Jerusalem artichoke ( Helianthus tuberosus ) and chicory ( Cichorium intybus ) are valuable pharmaceutical raw materials on account of their high content of inulin, a natural prebiotic. Inulin-rich plants are also increasingly employed in the formulation of cosmetic products. The paper presents the biological properties of aqueous and aqueous-ethanolic extracts of Jerusalem artichoke and chicory. The extracts have been found to have a high free radical scavenging ability, with the most beneficial antioxidant properties being observed for the aqueous-ethanolic extract of Jerusalem artichoke. Inulin isolated from both plant types is a safe and non-toxic raw material. Inulin added to model body wash gel formulations markedly reduces their potential to cause skin irritation and sensitization.
... The moderate average degree of polymerization and its availability made thi ysaccharide of interest for human health [16]. Thus, inulin has been utilized as either tional food [17] in the cosmetic industry [18] or for biomedical applications [19]. The maceutical and physiological implications of inulin have been reviewed [20]. ...
... The moderate average degree of polymerization and its availability made this polysaccharide of interest for human health [16]. Thus, inulin has been utilized as either functional food [17] in the cosmetic industry [18] or for biomedical applications [19]. The pharmaceutical and physiological implications of inulin have been reviewed [20]. ...
The genus Cichorium (Asteraceae) that originates from the Mediterranean area consists of six species (Cichorium intybus, Cichorium frisee, Cichorium endivia, Cichorium grouse, Cichorium chico and Cichorium pumilum). Cichorium intybus L., commonly known as chicory, has a rich history of being known as a medicinal plant and coffee substitute. A variety of key constituents in chicory play important roles as antioxidant agents. The herb is also used as a forage plant for animals. This review highlights the bioactive composition of C. intybus L. and summarizes the antioxidant activity associated with the presence of inulin, caffeic acid derivatives, ferrulic acid, caftaric acid, chicoric acid, chlorogenic and isochlorogenic acids, dicaffeoyl tartaric acid, sugars, proteins, hydroxycoumarins, flavonoids and sesquiterpene lactones. It also covers the plant’s occurrence, agriculture improvement, natural biosynthesis, geographical distribution and waste valorization.
... Ethanol extracts applied in mice with atopic dermatitis caused by the mite Dermatophagoides farina and HaCaT keratinocytes demonstrated relief and attenuation of symptoms and a decrease in epidermal thickness, alongside enhanced expression of filaggrin [47]. Inulin isolated from H. tuberosus has been used to develop cosmetic products, such as a body wash gel, decreasing the skin irritation [48]. ...
“Let food be thy medicine and medicine be thy food”, is one of the most famous phrases attributed to Hippocrates, the father of medicine. Scientific research on superfoods has increased in the last six years. These foods have nutritional and pharmacological properties, such that they can help to fight against diseases and poor nutritional status. Helianthus tuberosus L., or Jerusalem artichoke, appears to be a superfood that provides benefits to human health at the level of the digestive, gastrointestinal, and dermatological systems, being fit for patients with diabetes mellitus due to its high content of inulin and use in an optimal hypocaloric diet due to its low carbohydrate content. In fact, 5 to 15 g per day is beneficial, with evidence of a prebiotic effect. Unfortunately, its consumption and cultivation are not well known worldwide. For this reason, the present review describes the benefits of H. tuberosus in human health to promote knowledge about its nutritional benefits.
... Plant-based ingredients are commonly used in cosmetics and personal care products. One such ingredient, inulin, is safe and effective [8]. Inulin and inulin-type fructans and galacto-oligosaccharides have demonstrated prebiotic effects in a number of ways, but little is known about its prebiotic effect on skin health when applied topically [9] [10] [11]. ...
