Content uploaded by John Slocum
Author content
All content in this area was uploaded by John Slocum on Mar 20, 2019
Content may be subject to copyright.
!"
#"$
!"#$%&'
()
*+
*,
,
-
. /
0123.4
526!7/23.4)0823.4'
2.&923.6!7:
;0<;*=/23.4>823.4',
23.4
"0<!7 8'
!7"0<823.?'23.%
-23.%-)
5&3)@3!A23.4'
<)
!:)B"<CDE
:23.4F<CDE:23.?'
,
,
,
*
<,
*,
>
:G,
>
2 B*
2.
H
Overwatch League of
LegendsDota 2, CS:GO (“Most Watched Games on Twitch,” n.d.);
+
-B11/ !7
8'2.&9
23.6-C-5%33
23.45$%&23.@!7:;0<;*=/
23.4>823.4'
H*
!I23.@'
/G
-5.!=23.?'H
1
!I23.@'
*
!7.3<<8'
,!=23.?'H
*
!=23.?'!'
/23.4
.$&923.?!7
<EF08'/
!=23.?'(,
!=23.?'
<
!*23.4'!:23.4'
+5$%%
5%%%52$%%!:23.4'<*
!:23.4'
+
!:23.4F*23.4'-7"C8B
<H"1*
5$33333!0*23.4F:23.4F23.4'
(639
!:23.4'!*23.4'
!:23.4'(
!:23.4'
!*23.4'<
*!*23.4'
!*23.4'/.3333
*523333!:23.4'H
*"C.33333*56333335.
!:23.4F23.4'
+
1
!23.4'H
*!23.4'*
!"*23.4'H
,!"*
23.4'<
G
1
22 0<
=<
!*'
!The Global Sport
Ecosystem23.$'I
*
!The Global Sport Ecosystem23.$'0
!The Global
Sport Ecosystem23.$'=
!The
Global Sport Ecosystem23.$'*
1!The
Global Sport Ecosystem23.$'0
J!The Global
Sport Ecosystem23.$'
B*
!:23.6'.
23.?K
G-
2$9"$39
!At the gate and beyond23.4F:23.6'
Table 1 Revenue streams in Traditional Sports and Esports
Segment Traditional Sports (in
Millions)
Esports (in Millions)
Sponsorship 5.@@64 52@2
Advertising " 5.2$6
Media Rights 5.%3?& 5..?%
Tickets and
Merchandise
5&&$36 5@44
Game Publisher
Fee
" 54.%
Total 5@%.&@ 5@6633
A=<
G
!7:I<;*;>823.?'<
3!7"
0<823.?'1+
!7:I<;*;>823.?'"-
!
.39'1!7<L0%8F7<
L8F7 <8'G
!:23.4F*23.4'
-
2&
COverwatch. Overwatch
);23.@B11
!B11'M AN<-G
,M AN-
*C
M N
/23.4B11
! A'!7 8'1
!7
8'OO
*!7 8'
G,!7
8'5.1
-5?33333(<I
,*!7 )/<HG8'
123.45&6!7 8'
2$ K<
2$. <
/(<A
,
/,
!AE:23.2'P
!A23.2'
*!A
23.2'
**
!A23.2'
2$2 <H
H
!:)B23.4F<CDE:23.?'
!<CDE:23.?'
/)
-
!:)B23.4'A
:)B
!:)B23.4'
& ;
K
,/@36$%&
Overwatch
/*1
A
*
&.
A+<,
,
&2
*
G*
!0"<E23.@'
:)B+
&& ;
G
:)B+
!:)
B23.4',
+
Q
&$ <
)*
1G
-B
$ K
$. K
0+
1
0+!R#
%.'!R#4@'
-<62
$2 0;
<,
2
Table 2 Comparison of Means Player Identity and Team Identity
I H!.L !.L
>
?
'
?
'
Q ; $3? &2$
" .4& .6.
<I .6% .6.
" ; &&& &$3
" 4@ ??
<I .&& .$$
; &4& &&3
" 2@% 224
<I .66 .$4
!-S#&2$'!-S#$3?'
+A+
+
!-S#&$3-S#&&&'"
C
!@?239'
)
)TU#$3.6V33.
*
"
!?3%$9'!6?.$9'
$& H/
&
)
Table 3 Fan-player engagement and player identity correlations
Correlations
PlayerIdentity
On average,
how many
hours do you
spend
watching
your favorite
player's
competitive
matches
each week?
On average,
how many
hours do you
spend
watching
your favorite
player's
Twitch
stream each
week?
How many
months have
you been
subscribed
to your
favorite
player's
Twitch
stream?
How much
money have
you donated
to your
favorite
player's
stream?
PlayerIdentity Pearson
Correlation
1 .008 -.160** -.149*.049
Sig. (2-tailed) .894 .009 .014 .423
N277 269 269 269 269
On average, how
many hours do you
spend watching your
favorite player's
competitive matches
each week?
