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Abstract: For the great variety of light-emitting diodes (LEDs), there exists a wide range of LED
radiation patterns. An approach for constructing patterns of higher accuracy is here considered.
The latter is required when the design of optoelectronic systems or their optimization is carried out
analytically. A weighting function is introduced that allows increasing the gradient of the diagram
of different widths. It has been selected through mathematical analysis of the emission diagrams
of different LEDs used in optoelectronic systems. Based on the least squares method an algorithm
is created, and programs are developed in MATLAB environment to estimate the parameters of
the approximation function. Its accuracy is evaluated by comparison with the approximation with
Lambert source of order n. The results show higher accuracy of the proposed approximation function
compared to those obtained by conventional methods. Recommendations on the application of the
proposed approach are given.

Keywords: approximation methods; LED lamps; mean square error methods; optical devices;
optical design

1. Introduction

Nowadays, light-emitting diodes (LEDs) are everywhere, in different forms, and cover a
wide range of applications from solid-state lighting to indicator lights. Because of their attractive
characteristics, they are gradually taking over conventional light sources [1]. LEDs are more difficult to
model than traditional sources. There exists a wide range of LED radiation patterns. A radiation pattern
describes the relative light strength in any direction from the light source. Numerous approaches are
used to model this in real light sources. The models currently employed can be classified as ray tracing
or analytical approximations [2,3].

A ray-tracing model is very useful when analyzing and designing the package and the secondary
optics for the source.

The analytic models are very useful when studying and optimizing the radiation transfer from the
source to a target without intermediate complex optics. This is very common with LEDs because they
have integrated optics. An analytic equation of the radiation pattern gives researchers and lighting
designers more flexibility in analyzing the light in their applications [4–6].

One of the most important characteristics of light sources is the radiation pattern P(ϕ, ϑ) defined
by the relationship:

P(ϕ, ϑ) =
I(ϕ, ϑ)

I0
≤ 1 (1)
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where I(ϕ, ϑ) denotes the intensity of light emitted in a direction determined by the angles ϕ and ϑ (in
a spherical coordinate system), I0 is the maximum intensity,

The intensity I is here understood as the following ratio:

I =
dΦ
dΩ

(2)

where dΦ is the elementary optical flux (optical power) in W and dΩ is the elementary spatial angle of
the flux propagation in steradian.

The LED radiation and the associated radiation pattern are illustrated in Figure 1.
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Figure 1. (a) Light-emitting diode (LED) radiation; (b) A typical LED radiation pattern. 
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Figure 1. (a) Light-emitting diode (LED) radiation; (b) A typical LED radiation pattern.

In some commonly used light sources, such as LEDs, the radiation pattern is symmetric with
respect to the optical axis. The maximum intensity in the diagram is then directed along with the
optical axis, and the radiation pattern itself is a function only of the angle ϑ, i.e.,

P(ϕ, ϑ) = P(ϑ), (3)

This special case is here considered because it is of great importance for the practice.
The radiation pattern is given mostly in tabular or graphic form in catalogs. This is related to

the measurement specificity. On the other hand, it is convenient to use an analytical approach in the
design of optoelectronic systems and optimization of their parameters and structure. For this purpose,
the radiation pattern is to be approximated. The most commonly used approximation function in a
symmetric diagram is:

P̂(ϑ) = cosn̂(ϑ) (4)

That is, the light source is considered as a Lambert source of n-th order [7,8]; the exponent n̂ is the
estimation selected according to a given criterion.

A typical LED radiation pattern is shown in Figure 1b.
In some catalogs, the radiated flux and the radiation pattern are given in a standardized form.

To determine the maximum intensity in this case, it is necessary to use Formulas (1)–(4). By means of
mathematical transformations, we obtain:

Φ =

2π∫
0

dϕ

π
2∫

0

I0cosnϑsinϑdϑ = 2π I0
1

n + 1
(5)

from which we get

I0 =
(n + 1)·Φ

2π
≤ 1 (6)
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The approximation of LED radiation patterns by (4) describes very well the physical processes
and, respectively, radiation of flat surfaces. However, modern LEDs’ housing is quite often transparent
and performs a focusing function. This fact considerably changes the radiation pattern and is the
reason other approximation functions are used as they can better describe the radiation pattern.

The present paper aims to study the accuracy of approximation of the LEDs radiation pattern.
The task is to propose more accurate approximation functions when the source of light contains a
focusing optical system. The aim is also to develop and study an algorithm for evaluation of the
parameters of the approximation functions [9].

The precise determination of the radiation pattern will allow the correct specification of basic
parameters (focal length, relative aperture, shadowing) of the optics which can be used to form the
radiation from the semiconductor crystal. If the parameters of the additional optics used are known,
the cumulative radiation pattern (diagram) will be more precisely determined, and the photometric
calculations will be more accurate as well.

