Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Curcumin is derived from the roots of the plant Curcuma longa known as turmeric. Curcumin mediates glucose homeostasis through activation of glycosis, inhibition of hepatic gluconeogenesis and reducing lipid metabolism. As a nuclear factor kappa B inhibitor, curcumin helps to alleviate insulin resistance; activates peroxisome proliferator-activated receptor gamma and shows hypoglycemic effects and thus suppresses increases in blood glucose levels. There are studies showing that curcumin may have an effect on insulin secretion. By regulating the expression of the Ang II Type-1 receptor in the arteries, it can prevent the development of hypertension, an important component of the metabolic syndrome. The triglyceride-lowering effects of curcumin were confirmed in various experimental studies. In addition to the effects on the lipid metabolism, there is some evidence that curcumin can reduce body weight by increasing the basal metabolic rate and release of some cytokines. Curcumin was found to reduce hepatic fat accumulation and prevent steatosis by down-regulating lipogenic factors. In addition, it reduces the biomarkers of systemic inflammation, hepatocyte injury and oxidative stress, and improves insulin sensitivity and glycemic control. Curcumin reduces hepatic cholesterol and total cholesterol levels by inhibiting hepatic enzymes HMG-CoA reductase and acyl CoA cholesterol acyltransferase. In addition, it inhibits hepatic fatty acid synthase activity and increases beta oxidation of fatty acids. Curcumin is a promising agent in the treatment of metabolic syndrome by correcting the parameters caused by the metabolic syndrome and eliminating its negative effects.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
The increase in the use of refined food, which is rich in fructose, is of particular concern in children and adolescents, since the total caloric intake and the prevalence of metabolic syndrome are increasing continuously in these populations. Nevertheless, the effects of high fructose diet have been mostly investigated in adults, by focusing on the effect of a long-term fructose intake. Notably, some reports evidenced that even short-term fructose intake exerts detrimental effects on metabolism. Therefore, the aim of this study was to compare the metabolic changes induced by the fructose-rich diet in rats of different age, i.e., young (30 days old) and adult (90 days old) rats. The fructose-rich diet increased whole body lipid content in adult, but not in young rats. The analysis of liver markers of inflammation suggests that different mechanisms depending on the age might be activated after the fructose-rich diet. In fact, a pro-inflammatory gene-expression analysis showed just a minor activation of macrophages in young rats compared to adult rats, while other markers of low-grade metabolic inflammation (TNF-alpha, myeloperoxidase, lipocalin, haptoglobin) significantly increased. Inflammation was associated with oxidative damage to hepatic lipids in young and adult rats, while increased levels of hepatic nitrotyrosine and ceramides were detected only in young rats. Interestingly, fructose-induced hepatic insulin resistance was evident in young but not in adult rats, while whole body insulin sensitivity decreased both in fructose-fed young and adult rats. Taken together, the present data indicate that young rats do not increase their body lipids but are exposed to metabolic perturbations, such as hepatic insulin resistance and hepatic oxidative stress, in line with the finding that increased fructose intake may be an important predictor of metabolic risk in young people, independently of weight status. These results indicate the need of corrective nutritional interventions for young people and adults as well for the prevention of fructose-induced metabolic alterations.
Article
Full-text available
Background: Overconsumption of dietary sugars, fructose in particular, is linked to cardiovascular risk factors such as type 2 diabetes, obesity, dyslipidemia, and non-alcoholic fatty liver disease. However, clinical studies have to date not clarified whether these adverse cardiometabolic effects are induced directly by dietary sugars, or if they are secondary to weight gain. Objectives: To assess the effects of fructose (75 g/day), served with their habitual diet over 12 weeks, on liver fat content and other cardiometabolic risk factors in a large cohort (n=71) of abdominally obese men. Methods: We analyzed changes in body composition, dietary intake, an extensive panel of cardiometabolic risk markers, hepatic de novo lipogenesis (DNL), liver fat content, and postprandial lipid responses after a standardized oral fat tolerance test (OFTT). Results: Fructose consumption had modest adverse effects on cardiometabolic risk factors. However, fructose consumption significantly increased liver fat content and hepatic DNL and decreased β-hydroxybutyrate (a measure of β-oxidation). The individual changes in liver fat were highly variable in subjects matched for the same level of weight change. The increase in liver fat content was significantly more pronounced than the weight gain. The increase in DNL correlated positively with triglyceride area under the curve responses after an OFTT. Conclusion: Our data demonstrated adverse effects of moderate fructose consumption for 12 weeks on multiple cardiometabolic risk factors in particular on liver fat content despite only relative low increases in weight and waist circumference. Our study also indicates that there are remarkable individual differences in susceptibility to visceral adiposity/liver fat after real world daily consumption of fructose sweetened beverages over 12 weeks. This article is protected by copyright. All rights reserved.