Pearson
Correlation
.008 1 .389** .137*.145*
Sig. (2-tailed) .894 .000 .024 .018
N269 269 269 269 269
On average, how
many hours do you
spend watching your
favorite player's Twitch
stream each week?
Pearson
Correlation
-.160** .389** 1 .276** .282**
Sig. (2-tailed) .009 .000 .000 .000
N269 269 269 269 269
How many months
have you been
subscribed to your
Pearson
Correlation
-.149*.137*.276** 1 .321**
Sig. (2-tailed) .014 .024 .000 .000
favorite player's Twitch
stream?
N269 269 269 269 269
How much money
have you donated to
your favorite player's
stream?
Pearson
Correlation
.049 .145*.282** .321** 1
Sig. (2-tailed) .423 .018 .000 .000
N269 269 269 269 269
**. Correlation is significant at the 0.01 level (2-tailed).
*. Correlation is significant at the 0.05 level (2-tailed).
/
G
#).@3V3.
+
+)
!H#).@3V33.
#&4%V33.#2?@V33.#242
V33.'H,
+
+
$$ /
)
5&3
5&3
TU#..$6$V333.-0
,
*5&3
*
:
5&3!6?339'
)
+
Overwatch-
!7 8'-0
TU#6?%4V33.
+
*
6 I
<,*
G
H+GH
,!#).@3V33.'
/!#).$%
V336'+/
/G
,
+G
<+
B
,;*
G
,
<
!:23.4'
+
*
+
<,
!A23.2'
A
"!&249'
++*
*,
;
*A
/23.@*5$$4
6&95@4423.?-
C$395%@&23.4!7:;0
<;*=/23.4>823.4':*
.3&923.?!7:;0
<;*=/23.4>823.4'/
$4&.9"!At
the gate and beyond23.4'G*+
JG
*!7HB11823.?'
0
*
-
!7<I+;K
P823.4'
!A23.4'
*
/
(1A
,<
-*+
*+
6. 0
,
A
+
A
C,
1
"
G
,
+
+
62 K
A
!E;*23.$'G
!E;*23.$'!E;*23.$'
*
Overwatch.,
G
-,
GGG
1
-
(
*
@
@. -)B
At the gate and beyond%&'()*+%, -...%!.%//!
0%&'()*+%12"1345 %6, 7
'()8-!//...%!%/299!9949 9
/
:%1%%;<%&'()=+%> !
?@9 !!A !:%
, -
!//)%B!%//C=D=C7(CE(-=8=D8//C88E*'
)*'E877/)C(*7E7788'*(/:F"!%!-
#%A%&'()=+%":#.!":,:0%
, 7'()8-!//...%:%//!:99
9.99!9!:9:90/
!!3<,
%&'()*+%, 7'()8-!//!!%/!9
9999!9 9
-1<%&'()E+%
?G%;0:%&'()7+% :-:!!-
::-%, )D'()8-
!//.%%%%!4:%%%//!- ./!- .@
H);HC='*79E97=7(98C9=7D7E((I7()()
%&'()E+%,"J,G!3:K)%,
7'()8-!//...%!%/!/C*D)=)79!9!99
:999)9
#%,%&'()E+%!.<%Journal of Adolescent
and Adult Literacy61&D+D7DLD7C%!//%/)(%)(('/2%=8'
#%<%&'()*+%#3A0.J-4:#.:.
"%, 7'()8-
!//...%M%/'()*/)(/)(/.999!99
0.9/
#%&'()C+%!G:,KED%CAA:'()8%,
7'()8-!//...%-%///'()C/)(/)8/!9
:999ED9C99:9'()8/NC'*(-)7
# 9AO%1%%2P%;#%&'()*+% -
9 ..%Computers in Human Behavior
84C*L=E%!//%/)(%)()=/2%%'()*%('%()D
#.!0:@&'()E+%, 7'()8-
!//...% %/DCC7/.99!9909
:/N%O$:AD 2
#.!0.G'()*@&'()*+%, 7'()8
-!//...%-%//!/'()*/(E/))/.999
!9.99'()*/ND'(*()7=D=
<%&'()*+%#.<-<!!!--:%
, 7'()8-
!//...%-%/'()*/C/8/)E'(7E==/9!99
>.%&%%+%, *'()8-
!//.%//0/!99.9:/
10%&'()*+%"-! %9>0
:@, 7'()8-
!//!%//./!9 99:99D))77
J .<9G":Q%&%%+%, 7'()8-
!//B!%/ ./J .F</F)/":Q
"A<%&'()E+%, 7'()8-
!// .%/9/./')(7D=E'/!999
9
2P%;#%&'()E+%>:!!.!: @
!: -.%
!//%/)(%)()=/2%%'()=%)(%()8
L8%&%%+%, 7'()8-
!//...%8%//
L<B%&%%+%, 7'()8-
!//%B%/
B0%&'()*+%#..0:@, -
!//...%:%/.@ H9R1.:7
%&'()*+%< %, 7'()8-
!//...%!%/!/-/:/F//'7E)(=**/-9929
9
The Global Sport Ecosystem%&'()7+%, -
!//...%!%/.!9/!/'()D/('/,,9"99
!9:%!-
G'()*9!%&'()*+%, 7'()8
-!//%.//99'()*
J .<%&%%+%, *'()8-
!// .%/9/
J .<%&%%+%, 7'()8-
!//!% .%/
!)(!%&%%+%, 7'()8-
!//S0%/!9)(9!9999
/
.;!T%&%%+%, 7'()8-
!//.0%/
>-%&'()*+%J .<:'('(
:%, 7'()8-
!//...%!%/!/:/F//'DE)CC(*/ .9999
9999'('(99:
>-%&'()*+%J .<4!4!KD(9
K=(%, -
!//...%!%/!/:/F//'D7=7=DE/ .994!9
94!9D(9=(9
>%9#%%9U%%;#%9%&'()'+%.":@#.