2. Analysis of Radiation Patterns

When the body of LEDs has focusing functions, the analysis of LEDs radiation patterns shows
that to increase the accuracy of approximation the approximation Function (4) is to be corrected. It is
appropriate to take it in the form of weighting function:

P̂(ϑ) = g(ϑ, parameters)·cosn̂(ϑ) (7)

The correction function g(ϑ, parameters) should meet the following requirements:

• It must be even since the pattern is symmetric to the optical axis;
• It must be normalized, i.e., lim

ϑ→0
g(ϑ, parameters) = 1 for any admissible value of the parameters

(then the approximation Functions (4) and (7) become equal).

The function ĝ
(
ϑ, β̂

)
= e
− ϑ2

β̂2 satisfies the above-listed requirements. When β̂→ ∞ this function

meets the second requirement and P̂(ϑ) = e
− ϑ2

β̂2 ·cosn̂ϑ becomes P̂(ϑ) = cosn̂ϑ.
Hence, an appropriate LED radiation pattern (function) is:

P̂(ϑ) = e
− ϑ2

β̂2 ·cosn̂ϑ (8)

Using this function, it is possible, irrespective of the different nature of the approximated signals, to
apply an approach similar to the one for determining the parameters [10]. To evaluate the optimal
properties of the parameters, it is appropriate to use the criteria of minimal root mean square error
(RMSE). It is assumed that the measured diagram P and the approximating one P̂ are discretized
and presented as a set of the two samples P(ϑk) and P̂(ϑk) at discrete angles ϑk = k·∆ϑ, where
k = 0, 1, 2, . . . , N, and ∆ϑ is the angle step of performed measurements of P(ϑk). To minimize RMSE, it
is necessary:

E =
N

∑
k=0

[
P(ϑk)− P̂(ϑk)

]2 → min,

That is, to find the minimum of

E =
N

∑
k=0

[
P(ϑk)− e

−( ϑk
2

β̂2 )
cosn̂(ϑk)

]2

. (9)
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The values of interest β̂ and n̂ are solutions of the following simultaneous equations:∣∣∣∣∣ Dβ̂ = ∂E
∂β̂

= 0

Dn̂ = ∂E
∂n̂ = 0

. (10)

The parameter β̂ can be determined from the first Equation (10):

Dβ̂ =
N

∑
k=0

2

[
P(ϑk)− e

−( ϑk
2

β̂2 )
cosn̂(ϑk)

][
−
(

2ϑk
2

β̂3

)
e
−( ϑk

2

β̂2 )
cosn̂(ϑk)

]
= 0.

The expression within the second square brackets changes very slightly with the change of ϑk
and, thus, it can be treated as a constant.

So, the final equation for β̂ is:

Dβ̂ =
N

∑
k=0

[
P(ϑk)− e

−( ϑk
2

β̂2 )
cosn̂(ϑk)

]
= 0. (11)

Equation (11) is non-linear with respect to β̂, and its solution can be found using numerical
methods. We use a graph-analytic approach. For that purpose, it is assumed that the true radiation
pattern has the same form as (8), with true values of parameters β = 20, deg and n = 4.

Figure 2 shows the graph of dependence Dβ̂ within the interval β̂ = 0− 100deg and for n̂ = 4 and
n̂ = 8. It can be seen that the function has no local extrema in this specific interval.
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Figure 2. The dependence of Dβ̂ on β̂ for n̂ = 4 and n̂ = 8.

When the rough estimate n̂ = 8 of the parameter n is used, the solution of Equation (11) for the
estimate β̂ is not determined precisely and is quite different from the true value β = 20. The reason is
that the algorithm “compensates” the wrong estimate n̂ = 8 with the parameter estimation β̂ so that
the root mean square error is minimal.

An analogous result can be obtained for the parameter n. After replacing (8) in (9) and then in the
second Equation (10) it turns out that the estimate n̂ is a solution to the equation:

Dn̂ =
N

∑
k=0

[
P(ϑk)− e

−(
ϑ̂2

k
β̂2 ).cosn̂(ϑk)

][
−e
−(

ϑ̂2
k

β̂2 ).cosn̂(ϑk). ln cos(ϑk)

]
= 0.

The expression within the second square brackets changes very slightly with the change of ϑk
and, thus, it can be treated as a constant. So, the final equation for n̂ is:

N

∑
k=0

[
P(ϑk)− e

−(
ϑ̂2

k
β̂2 )·cosn̂(ϑk)

]
= 0. (12)
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In Figure 3 the graphs of Dn̂ are presented when n̂ changes in the range n̂ = 1− 10. The true value
of n is n = 4. The broken line graph corresponds to β̂ = 50, and the continuous line—to β̂ = β = 30.
It can be seen that if β̂ is accurately evaluated, the solution of (12) matches the true value of the
parameter: n̂ = n. In the case of a rough estimate β̂, for instance β̂ = 50, the estimation n̂ differs
substantially from the true value (obtained n̂ ≈ 8, 5 rather than 4), whereby the algorithm minimizes
the error (9).
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From (11) and (12) it follows that Dn̂ = Dβ̂. Therefore, the Newton-Raphson method for numerical

solution of systems of nonlinear equations cannot be applied [11,12]. The estimated parameters β̂, n̂
of the approximate diagram P̂(ϑ, β̂, n̂) are iteratively determined: In calculation of each of them, the
other one is considered constant. The calculations are terminated when the minimum error (9) is
achieved with a given accuracy.