Article
Full-text available
Obesity and its major co-morbidity, type 2 diabetes, have reached an alarming epidemic prevalence without an effective treatment available. It has been demonstrated that inhibition of SREBP pathway may be a useful strategy to treat obesity with type 2 diabetes. Sterol regulatory element-binding proteins (SREBPs) are major transcription factors regulating the expression of genes involved in biosynthesis of cholesterol, fatty acid and triglyceride. In current study, we identified a small molecule, curcumin, inhibited the SREBP expression in vitro. The inhibition of SREBP by curcumin decreased the biosynthesis of cholesterol and fatty acid. In vivo, curcumin ameliorated HFD-induced body weight gain and fat accumulation in liver or adipose tissues, and improved serum lipid levels and insulin sensitivity in HFD-induced obese mice. Consistently, curcumin regulates SREBPs target genes and metabolism associated genes in liver or adipose tissues, which may directly contribute to the lower lipid level and improvement of insulin resistance. Take together, curcumin, a major active component of Curcuma longa could be a potential leading compound for development of drugs for the prevention of obesity and insulin resistance.
Article
Full-text available
Atherosclerosis and hypertension can potentially progess into dangerous cardiovascular diseases such as myocardial infarction and stroke. Statins are widely used to lower cholesterol levels while antihypertensive agents such as captopril are widely prescribed to treat high blood pressure. Curcumin, a phenolic compound isolated from Curcuma domestica, has been proven effective for a broad spectrum of diseases, including hypertension and hyper-cholesterolemia. Therefore, curcumin is quite promising as an alternative therapeutic compound. Our previous studies have proven a significant increase in physical properties, bioavailability, and stability of curcumin when encapsulated in a nanoemulsion. The purpose of this study was to assess the ability of the nanoemulsion in enhancing curcumin activity as a antihypertensive and antihypercholesterolemic agent. The formulation and preparation method of the curcumin nanoemulsion have been developed in our previous study. Physical characterization was performed, including measurement of droplet size, polidispersity index, zeta potential, entrapment efficiency, and loading capacity. Antihypertensive activity of curcumin was evaluated by determining Angiotensin Converting Enzyme (ACE) inhibition in vitro. A substrate for ACE, hippuryl-L-histidyl-L-leucine was allowed to react with ACE, resulting in hippuric acid formation as the product. The degree of ACE inhibition by curcumin was represented by the amount of hippuric acid formed. Antihypercholesterolemic activity of curcumin was studied using the HMG-CoA reductase assay equipped with a 96-well UV plate. This assay was based on the spectrophotometric measurement of the decrease in absorbance which represents the oxidation of NADPH by the catalytic subunit of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) in the presence of the substrate HMG-CoA. Curcumin is known to have no significant difference in inhibiting ACE compared to Captopril, but when it was incorporated in the self-nanoemulsifying carrier, it slightly increased the inhibitory effect on ACE. In contrast, the effect of curcumin in reducing cholesterol based on the HMGR assay was more pronounced. Curcumin encapsulated in a nanoemulsion showed significant cholesterol-lowering activity compared to a standard drug, pravastatin. Therefore, we conclude that curcumin does not show ACE inhibitory effects, but has potential use as an alternative therapeutic compound to treat hyperlipidaemia. Curcumin encapsulated in a nanoemulsion increased not only the HMGR inhibition, but also ACE inhibition of curcumin. These effects are suggested to be the result of improved solubility in the nanoemulsion system.
