Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

In Industrie 4.0, the number of connected and data generating devices is increasing drastically. This massive amount of industrial data should be available in realtime everywhere in a company or even across company borders for new business models or analysis and thus business improvement. However, the capabilities of traditional tools for data collection, transportation, storage and analysis are not sufficient anymore. This article presents an open big data platform for Industrie 4.0 based on state of the art technologies and concepts such as OPC UA , the Industrie 4.0 Asset Administration Shell, Apache Kafka and distributed data and processing frameworks like Apache Spark. Published in ATP Magazine 03/2019 ISSN:2190-4111

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Article
Full-text available
This paper introduces CAAI, a novel cognitive architecture for artificial intelligence in cyber-physical production systems. The goal of the architecture is to reduce the implementation effort for the usage of artificial intelligence algorithms. The core of the CAAI is a cognitive module that processes the user’s declarative goals, selects suitable models and algorithms, and creates a configuration for the execution of a processing pipeline on a big data platform. Constant observation and evaluation against performance criteria assess the performance of pipelines for many and different use cases. Based on these evaluations, the pipelines are automatically adapted if necessary. The modular design with well-defined interfaces enables the reusability and extensibility of pipeline components. A big data platform implements this modular design supported by technologies such as Docker, Kubernetes, and Kafka for virtualization and orchestration of the individual components and their communication. The implementation of the architecture is evaluated using a real-world use case. The prototypic implementation is accessible on GitHub and contains a demonstration.
Article
Die Standardisierung der automatisierungstechnischen Schnittstelle von Process Equipment Assemblies (PEA) durch das Module Type Package (MTP) gemäß VDI/VDE/NAMUR 2658 ermöglicht der Prozessindustrie neue Methoden zur Flexibilisierung von Anlagen. Während das übergeordnete Ziel, gefährliche Zustände prinzipiell zu vermeiden selbstverständlich weiterhin bestehen bleibt, sind insbesondere bei flexiblen Anlagenstrukturen zusätzliche Sicherheitsmaßnahmen notwendig. Da nicht jederzeit und vorausschauend alle sicherheitsrelevanten Szenarien abgedeckt werden können, wird in diesem ersten von zweiBeitragsteilen eine Sammlung von Anforderungen an die funktionale Sicherheit in modularen Anlagen vorgestellt. Das besondere Augenmerk liegt dabei auf sicherheitsrelevanten Aspekten die über die PEA-Grenzen hinweg gehen. Diese Betrachtungen sind für PEA-Hersteller in Planung sowie Bau relevant und geben Betreibern einen Überblick, welche Sicherheitsmaßnahmen auf Anlagenebene (intra- sowie intermodular) umzusetzen sind. In einem anschließenden zweiten Beitragsteil, der in Ausgabe 10/2020 veröffentlicht wird, wird ein Konzept zur Umsetzung einer intermodularen Sicherheitsverschaltung vorgestellt und an einem Demonstrator validiert.
Article
Full-text available
One of the most significant directions in the development of computer science and information and communication technologies is represented by Cyber-Physical Systems (CPSs) which are systems of collaborating computational entities which are in intensive connection with the surrounding physical world and its on-going processes, providing and using, at the same time, data-accessing and data-processing services available on the internet. Cyber-Physical Production Systems (CPPSs), relying on the newest and foreseeable further developments of computer science, information and communication technologies on the one hand, and of manufacturing science and technology, on the other, may lead to the 4th Industrial Revolution, frequently noted as Industry 4.0. The key-note will underline that there are significant roots generally – and particularly in the CIRP community – which point towards CPPSs. Expectations and the related new R&D challenges will be outlined.
Book
Dieses Buch ist eine Gemeinschaftsarbeit des AutomationML-Konsortiums. Es gibt erstmalig einen umfassenden Überblick über AutomationML und seine Integration von CAEX, COLLADA und PLCopen XML. AutomationML versteht sich als wegweisender Beitrag zur Förderung der Interoperabilität zwischen digitalen Werkzeugen für alle Teilschritte des Engineering-Prozesses in der Anlagenplanung. Das Datenformat wurde im Frühjahr 2008 auf der Hannovermesse der Öffentlichkeit vorgestellt und hat bei Anwendern und Toolherstellern deutliches Aufsehen erregt. AutomationML ist das erste kostenfrei zugängliche, offene und XML-basierte Format, das übergreifend eine Vielzahl von Planungsaspekten kombiniert. Das Buch ist als Kompendium für die Technologie „AutomationML“ und gleichzeitig als Entscheidungshilfe konzipiert. Es ist an Verantwortungsträger, Hersteller, Anbieter und Anwender von Planungswerkzeugen sowie an Entwicklungsingenieure und Systemintegratoren gerichtet. Für Studenten und Forscher in Hochschulen und Universitäten stellt dieses Buch eine Fundgrube dar, da AutomationML zur Anwendung und Entwicklung neuer Methoden und Ansätze anregt, die mit heutigen Werkzeugen (noch) nicht realisierbar sind. „Allen, die wissen wollen, wie sie an dieser Entwicklung partizipieren können, sei dieses Buch sehr empfohlen." Prof. Dr.-Ing. Alexander Fay, Helmut Schmidt Universität Hamburg „Das vorliegende Buch bietet sowohl Managern, Entwicklern als auch Anwendern einen Einblick in die Möglichkeiten und den Nutzen von AutomationML." Anton Hirzle, Daimler AG
Conference Paper
One of the many opportunities Industrie 4.0 (I4.0) offers, is to reduce (re-)configuration effort. Today, a variety of vendor-specific information models prevents an efficient configuration of Condition Monitoring (CM) for adaptable Cyber-Physical Production Systems (CPPS). The manual configuration of signals that should be monitored is a tedious and error-prone task. Standardization efforts for I4.0 focus on a generic interface called Asset Administration Shell (AAS), which could increase configuration efficiency. The AAS should represent information, e.g. about components, machines, and plants, based on properties standardized according to IEC 61360. Although frequently used in planning and procurement, benefits of properties for the integration of CPPS have not yet been demonstrated. Additionally, important details for the implementation of the AAS, e.g. its deployment and technical requirements, have not yet been specified. In this paper, an information model for condition monitoring of a servo motor is defined based on IEC 61360 properties. This information model is included in an AAS that is implemented on the Programmable Logic Controller (PLC) of a work cell from the company Lenze. The PLC communicates with a condition monitoring service via OPC Unified Architecture (OPC UA). Using IEC 61360 properties the type of a servo synchronous motor can be identified and thresholds for this motor can be configured without manual configuration effort. Nevertheless, in order to implement the AAS in an I4.0 compliant way, IT-Security and Message-based I4.0 communication have to be supported by the PLC. The effort for the (re-)configuration of condition monitoring services can be reduced based on IEC 61360 properties. The approach introduced in this work could help to achieve the main goals of I4.0: To improve the flexibility and efficiency of adaptable CPPS. Nevertheless, more properties and information models have to be standardized in the future.
