           



            





Aghazadeh, N. and Mogaddam, A.A., (2010) Assessment of Groundwater Quality
and its Suitability for Drinking and Agricultural Uses in the Oshnavieh Area,
Northwest of Iran. Journal of Environmental Protection, Scientific research
Published, 1, 30-40
Ahmad, N.M., (1980) Facies of the Fossiliferous Limestone Beds of Lower Fars
Formation at some Localities in Northern Iraq. Unpublished M.Sc. Thesis,
Mosul university.
Al-Jubori, Z. A. and Khattab, S. I., (1977) The Dissolution of Calcium Sulphate
Rocks below the Foundation of a large Hydraulic Structure. Raf. Jour. Sci.,
Vol. 8, pp 63-73.
Al-Mubarak, M.A.R. and Yokhanna, R.Y., (1977) Report of the regional geology
mapping of Al-Fatha Mosul, S.O.M. Library, Baghdad, Iraq.
A-Rawi, Y. T., Sayyeb, A.S., Jassim, J.A., Tamar-Agha, Al-Sammerai, A.I., Karim,
S.A., Basi, M.A., Dhiab, S.H., Faris, F.M. and Anwer, F., (1993) New Names
for some of the Middle Miocene Pliocene formations of Iraq. (fat ha',
Injana, Mukdadiya and Bai Hassan formations) Iraqi Jour. Vol. 26, pp 108-
121.
Buday, T., (1980) The Regional Geology of Iraq. Stratigraphy and Paleogeography.
Edited by Kassab, I.I.M. and Jassim, S.Z., Dar Al-Kutub Pub., Mosul
University.
Bouwer, H., (1978) Ground Water Hydrology. McGraw-Hill, New York, 480P.
Chapelle, F.H., (2004) Geochemistry of Groundwater. In: Holland, H.D. and
Turekian, K.K. TREATISE on GEOCHEMISTRY, Surface and Ground
Water, Weathering and Soils, 5: 425-449.
Deming, D., (2000) Introduction to Hydrogeology. McGraw-Hill Co. 468P.

215
Davis, S.N. and Dewiest, R.J.M., (1966) Hydrogeology. John Wiley & Sons, New
York, 108P.
Hamil, L. and Bell, F.G., (1986) Ground water resource development, Butterworth,
London, 344P.
Jones, J.A.A., (1997) Global Hydrology, Processes, resources and environmental
management. Longman. England, 399P.
Phillips, F.M. and Castro, M. C., (2004) Groundwater Datimg and Residence-time
Measurements. In: Holland, H.D. and Turekian, K.K. (2004) TREATISE on
GEOCHEMISTRY, Surface and Ground Water, Weathering and Soils, 5:
451-497.
Shah, T., Molden, D., Sakthivadivel, R. and Seckler, D., (2000) The Global
Groundwater Situation: Overview of Opportunities and Challenges.
International Water Management Institute. Colombo, Sri Lanka. ISBN 92-
9090-402-X. 19P.
Toth, J.A., (1970) A conceptual model of groundwater regime and the
hydrogeological environment. Jour. Hydro., 10, 164-167.
Wagner, W., (2011) Groundwater in Arab Middle East. Springer-Verlag, Berlin,
Heidelberg, 443p.
Walton, W.G., (1970) Ground water resource evaluation, McGraw Hill Co. New
York, 222P.

216
The Evaluation of Chemical Characterization for
Selected Wells Water in Mosul Bahshiqa Shalalat
Area, Ninivah Governorate, Northern Iraq
Kotayba T. Al-Youzbakey Ali M. Sulaiman Daa'ad A. Ismaeel
Dams and water Resources Researches Center Mosul University
ABSTRACT
The studied area located in the eastern north of Mosul city in the Mosul
Bahshiqa Shalalat province. This area is trained topographically from
Bahshiqa mountain in the eastern north to the Mosul city in the western
south, it is representing a wide depression, with lower elevation in the middle
distance between Mosul city and Bahshiqa mountain. This depression
represents the catchment area of the precipitation.
