The Beishan orogenic belt is located in the middle of the Central Asian orogenic belt (CAOB) and the tectonic history of its Precambrian basement rocks is the key to understand the formation and evolution of the Beishan orogenic belt. In this study, we select the gneissic granites in the North Beishan orogenic belt (NBOB) for zircon U-Pb chronology and geochemical analysis. The results show that the gneissic granites formed in the 885±4 Ma, which reveals the Neoproterozoic magmatic events in the NBOB for the first time. The gneissic granites belong to the peraluminous, high-K, calc-alkaline series and are characterized by high SiO 2 and K 2 O+Na 2 O, low CaO. The gneissic granites show an enrichment of light rare earth elements (LREE) with Europium negative anomaly and are characterized by enrichment of large ion lithophile elements (LILE) such as Rb, K, Th, U, but depletion in high field strength elements (HFSE) such as Nb, Sr, P, Ti. The petrography and geochemical signatures reveal a possible S-type granite affinity and are derived from the partial melting of metamorphic complex sandstone of source area with initial melt temperature (777-798 ℃). The gneissic granites were likely generated in a continental collision tectonic setting. By comparing our new data with previous results from the Precambrian basement in the South Beishan orogenic belt and the Tianshan block (microcontinent in the Chinese Tianshan), we suggest that the Precambrian microcontinents in the northern Beishan have similar crustal evolutionary history to the South Beishan orogenic belt (SBOB) and Central Tianshan block. They participated in the Rodinia supercontinent aggregation together and formed a part of Rodinia during the Neoproterozoic period. The Neoproterozoic magmatic events in the Beishan area are the response of the Rodinia supercontinent aggregation. © 2019, Editorial Department of Earth Science. All right reserved.