Article
Full-text available
We previously reported that curcumin induces browning of primary white adipocytes via enhanced expression of brown adipocyte-specific genes. In this study, we attempted to identify target proteins responsible for this fat-browning effect by analyzing proteomic changes in cultured white adipocytes in response to curcumin treatment. To elucidate the role of curcumin in fat-browning, we conducted comparative proteomic analysis of primary adipocytes between control and curcumin-treated cells using two-dimensional electrophoresis combined with MALDI-TOF-MS. We also investigated fatty acid metabolic targets, mitochondrial biogenesis, and fat-browning-associated proteins using combined proteomic and network analyses. Proteomic analysis revealed that 58 protein spots from a total of 325 matched spots showed differential expression between control and curcumin-treated adipocytes. Using network analysis, most of the identified proteins were proven to be involved in various metabolic and cellular processes based on the PANTHER classification system. One of the most striking findings is that hormone-sensitive lipase (HSL) was highly correlated with main browning markers based on the STRING database. HSL and two browning markers (UCP1, PGC-1α) were co-immunoprecipitated with these markers, suggesting that HSL possibly plays a role in fat-browning of white adipocytes. Our results suggest that curcumin increased HSL levels and other browning-specific markers, suggesting its possible role in augmentation of lipolysis and suppression of lipogenesis by trans-differentiation from white adipocytes into brown adipocytes (beige).
Article
Full-text available
Turmeric (Curcuma Longa) is a type of herb belonging to ginger family, which is widely grown in southern and south western tropical Asia region. Turmeric, which has an importance place in the cuisines of Iran, Malesia, India, China, Polynesia and Thailand, is often used as spice and has an effect on the nature, color and taste of foods. Turmeric is also known to have been used for centuries in India and China for the medical treatments of such illnesses as dermatologic diseases, infection, stress and depression. Turmeric's effects on health generally are centered upon an orange-yellow colored, lipophilic polyphenol substance called 'curcumin', which is acquired from the rhizomes of the herb. Curcumin is known recently to have antioxidant, anti-inflammatory, anti-cancer effects and, thanks to these effects, to have an important role in prevention and treatment of various illnesses ranging notably from cancer to autoimmune, neurological, cardiovascular diseases and diabetic. Furthermore, it is aimed to increase the biological activity and physiological effects of the curcumin on the body by synthesizing curcumin analogues. This paper reviews the history, chemical and physical features, analogues, metabolites, mechanisms of its physiological activities and effects on health of curcumin.
Article
Full-text available
It has previously been demonstrated that curcumin possesses a hypocholesterolemic effect and potentiates numerous pharmacological effects of curcumin, however, the mechanisms underlying this hypocholesterolemic effect and the interaction between curcumin and piperine remain to be elucidated. In the present study, male Sprague-Dawley rats were fed on a high-fat diet (HFD) to establish a hyperlipidemia (HLP) model. Co-administration of curcumin plus piperine was found to decrease the levels of total cholesterol (TC), triglyceride (TG) and low-density lipoprotein cholesterol in the serum and liver, as well as increase the levels of fecal TC, TG and total bile acid, compared with administration of curcumin alone. Curcumin plus piperine also markedly increased the levels of high-density lipoprotein cholesterol. Furthermore, compared with administration of curcumin alone, administration of curcumin plus piperine resulted in a significant upregulation of the activity and gene expression of apolipoprotein AI (ApoAI), lecithin cholesterol acyltransferase (LCAT), cholesterol 7α-hydroxylase (CYP7A1) and low-density lipoprotein receptor (LDLR). In conclusion, these results indicated that co-administration of curcumin plus piperine potentiates the hypocholesterolemic effects of curcumin by increasing the activity and gene expression of ApoAI, CYP7A1, LCAT and LDLR, providing a promising combination for the treatment of HLP.