Thirteen shallow wells were selected to evaluate their water quality.
Physical parameters: pH, EC., T.D.S, and T.H. were tested. A well as the
chemical composition for cations (Ca2+, Mg2+, Na+, K+) and anions (HCO3-,
SO42-, Cl-, NO3-) were analyzed by standard methods.
The chemical analyses classified the well into two groups, the first one
found within Al-Fat'ha Formation gypsum/anhydrite layers. These kinds of
rocks dissolved easily in ground water and cause increasing the salt
concentrations. The second group represent ground water found within layers
above the evaporates, which are belong to Injanah Formation and recent
sediments that derived from the weathered rocks of Al-Fat'ha and Injanah
formations. Dissolving the calcareous and gypsiferous materials of these
rocks and sediments are enriched ground water with salts. So that the second
group ground water show lower concentrations than the first one.
... Calcium carbonate assumed to be the main component of limestone and marl, as well as clay minerals mainly illite, chlorite, and the limited ratio of montmorillonite [8]. These minerals found within Al-Fat'ha Formation are affecting the nature of groundwater quality, due to the dissolving of calcium carbonate [9,10]. High sulfate concentration is known to reduce the activity of aerobic microorganisms, (one of the main producing source of CO2). ...
... Sodium ranged (60-342) mg/l in deep wells, while it ranged mg/l in shallow wells. This may indicate that the low varieties in the first group due to the dissolving of halite which founds in the rocks of Fat'ha Formation, while the wide-ranged in second group reflect the effect of rain and surface water on dissolving the secondary halite in the upper part of the soil, and it is related to the weather conditions through the year [10]. ...
Article
Full-text available
The present study is concerned with the impact of the geological nature of Al-Fat'ha Formation rock beds and soil on the well water quality of the Al-Sada area (about 2 Km. from the border of Mosul city toward the north). Groundwater passes through different depths dissolving gypsum within their passages between gypsum fractures, which is assumed as the major constituents of Al-Fat'ha Formation. It was found that water resources had significant concentrations of total dissolved solids (TDS), total hardness (TH), calcium (Ca2+), magnesium (Mg2+), sodium (Na+), sulphate (SO42-), bicarbonate (HCO3-) and chloride (Cl-). Cations and anions are ordered as Na+> Ca2+> Mg2+> K+ and SO42-> Cl-> HCO3-> NO3- in shallow wells (1 and 2) and Ca2+> Mg2+> Na+> K+ and SO42-> HCO3-> Cl-> NO3- in deep wells (3, 4 & 5) as well as the well No. 6. The deep wells classified as high salinity water and shallow wells as very high salinity, all wells could be used for plants that bearing salinity with continuous leaching in permeable soils.
... Since mineral waters have been a part of our existence since ancient times, understanding its origin and mineralization via an investigation of the formation mechanisms that give birth to this water's source and their interaction with the formations in which it is collected has tremendous value [1]. Such is the case that it was established in 2013 [2,3], as a natural resource, for the treatment of various diseases. Groundwater and its hydrogeological context are related to physical-chemical and biological geological factors. ...
Article
Full-text available
According to the research, there are many illnesses for which therapeutic mineral hot springs are employed as an alternative. Its physicochemical characteristics have a substantial body of evidence. The in vivo antioxidant effect of Mosul’s hot springs in Iraq has been investigated in the current investigation. An experimental design for toxicity, a control group, and a study group were created. In addition, in vivo antioxidant effect of the hot springs of Mosul, Iraq, has been studied by the lipid antiperoxidation method with ( p < 0.05 ), in vitro by the free radical scavenging method (DPPH) for its complexing capacity of hot springs. In acute oral toxicity in vivo at fixed doses, looking for signs and symptoms of toxicity, there are no signs of intoxication or significant changes in the biochemical analysis (blood count). And, it was discovered that the variances are substantial. The animal was necropsied, and hematological and biochemical parameters were determined, as well as the organs’ histological processing at the study’s conclusion. It was found that the thermal waters from Mosul, Iraq, are medicinal mineral waters, chlorinated, sodium, and sulfated, nontoxic and have an antioxidant effect. With the help of the research’s findings, it is hoped to provide scientific support for knowledge that, when made public, encourages the development of Mosul’s hot springs as a safe and environmentally friendly tourist destination. With the results of this research, the parameters were presented with their mean and standard deviation statistics, promoting the ecological and sanitary tourism development of the Mosul hot springs, which will generate more significant income for the population, therefore growth in the region.