Demand on natural products that contain biological ingredients mimicking growth factors and cytokines made natural polysaccharides popular in pharmaceutical and cosmetic industries. Levan is the β-(2-6) linked, nontoxic, biocompatible, water-soluble, film former fructan polymer that has diverse applications in pharmacy and cosmeceutical industries with its moisturizing, whitening, anti-irritant, anti-aging and slimming activities. Driven by the limited reports on few structurally similar levan polymers, this study presents the first systematic investigation on the effects of structurally different extremophilic Halomonas levan polysaccharides on human skin epidermis cells. In-vitro experiments with microbially produced linear Halomonas levan (HL), its hydrolyzed, (hHL) and sulfonated (ShHL) derivatives as well as enzymatically produced branched levan (EL) revealed increased keratinocyte and fibroblast proliferation (113-118 %), improved skin barrier function through induced expressions of involucrin (2.0 and 6.43 fold changes for HL and EL) and filaggrin (1.74 and 3.89 fold changes for hHL and ShHL) genes and increased type I collagen (2.63 for ShHL) and hyaluronan synthase 3 (1.41 for HL) gene expressions together with fast wound healing ability within 24 h (100 %, HL) on 2D wound models clearly showed that HL and its derivatives have high potential to be used as natural active ingredients in cosmeceutical and skin regenerating formulations.
Plant extracts have been widely used for skin care for many centuries, and nowadays, they are commonly applied for the development and enrichment of new cosmetic preparations. The present study aimed the assessment of the biological activity of aqueous Schisandra chinensis extracts as a potential ingredient of skin care products. The aspects studied involved the ability to neutralize free radicals, impact on viability and metabolism of keratinocytes, as well as tyrosinase inhibitory potential. Our study showed that aqueous S. chinensis extracts have a positive effect on keratinocyte growth and have high antioxidant potential and strong tyrosinase inhibitory activity. UPLC-MS analysis revealed that three groups of phenolic compounds were predominant in the analyzed extract, including lignans, phenolic acids and flavonoids and protocatechiuc and p-coumaryl quinic acids were predominant. Moreover, microwave-assisted extraction, followed by heat reflux extraction, was the most effective for extracting polyphenols. Furthermore, a prototypical natural body washes gel formulation containing the previously prepared extracts was developed. The irritation potential and viscosity were assessed for each of the formulations. The study demonstrated that the addition of these extracts to body wash gel formulations has a positive effect on their quality and may contribute to a decrease in skin irritation. In summary, S. chinensis aqueous extracts can be seen as an innovative ingredient useful in the cosmetic and pharmaceutical industry.
The soil is influenced by the roots of plants because the exudate radicals affect its physical, chemical, and biological processes. The aim of this research was to evaluate the microbial activity of soils cultivated with yacón (Smallanthus sonchifolius Poep. & Endl) H. Robinson and inoculated with microorganisms which promote plant growth. The experimental design used was randomized blocks with three repetitions per treatment. Each repetition corresponded to a 3m x 3m plot with 25 plants, in 5 cultivation lines with a distance of 70 cm apart. Four treatments were applied at the time of plantation. These consisted of yacón propagules inoculated with Azospirillum brasilense (T1) and native mycorrhizal fungi (T2) inoculated with the microbial consortium (T3). In the control treatments, the propagules were not inoculated with these microorganisms (T0). Soil samples were collected in lots cultivated with yacón located in the Province of Catamarca, in the northwest of Argentina. The samples were collected at the time of implantation and harvest during three agricultural cycles. The total Biological Activity (TBA) of the collected samples was determined by Fluorescein Diacetate Hydrolysis. The TBA of the soil was affected by the different crop treatments, which rose in the analyzed soils and was statistically different from the control treatments. Significant differences were also observed between the TBA of the soils at the beginning of the crops in comparison with the recorded values of the crop at the time of harvest. The inoculation of yacón propagules with A. brasilense and native mycorrhizal fungi affects the TBA of the cultivated soils marking a significant increase.
Polysaccharides are macromolecules with important inherent properties and potential biotechnological applications. These complex carbohydrates exist throughout nature, especially in plants, from which they can be obtained with high yields. Different extraction and purification methods may affect the structure of polysaccharides and, due to the close relationship between structure and function, modify their biological activities. One of the possible applications of these polysaccharides is acting on the skin, which is the largest organ in the human body and can be aged by intrinsic and extrinsic processes. Skincare has been gaining worldwide attention not only to prevent diseases but also to promote rejuvenation in aesthetic treatments. In this review, we discussed the polysaccharides obtained from plants and their innovative potential for skin applications, for example as wound-healing, antimicrobial, antioxidant and anti-inflammatory, antitumoral, and anti-aging compounds.