Article
Full-text available
Background: Obesity is a disorder often accompanied by a heightened state of systemic inflammation and immunoactivation. The present randomized crossover trial aimed to investigate the efficacy of curcumin, a bioactive polyphenol with established anti-inflammatory and immunomodulatory effects, on the serum levels of a panel of cytokines and mediators in obese individuals. Methods: Thirty obese individuals were randomized to receive curcumin at a daily dose of 1 g or a matched placebo for 4 weeks. Following a 2-week wash-out period, each group was assigned to the alternate treatment regimen for another 4 weeks. Serum samples were collected at the start and end of each study period. Serum levels of IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, VEGF, IFNγ, EGF, MCP-1, and TNF α were measured using a multiplex Biochip Array Technology based method. Results: Mean serum IL-1β (P = 0.042), IL-4 (P = 0.008), and VEGF (P = 0.01) were found to be significantly reduced by curcumin therapy. In contrast, no significant difference was observed in the concentrations of IL-2, IL-6, IL-8, IL-10, IFNγ, EGF, and MCP-1. Conclusions: The findings of the present trial suggested that curcumin may exert immunomodulatory effects via altering the circulating concentrations of IL-1β, IL-4, and VEGF.
Article
Full-text available
There are two isoforms of apolipoprotein B (apoB) in mammals: apoB-100 and apoB-48. The latter is generated by C-to-U editing of apoB mRNA, catalyzed by the apolipoprotein B mRNA editing enzyme, namely, catalytic polypeptide 1 (APOBEC-1). Lipid particles containing apoB-48 are cleared from the plasma more rapidly than those containing apoB-100 and thus do not contribute to plaque formation in the arterial wall. In the present study, we analyzed whether curcumin is capable of regulating lipid metabolism by improving the level of apoB mRNA editing. The cytotoxicity of curcumin in hepatocytes was determined using the 3-(4,5-dimethylthiazol‑2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the levels of APOBEC-1 mRNA and protein were analyzed by real-time quantitative polymerase chain reaction (qRT-PCR) and western blotting. The efficiency of apoB mRNA editing was determined by reverse transcription PCR (RT-PCR) products and cloning sequencing analysis. We demonstrated that curcumin concentrations up to 70 µM had no significant cytotoxic effects on primary rat hepatocytes at 24 h. At 15 µM, curcumin significantly increased the expression of APOBEC-1 mRNA and protein, and increased the editing level of apoB mRNA from 3.13 to 7.53%. At 25 µM, curcumin reduced the expression of APOBEC-1; however, it did not affect the apoB mRNA editing level. Our data suggested that curcumin at a concentration of 15 µM raised the level of apoB-48 and reduced the level of apoB-100 by increasing the expression of APOBEC-1 in primary rat hepatocytes; therefore, curcumin may be a novel preventative therapy for atherosclerosis.
Article
Full-text available
11β-hydroxysteroid dehydrogenase 1 (11β-HSD1) activates glucocorticoid locally in liver and fat tissues to aggravate metabolic syndrome. 11β-HSD1 selective inhibitor can be used to treat metabolic syndrome. Curcumin and its derivatives as selective inhibitors of 11β-HSD1 have not been reported. Curcumin and its 12 derivatives were tested for their potencies of inhibitory effects on human and rat 11β-HSD1 with selectivity against 11β-HSD2. 200 mg/kg curcumin was gavaged to adult male Sprague-Dawley rats with high-fat-diet-induced metabolic syndrome for 2 months. Curcumin exhibited inhibitory potency against human and rat 11β-HSD1 in intact cells with IC50 values of 2.29 and 5.79 µM, respectively, with selectivity against 11β-HSD2 (IC50, 14.56 and 11.92 µM). Curcumin was a competitive inhibitor of human and rat 11β-HSD1. Curcumin reduced serum glucose, cholesterol, triglyceride, low density lipoprotein levels in high-fat-diet-induced obese rats. Four curcumin derivatives had much higher potencies for Inhibition of 11β-HSD1. One of them is (1E,4E)-1,5-bis(thiophen-2-yl) penta-1,4-dien-3-one (compound 6), which had IC50 values of 93 and 184 nM for human and rat 11β-HSD1, respectively. Compound 6 did not inhibit human and rat kidney 11β-HSD2 at 100 µM. In conclusion, curcumin is effective for the treatment of metabolic syndrome and four novel curcumin derivatives had high potencies for inhibition of human 11β-HSD1 with selectivity against 11β-HSD2.