Article
Groundwater is an important resource, especially in areas where water resources do not meet the requirements of life. Therefore, population centers in areas far from rivers are linked to the quantity and quality of groundwater available. The study area represents a large part of the eastern part of Nineveh Governorate, which is dotted with small cities and villages with population and agricultural activity. The quantity and quality of groundwater are related to the nature of the reservoir rocks in the region, which are mainly represented by the Pila Spi Formation, composed of dolomite limestone, the Fat’ha Formation, composed of periodic successions of marl, limestone, and gypsum, and the Injana Formation, composed of periodic successions of sandstone, siltstone, and clay. The quality of the rocks exposed in the study area, especially at the feet of the Bashiqa and Ain Al-Safra mountains, and the ability of the minerals that make up them to dissolve in conditions of weathering and erosion also affect the water content of dissolved salts. The water quality index (WQI) was calculated to determine its suitability for civil use based on the physical (pH, E.C, T.D.S and T.H) and chemical (Ca2+, Mg2+, Na+, K+, HCO3-, SO42-, Cl- and NO3-) specifications. In light of this, the distribution of wells was determined according to their specifications. In general, there were six regions; The first in the northern part has excellent water, the second in the south has good water, the third in the south has unsuitable water, and the fourth area, which represents the area confined between the city of Mosul and Mount Bashiqa, has poor water quality, while the area adjacent to Ain Al-Sufra Mountain is classified as having good water quality, while The area located to the southwest towards the Tigris River is of very poor quality. There are sites for wells whose specifications vary according to the type of activity there.
Article
Full-text available
Wadi Bandawaya, which is 40 km north of Mosul in Iraq, pierces Mount Dahqan and creates a small valley that is ideal for the construction of a dam for harvesting rainwater. Water quality is evaluated for domestic and agricultural uses using chemical analyses of the main cations (Ca2+, Mg2+, Na+, K+), anions (HCO3-, SO42-, Cl-, NO3-), as well as measurements of the acidity function (pH), electrical conductivity (Ec), concentration of total dissolved salts (TDS), and total hardness (TH). The valley water is considered to be within the limits permitted for drinking by the World Health Organization. If held inside the water harvesting project of the Bandawaya dam, the water of Bandawaya Valley is freshwater, suitable for drinking and domestic applications, according to the water quality index (WQI). It is also suitable for irrigation of agricultural lands adjacent to the valley in accordance with standards of the percentage of sodium (SSP), the rate of sodium adsorption (Sodium Adsorption Ratio, SAR), the quantity of residual sodium carbonate (Residual Sodium Bicarbonate, RSBC), and the percentage of magnesium (MAR). When there is little rain, the harvested water will be used for irrigation, as well as for supplemental irrigation techniques.