Natural resources, to which include extracts from tubers, leaves and stems of Jerusalem artichoke as well inulin, used as a stabilizer of emulsion forms of cosmetics and detergents and as a substrate for dustings and powders are an invaluable source of cosmetic active substances. Vitamin C, which are rich in tubers of H. tuberosus, stimulates the penetration of nutrients from the skin into the bloodstream, facilitates regeneration and collagen production. Also accelerates the formation of collagen and proteoglycans tissue, that is: proteins, acting as scaffolding, which is responsible for skin elasticity and so is considered to be anti-aging factor. In the case of dry skin vitamin C contained in tubers promotes the synthesis of lipids are responsible for skin hydration and in the case of oily skin reduces the production of sebum. The richness and variety of biologically active compounds determines their valuable and highly desirable cosmetic properties. These components also enrich the skin with biologically active substances, acting cleansing and tending, protective and curative, and consequently - beautifying and revitalizing. Thus, the addition of components to the cosmetics artichoke is a response to the growing needs of consumers.
The industrial production of short-chain fructooligosaccharides (FOS) and inulooligosaccharides is expanding rapidly due to the pharmaceutical importance of these compounds. These compounds, concisely termed prebiotics, have biofunctional properties and hence health benefits if consumed in recommended dosages. Prebiotics can be produced enzymatically from sucrose elongation or via enzymatic hydrolysis of inulin by exoinulinases and endoinulinases acting alone or synergistically. Exoinulinases cleave the non-reducing β-(2, 1) end of inulin-releasing fructose while endoinulinases act on the internal linkages randomly to release inulotrioses (F3), inulotetraoses (F4) and inulopentaoses (F5) as major products. Fructosyltransferases act by cleaving a sucrose molecule and then transferring the liberated fructose molecule to an acceptor molecule such as sucrose or another oligosaccharide to elongate the short-chain fructooligosaccharide. The FOS produced by the action of fructosyltransferases are 1-kestose (GF2), nystose (GF3) and fructofuranosyl nystose (GF4). The production of high yields of oligosaccharides of specific chain length from simple raw materials such as inulin and sucrose is a technical challenge. This paper critically explores recent research trends in the production and application of short-chain oligosaccharides. Inulin and enzyme sources for the production of prebiotics are discussed. The mechanism of FOS chain elongation and also the health benefits associated with prebiotics consumption are discussed in detail.
A method for the screening of antioxidant activity is reported as a decolorization assay applicable to both lipophilic and hydrophilic antioxidants, including flavonoids, hydroxycinnamates, carotenoids, and plasma antioxidants. The pre-formed radical monocation of 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS*+) is generated by oxidation of ABTS with potassium persulfate and is reduced in the presence of such hydrogen-donating antioxidants. The influences of both the concentration of antioxidant and duration of reaction on the inhibition of the radical cation absorption are taken into account when determining the antioxidant activity. This assay clearly improves the original TEAC assay (the ferryl myoglobin/ABTS assay) for the determination of antioxidant activity in a number of ways. First, the chemistry involves the direct generation of the ABTS radical monocation with no involvement of an intermediary radical. Second, it is a decolorization assay; thus the radical cation is pre-formed prior to addition of antioxidant test systems, rather than the generation of the radical taking place continually in the presence of the antioxidant. Hence the results obtained with the improved system may not always be directly comparable with those obtained using the original TEAC assay. Third, it is applicable to both aqueous and lipophilic systems.
Synopsis Use was made of radiotagged SODIUM LAURYL SULFATE (SLS) to determine its sorption by skin and hair. In the initial stages uptake is linear in square root of time, indicative of a diffusion process. The uptakes determined by radiotagged SLS were successfully correlated with data from a simple gravimetric method and showed that the latter procedure can be used satisfactorily under certain conditions when radiotagged com- pounds are not available. The influence of some additives on the SORPTION of SLS was studied. Salt increases the sorption, while nonionic SURFACTANTS (which are not themselves sorbed) substantially depress it. Finally, the relation of the sorbed SLS to water of hydration of KERATIN is examined. It is con- cluded that most, if not all, the sorbed material is bound to keratin, rather than existing in an "internal" solu- tion.
The large-deformation rheology of inulin gels was investigated and interpreted in terms of solubility, crystallisation, and aggregation data. The gels are characterised by a strong overshoot peak in the stress–strain curve, characteristic for (non-plastic) work softening behaviour. More concentrated inulin gels tend to be firmer but are also less plastic. It is hypothesised that inulin molecules depositing during the later stages of the crystallisation/gelation process contribute most to the overshoot peak in the stress–strain curve.