Article
Full-text available
OBJECTIVE To assess the efficacy of curcumin in delaying development of type 2 diabetes mellitus (T2DM) in the prediabetic population. RESEARCH DESIGN AND METHODS This randomized, double-blinded, placebo- controlled trial included subjects (n = 240) with criteria of prediabetes. All subjects were randomly assigned to receive either curcumin or placebo capsules for 9 months. To assess the T2DM progression after curcumin treatments and to determine the number of subjects progressing to T2DM, changes in β-cell functions (homeostasis model assessment [HOMA]-β, C-peptide, and proinsulin/insulin), insulin resistance (HOMA-IR), anti-inflammatory cytokine (adiponectin), and other parameters were monitored at the baseline and at 3-, 6-, and 9-month visits during the course of intervention. RESULTS After 9 months of treatment, 16.4% of subjects in the placebo group were diagnosed with T2DM, whereas none were diagnosed with T2DM in the curcumin-treated group. In addition, the curcumin-treated group showed a better overall function of β-cells, with higher HOMA-β (61.58 vs. 48.72; P < 0.01) and lower C-peptide (1.7 vs. 2.17; P < 0.05). The curcumin-treated group showed a lower level of HOMA-IR (3.22 vs. 4.04; P < 0.001) and higher adiponectin (22.46 vs. 18.45; P < 0.05) when compared with the placebo group. CONCLUSIONS A 9-month curcumin intervention in a prediabetic population significantly lowered the number of prediabetic individuals who eventually developed T2DM. In addition, the curcumin treatment appeared to improve overall function of β-cells, with very minor adverse effects. Therefore, this study demonstrated that the curcumin intervention in a prediabetic population may be beneficial.
Article
Full-text available
The prevalence of overweight and obesity and their associated metabolic disorders are considered a major threat to the public's health. While several diet and exercise programs are available for weight loss and prevention of weight regain, progress is often slow and disappointing. Recently, natural bioactive phytochemicals present in foods have been discovered for their potential health benefit effects on the prevention of chronic disorders such as cancer, cardiovascular disease, inflammatory and metabolic diseases including obesity. Polyphenols are a class of naturally-occurring phytochemicals, of which some such as catechins, anthocynines, resveratrol and curcumin have been shown to modulate physiological and molecular pathways that are involved in energy metabolism, adiposity, and obesity. The potential in vivo, beneficial effects of these polyphenols on adiposity and obesity as complementary agents in the up-regulation of energy expenditure have emerged by investigating these compounds in cell cultures, animal models of obesity and in some human clinical and epidemiological studies. In this brief review, the efficacy of the above-named polyphenols and their potential efficacy to modulate obesity and some associated disorders are discussed.
Article
Full-text available
The adipocyte/macrophage fatty acid-binding protein 4 (FABP4) has been described as a biomarker for adiposity and metabolic syndrome (MS). The aims of this study were to assess the relationship between FABP4 and inflammatory cytokines related to obesity, and to evaluate FABP4 mRNA expression in visceral and subcutaneous adipose tissue in non-diabetic morbidly obese women versus healthy lean women. We analyzed circulating levels of FABP4 in 81 Spanish women: 38 lean (body mass index (BMI)<25 kg/m(2)) and 43 morbidly obese (BMI>40 kg/m(2)). We took 30 follow-up blood samples at 6 and 12 months after bariatric surgery. We assessed FABP4 gene expression in samples of subcutaneous abdominal and visceral adipose tissue. Adipose tissue mRNA expression was determined by real-time RT-PCR. In morbidly obese women, plasma FABP4 levels were significantly higher than in non-obese patients. These levels positively correlated with BMI, homeostasis model assessment of insulin resistance (HOMA2-IR), and plasma glucose and insulin levels. Post-operative FABP4 levels decreased by a maximum of 30% after 12 months. We also found an inverse association between FABP4 and adiponectin levels, and positive correlations between FABP4 and circulating leptin, tumor necrosis factor (TNF) receptors, C-reactive protein (CRP) and interleukin 6 levels. Linear regression analysis revealed that FABP4 was more closely related to HOMA2-IR than adiponectin, CRP, TNF-RI, or leptin. Furthermore, high circulating FABP4 levels were associated with the presence of MS. FABP4 mRNA expression in visceral adipose tissue was related to its circulating levels in morbidly obese women. Our results indicate that serum FABP4 is associated with inflammatory factors related to obesity and MS in non-diabetic morbidly obese women.