Article
Full-text available
In the hydrological cycle, runoff precipitation is one of the most significant and complex phenomena. In order to develop and improve predictive models, different perspectives have been presented in its modeling. Hydrological processes can be confidently modeled with the help of artificial intelligence techniques. In this study, the runoff of the Leilanchai watershed was simulated using artificial neural networks (ANNs) and M5 model tree methods and their hybrid with wavelet transform. Seventy percent of the data used in the train state and thirty percent in the test state were collected in this watershed from 2000 to 2021. In addition to daily and monthly scales, simulated and observed results were compared within each scale. Initially, the rainfall and runoff time series were divided into multiple sub-series using the wavelet transform to combat instability. The resultant subheadings were then utilized as input for an ANN and M5 model tree. The results demonstrated that hybrid models with wavelet improved the ANN model's daily accuracy by 4% and its monthly accuracy by 26%. It also improved the M5 model tree's daily and monthly accuracy by 4% and 41%. The wavelet-M5 model's accuracy does not diminish to the same degree as the wavelet-ANN (WANN) model as the forecast horizon lengthens. Consequently, the Leilanchai watershed has a relatively stable behavior pattern. Finally, hybrid models, in conjunction with the wavelet transform, improve forecast accuracy.
Article
Full-text available
Development anD evaluation of the Drinking Water Quality inDex in the eastern Bank of nineveh governorate extenDeD aBstract obiettivo di questo studio è il tentativo di sviluppare un nuovo metodo per valutare l'indice di qualità delle acque sotterranee (GWQI) derivato dall'equazione di Gupta & Misra, 2018. Tale indice si basa sugli standard indicati dall'Organizzazione Mondiale della Sanità (OMS, 2006) (GWQI 3) e sulle specifiche standard irachene di potabilità (IQS 417, 2001) (GWQI.6) per la valutazione delle acque sotterranee e la possibilità di utilizzo delle acque dei pozzi per uso potabile nella zona orientale del fiume Tigri, nel Governatorato di Ninive. Per'un'attenta valutazione sono stati quindi selezionati tre siti: il primo tra la città di Mosul e Jabal Bashiqa, il secondo tra i distretti di Hamdaniya, Bartella e Nimrod, ed il terzo tra la città di Tel-kaif e la città di Wana. Complessivamente, per misurare 12 parametri e calcolare l'indice di qualità dell'acqua (GWQI), che comprende: le proprietà fisiche, il pH, i sali totali disciolti (TDS) e la conducibilità elettrica (E.C.), sono stati prelevati centotrentanove campioni di acqua di pozzo. Le proprietà chimiche misurate in laboratorio includevano i cationi (Ca 2+ , Mg 2+ , Na + , K +), gli anioni (SO 4 2-, HCO 3-, Cl-, NO 3-) ela durezza totale (TH). I valori ottenuti di qualità dell'acqua in termini di GWQI. 1 variavano da 20 a 271, quindi l'acqua dei pozzi è stata classificata come non potabile nel 43% dei casi, di pessima qualità potabile nel 28%, di scarsa qualità nel 27% e di buona qualità solo nel 2% dei campioni esaminati. Mentre i valori del proposto GWQI. 2, derivato dall'equazione originale, dopo aver eliminato i paramentri che non influiscono sulla qualità dell'acqua potabile, vale a dire pH, K + e HCO 3-.variavano tra 66 e 172. Secondo la classificazione di Gupta & Misra (2018), la maggior parte dei campioni, per il 59%, mostrava una qualità dell'acqua molto scarsa, scarsa nel 12%, potabile solo nel 29%, mentre la categoria buona ed eccellente non è stata trovata. Utilizzando la formula proposta GWQI. 3 e la classificazione in funzione dei limiti del WHO, (2006), il 37% dei pozzi risulta non potabile, il 57% con acqua molto scadente, il 6% scadente, mentre non si riscontrava la categoria buono e ottimo. Il GWQI. 4 variava da 24 a 374 per le specifiche standard irachene (IQS 417. 