Since the parameter β is less dependent on the parameter n, the latter is calculated by the nodal
approximation method. For the calculation of the estimated value β̂, the following iterative formula
can be used:

β̂k+1 = β̂k −
Dβ̂

Gβ̂

, (13)

where Gβ̂ is the partial derivative of Dβ̂ with respect to β̂:

Gβ̂ =
∂Dβ̂

∂β̂
= − 2

β̂
.

N

∑
k=0

[
e
−( ϑk

2

β̂2 )
·cosn̂(ϑk)

]
= 0. (14)

The iterative process is terminated when the inequality
∣∣β̂ j+1 − β̂ j

∣∣ ≤ εβ is satisfied; εβ is the
admissible error.

3. About the Algorithm for Calculation of the Parameters

The algorithm used to determine the parameters of the approximation radiation pattern is shown
in Figure 4.
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4. Validation of the Proposed Algorithm

4.1. Parameter Evaluation

For testing the developed algorithm for the iterative method, a software program was written in
the MATLAB environment. The test was performed using the following input data:

(1) The radiation pattern was of the type:

P(ϑ) = e−(
ϑ
β )·cosn(ϑ). (15)

(2) The true values of the parameter where: β = 60.0 and n = 3.10.
(3) The angle ϑ changes from 0◦ to 90◦, the step ∆ϑ = 4.5

◦
and N = 21.

Since the parameter β changes in a larger interval than the other parameter n, the value of β̂ is
calculated to the first decimal place, and the estimate n̂ is calculated to the second decimal place.

The estimated parameters are in a good coincidence with the true ones, i.e., they satisfy the
required accuracy. Figure 5a shows a good level of matching of the true and approximated radiation
pattern as well.
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4.2. Resistance of the Algorithm

The resistance of the algorithm to wrong values of P(ϑk) obtained by measuring was also tested.
The errors in these values are simulated by taking into account (adding) the Gauss’s noise into the
radiation pattern (15). These errors in these values are simulated by an additive Gaussian noise with
levels up to 1% of the measured values (SNR = 40 dB).

Figure 5b illustrates a good coincidence of the graphs of the real and approximated radiation
pattern: It is a result of the “smoothing” effect of the approximation.

This test has proved the resistance of the proposed algorithm to deviations in case of the wrong
measurement of the diagram. It should be noted that the big differences between the measured and
the approximation values at the points of measurement of the radiation pattern are the reason for the
error between the values of the parameters and their estimates increase according to (see below in
Section 4.3) formula (16).

4.3. Root Mean Square Error

The third test aimed at the approximation of real LEDs radiation patterns and comparison of the
root mean square error (RMSE) of the approximating Functions (4) and (8).

RMSE =

√
∑N

k=0
[
P(ϑk)− P̂(ϑk)

]2
N

. (16)

We have chosen infra-red LED C3535SIRC-2B and L-53SF7C because they have wide and narrow
radiation pattern, respectively. The calculations were carried out with both approximation Functions
(4) and (8) and ∆ϑ = 5

◦
. The RMSE of the two approximations is presented in Table 1.

Table 1. RMSE of the two approximations

LEDs
RMSE

P̂(ϑ)=cosn̂(ϑ) P̂(ϑ)=e
−( ϑ2

β̂2 )·cosn̂(ϑ)

LED C3535SIRC-2B 0.0329 0.0118

L-53SF7C 0.0354 0.0332

Figure 6 shows the measured and the approximated radiation patterns of the two LEDs.
The diagrams of C3535SIRC-2B with approximation Functions (4) and (8) are presented in Figure 6a,b,
respectively, and of IR LED L-53SF7C—in Figure 6c,d respectively.
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Figure 6. Approximation of the radiation diagrams: (a,b) IR LED C3535SIRC; (c,d) IR LED 53F7C,
respectively with Functions (4) and (8).

5. Conclusions

The proposed approximation function provides an opportunity for reduction of the approximation
error. This has been confirmed by the results in Table 1 as well as by experiments conducted with other
LEDs. The achieved accuracy is no less than the corresponding one obtained with the approximation
Function (4).

• The decrease of the error depends on the measured LED radiation pattern. The error decreases
less when the true pattern is well described by the Function (4). Then the algorithm calculates
so large β̂ that the Gaussian function is practically irrelevant. In addition, for narrower patterns,
the increase in accuracy is less, as the overall error, in this case, is determined by the error in the
measurement of the diagram (the weight of each point is large);

• The proposed algorithm works correctly and allows the determination of the estimated parameters
β̂ and n̂ effectively.

As recommendations regarding the application of the proposed approximation function, we wish
to point out that in the design of the energy balance of an optoelectronic system working at long
distances and in the open air, the error in estimating the intensity can be bigger; then we can use
Function (4) to reduce the complexity of the engineering calculations.

For the optoelectronic system, it is important to know the emitted intensity at every angle (this is
the case of multi-beam interferometers), the proposed approach can significantly improve the accuracy,
and the proposed algorithm for estimation of the parameters can be used [13–15].
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