Conference Paper
The Industry 4.0 is a vision that includes connecting more intensively physical systems with their virtual counterparts in computers. This computerization of manufacturing will bring many advantages, including allowing data gathering, integration and analysis in the scale not seen earlier. In this paper we describe our Semantic Big Data Historian that is intended to handle large volumes of heterogeneous data gathered from distributed data sources. We describe the approach and implementation with a special focus on using Semantic Web technologies for integrating the data.
Article
Big Data concern large-volume, complex, growing data sets with multiple, autonomous sources. With the fast development of networking, data storage, and the data collection capacity, Big Data are now rapidly expanding in all science and engineering domains, including physical, biological and biomedical sciences. This paper presents a HACE theorem that characterizes the features of the Big Data revolution, and proposes a Big Data processing model, from the data mining perspective. This data-driven model involves demand-driven aggregation of information sources, mining and analysis, user interest modeling, and security and privacy considerations. We analyze the challenging issues in the data-driven model and also in the Big Data revolution.
Conference Paper
Networked Industrial Devices must fulfill requirements regarding temperature ranges, noise immunities, and mechanical loads (e.g. DIN EN 60068-2-6). The effects of these environmental conditions on the stability of the frequency of clock sources are well studied [1, 2]. However the influence on the synchronization characteristics of IEEE 1588 can be derived only partly from these investigations. The dependency between the frequency drift (df/dt) and the transmission period of the synchronization frames T is very important for the achievable accuracy of IEEE 1588-based networks. In order to examine these effects, a novel measuring method is proposed in this paper. The results of exemplary measurements at a crystal oscillator with different temperature and mechanical loads will be discussed. These results are compared with the existing requirements for industrial communication systems, especially for the Industrial Ethernet system PROFINET. The objective is to derive coherences and rules for the implementation of functional components of the synchronization procedure.
Geschäftsmodelle in Industrie 4.0 und dem Internet der Dinge: der Weg vom Anspruch in die Wirklichkeit
  • T Kaufmann
Kaufmann, T. (2015). Geschäftsmodelle in Industrie 4.0 und dem Internet der Dinge: der Weg vom Anspruch in die Wirklichkeit. Springer-Verlag.
Guide to The Intelligent Use of Big Data on an Industrial Scale
  • Insidebigdata
InsideBIGDATA. (2019). Guide to The Intelligent Use of Big Data on an Industrial Scale. Abgerufen von: https:// insidebigdata.com/white-paper/guide-big-dataindustrial-scale/
Big Data steht bei sechs von zehn Unternehmen an erster Stelle
  • . V Bitkom E
Bitkom e. V. (2018). Big Data steht bei sechs von zehn Unternehmen an erster Stelle. Abgerufen von: https:// www.bitkom.org/Presse/Presseinformation/ Big-Data-steht-bei-sechs-von-zehn-Unternehmen-anerster-Stelle.html,11.06.2018
Welcome to Apache Avro
  • Apache Avro
Apache Avro. (2012)., Welcome to Apache Avro. Abgerufen von: https://avro.apache.org/
InfluxDB is the Time Series Database in the TICK Stack
  • Influxdata Inc
Influxdata Inc. (2019). InfluxDB is the Time Series Database in the TICK Stack. Abgerufen von: https:// www.influxdata.com/time-series-platform/influxdb/,
Industrie 4.0. Kommunikation mit OPC UA: Leitfaden zur Einführung in den Mittelstand
  • V Verband Deutscher Maschinen-Und Anlagenbau E
  • Iosb-Ina Fraunhofer
Verband Deutscher Maschinen-und Anlagenbau e. V., Fraunhofer IOSB-INA (2017). Industrie 4.0. Kommunikation mit OPC UA: Leitfaden zur Einführung in den Mittelstand. Abgerufen von: https://industrie40. vdma.org/ documents/4214230/16617345/1492669959563_2017_