2001), nei seguenti rapporti: 10%, 18% e 72%, rispettivamente scarso, molto scarso e inadatto. Mentre il proposto GWQI. 5 secondo gli standard IQS 417. (2001) variava tra 80 e 268, con i campioni distribuiti in molto scadente nel 19% e inadatta all'uso potabile nell'81%. Infine, applicando l'equazione e la classificazione proposta GWQI.6 è stato trovato che il 68% dei pozzi erano non potabili, il 30% con qualità molto bassa e il 2% con qualità bassa. Il motivo per cui i pozzi presentavano valori di GWQI molto alti era probabilmente legato al forte aumento delle concentrazioni di potassio provenienti dai fertilizzanti organici e chimici utilizzati in agricoltura. In generale, le acque sotterranee nell'area di studio risultano non adatte per usi potabili e domestici. a. s. kateB & k. t. al-youzBakey aBstract Groundwater quality is the result of all the chemical and hydrological reactions and processes that affected on the water. The Water Quality Index (WQI) is a mathematical tool that describes water quality to assess the levels of water usage. This study attempts to develop a new method for the groundwater quality index (GWQI). It is based on the standards of the (WHO, 2006) and the (IQS 417, 2001) to assess the groundwater and validity of wells water for drinking in the eastern bank of Nineveh Governorate. 139 well water samples were taken to measure 12 physical variables (pH, E.C. and T.D.S.) and chemical variables (Ca 2+ , Mg 2+ , Na + , K + , SO 4 2 , HCO 3 2-, Cl-, NO 3-, and T.H.). Nine variables were use to calculate the WQI, excluding non-influential parameters (potassium, pH, and bicarbonate) that fall within the permissible ranges for drinking in WHO and IQS 417, based on the statistical treatments. The study developed and modified equations and classifications were used to reflect an accurate quality of the groundwater in the region. The (GWQI.3) classified depending on (WHO, 2006), 37% of wells were unsuitable, 57% were very poor, 6% were poor, while the (GWQI.6) was classified as follows: 68% are unsuitable, 30% very poor, 2% poor, depending on (IQS 417, 2001). In general, groundwater in the study area is unsuitable for drinking and civil uses.
Article
Full-text available
In this research, the Water Quality Index (CCME) was used to determine groundwater suitability for drinking and domestic purposes. in the village of Shouira in Talafar district, northwest of Nineveh Governorate. This was carried out by subjecting 50 samples of groundwater to biological and chemical analysis. These parameters include pH, TDS, O 2 , T.A, Ca, Mg, Na, K, Cl, PO 4 , SO 4 , TPC, and F. Colif. The results show that groundwater is not suitable for drinking. It was found that the low value of CCME, which ranged between (17.9 - 32.7), is mainly due to the high value of most of the values of the measured parameters and the low oxygen values.
Article
Full-text available
Assessment of WAter QuAlity Along greAter ZAb river Within irAQi lAnds extended AbstrAct Con il presente studio si è inteso valutare la qualità delle acque del fiume Greater Zab (GZR-Greater Zab River), il maggiore e più importante affluente del fiume Tigri , per il quale contribusce a circa il 40% del volume totale di acqua, costituendo un grande bacino idrografico di estrema rilevanza per l'utenza civile. A partire dalle aree vicino al lago Van in Turchia, dove il F. Greater Zab nasce, il GZR rappresenta il recapito di numerosi corsi d'acqua compresi quelli della regione del Kurdistan iracheno attraverso il quale scorre fino a confluire nel fiume Tigri, a circa 40 km a sud della città di Mosul. nel suo percorso il GZR interessa diverse formazioni geologiche, la maggior parte delle quali costituite da rocce carbonatiche composte da calcite e dolomite, fortemente solubili per effetto delle precipitazioni. Pertanto gli affluenti maggiori (i fiumi Shamdinan, Haji Beg, Rawandooz e Khazir-Gomal), oltre a decine di piccoli affluenti e torrenti stagionali, confluiscono e si riversano nella valle principale del GZR, trsportando i prodotti dell'erosione di queste rocce come ioni