GMQ?<::%,
)D'()8-
!//.%%%%!4:%%%//!- ./!- .@
H);H7==D9*-E97D-9C)797-C=*=C'7I7()'(
@2 -BL<
/*1
.' I>!QW"'
2' I>!QW"'
&' I
>!QW"'
$' A>! I2
0<= '
!<.)<?L<I'
.' /
2' /C*
&' /C1
$' /C
6' /C
@' /C
H!<.)<?L<
I'
.' /
2' /C*
&' /C1
$' /C
6' /C
@' /C/*
!<.)<?L<I'
.' /
2' /,
&' /
$' /
H!<.)<?L<I'
.' /
2' /,/
&' /
$' //
.' +
*>
. 3
2 .)2
& &)$
$ 6)@
6 ?)4
@ %).3
? ;.3
2' +
*>
. 3
2 .)2
& &)$
$ 6)@
6 ?)4
@ %).3
? ;.3
&' :>
. 53
2 5.)2%
& 5&3)6%
$ 5@3)4%
6 5%3)..%
@ 5.23).$%
? 5.63).?%
4 ;5.43
H
.' +
*>
. 3
2 .)2
& &)$
$ 6)@
6 ?)4
@ %).3
? ;.3
2' +
*>
. 3).
2 2)&
& $)6
$ @)?
6 4)%
@ .3)..
? ;.2
&' :+
>
. 3
2 .)@
& ?).2
$ .&).4
6 .%)2$
@ 26)&3
? ;&3
$' :+>
. 53
2 5.)2%
& 5&3)6%
$ 5@3)4%
6 5%3)..%
@ 5.23).$%
? 5.63).?%
4 ;5.43
@& -0L0<
@&. H//
Player Identity Split * Team Identity Split
Crosstabulation
Count
TIDSplit
Total1.00 2.00
PIDSplit 1.00 62 54 116
2.00 82 5 87
Total 144 59 203
Chi-Square Tests
Value df
Asymptotic
Significance (2-
sided)
Exact Sig. (2-
sided)
Exact Sig. (1-
sided)
Pearson Chi-Square 40.149a1 .000
Continuity Correctionb38.194 1 .000
Likelihood Ratio 46.176 1 .000
Fisher's Exact Test .000 .000
Linear-by-Linear Association 39.951 1 .000
N of Valid Cases 203
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 25.29.
b. Computed only for a 2x2 table
@&2 /
TIDSplit * Over30 Crosstabulation
Count
Over30
Total1.00 2.00
TIDSplit 1.00 83 110 193
2.00 13 53 66
Total 96 163 259
Chi-Square Tests
Value df
Asymptotic
Significance (2-
sided)
Exact Sig. (2-
sided)
Exact Sig. (1-
sided)
Pearson Chi-Square 11.454a1 .001
Continuity Correctionb10.477 1 .001
Likelihood Ratio 12.260 1 .000
Fisher's Exact Test .001 .000
Linear-by-Linear Association 11.410 1 .001
N of Valid Cases 259
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 24.46.
b. Computed only for a 2x2 table
@&& /
TIDSplit * TeamCompetitiveSplit
Crosstabulation
Count
TeamCompetitiveSplit
Total1.00 2.00
TIDSplit 1.00 112 81 193
2.00 27 39 66
Total 139 120 259
Chi-Square Tests
Value df
Asymptotic
Significance (2-
sided)
Exact Sig. (2-
sided)
Exact Sig. (1-
sided)
Pearson Chi-Square 5.798a1 .016
Continuity Correctionb5.130 1 .024
Likelihood Ratio 5.800 1 .016
Fisher's Exact Test .022 .012
Linear-by-Linear Association 5.776 1 .016
N of Valid Cases 259
a. 0 cells (0.0%) have expected count less than 5. The minimum expected count is 30.58.
b. Computed only for a 2x2 table