solubili. le fluttuazioni nella concentrazione dei principali cationi e anioni sono dovute all'effetto dell'alimentazione idrica di affluenti e torrenti, alla tipologia delle rocce esposte e all'effetto dell'erosione chimica sulle rocce e sul suolo che ne deriva. il presente studio ha mostrato, attraverso i risultati dell'analisi chimica dei principali cationi {(Ca 2+ = 58-41) mg/l, (Mg 2+ = 18,5-33) mg/l, (na + = 3-7 mg/l, (K + = 1,6-2,5) mg/l} e anioni {(HCO 3-= 181-214) mg/l, SO 4 = = 39-64) mg/l, Cl-= 4-12) mg/l, nO 3-= 5-32) mg/l}, oltre alla misura del pH (7,1-7,4), della conducibilità elettrica (EC = 471-587 µs/cm), dei sali disciolti totali (TDS = 250-310 mg/l) , della durezza totale (TH = 168-244) mg/l) e della torbidità (Tr. = 7,3-16,1 nTu), che l'acqua del GZR rientra nei limiti fissati dall'Organizzazione Mondiale della Sanità come idonea per scopi potabili, mediante l'utilizzo dell' indice di qualità WQi. Con un WQi compreso tra 26,71 e 39,84, l'acqua del GZR è valutata come acqua buona, ed è considerata acqua dolce, potabile ed idonea all'uso civile (tenendo conto del trattamento del fattore di torbidità con l'acqua, come attualmente applicato). inoltre, in base agli standard di percentuale di sodio (SSP = 2,41-6,26), del rapporto di adsorbimento di sodio, (SAR = 0,08-0,2), della quantità di carbonato di sodio residuo (RSBC =-1,92-0,96) e della percentuale di magnesio (MAR = 34,53-55,82), l'acqua del GZR è risultata anche idonea all'utilizzo in agricoltura e conseguentemente all'irrigazione: la percentuale di sodio per tutti i campioni è inferiore al 60%, con una percentuale di adsorbimento sodico che non supera il valore di 2.5, quindi l'acqua è classificata a basso contenuto di sodio (S1) e non è stato rilevato alcun effetto sulla quantità di carbonato di sodio residuo, poiché in tutti i campioni risulta inferiore a 1,25 meq/l. in conclusione l'acqua del GZR è classificata ottima per l'uso irriguo, perché i valori di CE e na% sono inferiori rispettivamente a 1000 e 60, ed è ulteriormente classificata come buona per l'irrigazione in base ai valori di EC e SAR che collocano l'acqua del GZR nel campo C2-S, oltre ad essere, secondo l'American Salinity laboratory, un'acqua adatta anche a quasi tutte le colture, in quanto in base ai valori SAR e MAR è considerata di classe S1. in generale è possibile affermare che l'acqua del Grat Zab River (GZR) influisce sulla qualità dell'acqua del fiume Tigri poichè, a valle della confluenza dei due fiumi, si registra una diminuzione delle concentrazioni di cationi e anioni nell'acqua del fiume Tigri. AbstrAct The current study examined the assessment of the waters of the Greater Zab River GZR because it represents the most important and largest tributary of the Tigris River due to its participation in about 40% of the Tigris River water and because it is a large basin and catchment area. The GZR consists of the gathering of streams, starting from the areas near lake Van, and then entering iraqi lands in the Kurdistan region towards the Tigris River. it passes through several geological formations, most of which are containing carbonate rocks composed of calcite and dolomite, which have solubility due to the effect of rainwater. Therefore, several streams gather and empty into the main valley GZR carrying the weathering products of these rocks as soluble ions. it was found through chemical analyzes of the main cations (Ca 2+ , Mg 2+ , na + , K +) and anions (HCO 3-, SO 4= , Cl-, nO 3-), as well as measuring the pH, electrical conductivity (E.c.), total dissolved salts (TDS), total hardness (TH) and turbidity (Tr.), The GZR waterfalls within the natural limits set by the World Health Organization for drinking purposes through the use of the water quality index (WQi) as well as its suitability for agricultural purposes according to the standards of Sodium Percentage (SSP), Sodium Adsorption Ratio, (SAR), and the amount of Residual Sodium Carbonate (RSC). As well as, the percentage of magnesium (MAR).
Article
Full-text available
The current study aims to assess the quality of groundwater for drinking, domestic use, irrigation and livestock watering, for selected wells from the lower Al-Sherikhan area, north-east of Mosul city. Ten replicates for each well, physical tests (such as temperature and electrical conductivity) and chemical tests such as pH, dissolved oxygen (DO) and total alkalinity were performed. T. Alkali and total dysphoria T. hardness and hardness of calcium (Ca. H) and hardness of magnesium Mg. H, sodium ions Na+, potassium K+, bicarbonate HCO3-, chlorides Cl-, sulfate = SO4, nitrate NO3-, bacteriological for the total number of TPC bacteria and the number of fecal coliform bacteria F. Colif. and the preparation of Escherichia coli, with the calculation of irrigation parameters such as (PI, KR, PS, %Na, MH, RSC, SAR) based on the approved international standard methods. and using several types of mathematical models to assess water quality such as the Canadian Council Canadian Council the Ministers of the Environment (CCME WQI). for drinking, the pollution index model (pij) for irrigation, and the sub-index model for watering livestock and poultry. The results of the water quality index (WQI) indicated a deterioration in the quality of the water used for drinking and civil purposes for the studied samples, where the values of (CCME WQI) ranged between (20.1-32.5), and thus 100% of the water samples were of the poor quality, This deterioration is due to the high electrical conductivity, total hardness, and sulfate ions, which amounted to (2575) uS. cm-1. (1920,792) mg. l-1, respectively, with a high total number of bacteria (TPC), which amounted to (992 x 102) cells. ml-1, as for the water quality index (WQI) for irrigation, the values of (Pij) were between (0.736-1.81), as it was from the category of good quality water for irrigation with respect to well (1), as for the rest of the wells, all of them were leightly polluted because the values of irrigation parameters did not exceed the standard limits, while the water quality for livestock and poultry watering was unfit quality for all wells except well (8), which was of poor quality and the reason for this was due to the high levels of studied parameters, especially the contamination with fecal coliform bacteria, which amounted to (93) × 102 cells. 100ml-1.
Article
Full-text available
A field survey was conducted for agricultural fields and farms in the Lower Sherikhan area north of Mosul city, Nineveh Governorate / Iraq, which uses well water for irrigation; Ten wells were identified for collecting water samples starting from September 2020 to February 2021(two samples per month for each well) to estimate (pH, electrical conductivity EC 25 , chloride ions Cl, bicarbonate HCO 3) as well as irrigation parameters such as Sodium Adsorption Ratio (SAR), Residual sodium carbonate (RSC)), permeability index (PI), Kelley ratio (KR), sodiumpercentage (% Na), Magnesium hazard (MH) and Potential Salinity (PS).The pollution index model (pij) was applied to assess the water quality for irrigation. The results of the study indicated that the values of the water quality index fluctuated between (0.736 to 1.81) and that 90% of the studied water was from the category of lightly polluted, and the rest was from the category of good quality water for irrigation, this is because most of the studied parameters are within the international permissible limits for irrigation with problems of salinity and magnesium hazardin water in many samples and periods
Article
Full-text available
The Oshnavieh plain is part of the West Azarbaijan province, which is located; 100 km south of Urmia City, northwestern of Iran, and its groundwater resources are developed for water supply and irrigation purposes. In order to evaluate the quality of groundwater in study area, 31 groundwater samples were collected and analyzed for various parameters. Physical and chemical parameters of groundwater such as electrical conductivity, pH, total dissolved solids, Na, K, Ca, Mg, Cl, HCO 3 , CO 3 , SO 4 , NO 3 , NH 3 , PO 4 , Fe, F were determined. Chemical index like percentage of sodium, sodium ad-sorption ratio, and residual sodium carbonated, permeability index (PI) and chloroalkaline indices were calculated. Based on the analytical results, groundwater in the area is generally fresh and hard to very hard. The abundance of the major ions is as follows: HCO 3 > SO 4 > Cl and Ca > Mg > Na > K. The dominant hydrochemical facieses of groundwater is Ca-HCO 3 and Ca-Mg-HCO 3 type. According to Gibbs diagrams samples fall in the rock dominance field and the chemical quality of groundwater is related to the lithology of the area. The results of calculation saturation index by computer pro-gram PHREEQC shows that the nearly all of the water samples were saturated to undersaturated with respect to carbon-ate minerals and undersaturated with respect to sulfate minerals. Assessment of water samples from various methods in-dicated that groundwater in study area is chemically suitable for drinking and agricultural uses. Fluoride and nitrate are within the permissible limits for human consumption and crops as per the international standards.
Book
Full-text available
Groundwater offers us few but precious opportunities for alleviating the misery of the poor; but it poses manyԡnd dauntingԣhallenges of preserving the resource itself. A big part of the answer is massive initiatives to augment groundwater recharge in regions suffering depletion; but, in the ultimate analysis, these cannot work without appropriate demand-side interventions. The water vision of a world that future generations will inherit will have to be the one in which groundwater plays its full developmental, productive and environmental role but in a sustainable manner; and the framework of action to realize this vision will mean eschewing the current free-for-all in groundwater appropriation and use, and promoting a more responsible management of this precious resource that is easy to deplete or ruinԴhrough depletion, salinization and pollution
Article
Geochemical constituents are transported by the circulation of the Earth's three major near-surface dynamic systems: the oceans, the atmosphere, and continental water. This chapter deals with the third of these, specifically with subsurface water. Surface water is an important medium for transporting geochemical constituents on a global scale, and is relatively easily accessed and quantified. In contrast, subsurface water is not easy to access, and fluxes through subsurface systems are very difficult to measure. This chapter explores the geochemical means that are available to help quantify subsurface fluxes, and evaluates the implications of their application to a variety of specific systems.
Article
A conceptual model for the description, explanation, prediction, and control of hydrogeologic conditions is composed of two systems of physical and chemical parameters: the Hydrogeologic Environment, and the Groundwater Regime. The three components of the environment, each comprising a great number of parameters, are: topography, geology, and climate. The necessary and sufficient six parameters of the groundwater regime are: amount of water, geometric distribution of water movement, volume or velocity of the flow, chemical composition, temperature, and regime variance, or the time changes of the above parameters. The environment and regime are related quantitatively and each regime parameter can be expressed mathematically as a function of the environmental components. This allows the evaluation of the groundwater regime if the environmental conditions are known, as well as inferences concerning the rock framework from known properties of the regime. To date few parameters have been evaluated exactly, and mostly conceptual equations are presented. Conceptually, however, the groundwater regime may be defined as the sum of the six environmental parameters:.
Article
This book provides engineers with a treatment of the steps involved in the exploration and evaluation of aquifers, the construction and testing of water supply boreholes, and the management of the resource. The important subjects of water quality criteria, pollution hazards and modeling techniques are also included. Contents: Development of Groundwater Resources; Groundwater: Fundamentals; Groundwater Exploration; Assessment of Aquifer Recharge and Potential Well Yield; Groundwater Quality; Well Design and Construction; Aquifer Hydraulics and Pumping Tests; Groundwater Pollution; Groundwater Management; Groundwater Modeling Techniques.
Facies of the Fossiliferous Limestone Beds of Lower Fars Formation at some Localities in Northern Iraq
  • N M Ahmad
Ahmad, N.M., (1980) Facies of the Fossiliferous Limestone Beds of Lower Fars Formation at some Localities in Northern Iraq. Unpublished M.Sc. Thesis, Mosul university.
The Dissolution of Calcium Sulphate Rocks below the Foundation of a large Hydraulic Structure
  • Z A Al-Jubori
  • S I Khattab
Al-Jubori, Z. A. and Khattab, S. I., (1977) The Dissolution of Calcium Sulphate Rocks below the Foundation of a large Hydraulic Structure. Raf. Jour. Sci., Vol. 8, pp 63-73.