Article
Full-text available
Previous animal studies have shown that Curcuma (C.) longa lowers plasma glucose. C. longa may thus be a promising ingredient in functional foods aimed at preventing type 2 diabetes. The purpose of the study is to study the effect of C. longa on postprandial plasma glucose, insulin levels and glycemic index (GI) in healthy subjects. Fourteen healthy subjects were assessed in a crossover trial. A standard 75 g oral glucose tolerance test (OGTT) was administered together with capsules containing a placebo or C. longa. Finger-prick capillary and venous blood samples were collected before, and 15, 30, 45, 60, 90, and 120 min after the start of the OGTT to measure the glucose and insulin levels, respectively. The ingestion of 6 g C. longa had no significant effect on the glucose response. The change in insulin was significantly higher 30 min (P = 0.03) and 60 min (P = 0.041) after the OGTT including C. longa. The insulin AUCs were also significantly higher after the ingestion of C. longa, 15 (P = 0.048), 30 (P = 0.035), 90 (P = 0.03), and 120 (P = 0.02) minutes after the OGTT. The ingestion of 6 g C. longa increased postprandial serum insulin levels, but did not seem to affect plasma glucose levels or GI, in healthy subjects. The results indicate that C. longa may have an effect on insulin secretion. Trial registration number
Article
Full-text available
There is an increasing interest in curcumin (Curcuma longa L.) as a cardiovascular disease (CVD) protective agent via decreased blood total cholesterol and low-density lipoprotein-cholesterol (LDL-cholesterol) level. The aim of this study was to investigate further the potential mechanism in the hypocholesterolemic effect of curcumin by measuring cholesterol 7a-hydroxylase (CYP7A1), a rate limiting enzyme in the biosynthesis of bile acid from cholesterol, at the mRNA level. Male Sprague-Dawley rats were fed a 45% high fat diet or same diet supplemented with curcumin (0.1% wt/wt) for 8 weeks. The curcumin diet significantly decreased serum triglyceride (TG) by 27%, total cholesterol (TC) by 33.8%, and LDL-cholesterol by 56%, respectively as compared to control group. The curcumin-supplemented diet also significantly lowered the atherogenic index (AI) by 48% as compared to control group. Hepatic TG level was significantly reduced by 41% in rats fed with curcumin-supplemented diet in comparison with control group (P < 0.05). Conversely, the curcumin diet significantly increased fecal TG and TC. The curcumin diet up-regulated hepatic CYP7A1 mRNA level by 2.16-fold, compared to control group p (P < 0.05). These findings suggested that the increases in the CYP7A1 gene expression may partially account for the hypocholesterolemic effect of curcumin.
Article
Full-text available
Curcumin and its structurally related compounds (curcuminoids), the phenolic yellowish pigments of turmeric, display antioxidative, anticarcinogenic and hypocholesterolemic activities. In this study, we investigated the effects of dietary supplemented curcuminoids [commercial grade curcumin: a mixture of curcumin (73.4%), demethoxycurcumin (16.1%) and bisdemethoxycurcumin (10.5%)] on lipid metabolism in rats. Male Sprague-Dawley rats were assigned to three diet groups (n = 6) and fed a moderately high-fat diet (15 g soybean oil/100 g diet) for 2 wk. One diet group did not receive supplements (CONT), while the others were supplemented with 0.2 g curcuminoids/100 g diet (CUR0.2) or 1.0 g curcuminoids/100 g diet (CUR1.0). Liver triacylglycerol and cholesterol concentrations were significantly lower in CUR1.0 rats than in CONT rats. Plasma triacylglycerols in the VLDL fraction were also lower in CUR1.0 rats than in CONT rats (P < 0.05). Hepatic acyl-CoA oxidase activity of both the CUR0.2 and CUR1.0 rats was significantly higher than that of CONT rats. Furthermore, epididymal adipose tissue weight was significantly reduced with curcuminoid intake in a dose-dependent manner. These results indicate that dietary curcuminoids have lipid-lowering potency in vivo, probably due to alterations in fatty acid metabolism.
Article
Full-text available
It is widely appreciated that inflammation and oxidant stress contribute to atherogenesis. Curcumin, a polyphenolic natural compound has been reported to possess anti-inflammatory and anti-oxidant actions. We hypothesized that curcumin could inhibit the development of atherosclerosis in the apoE/LDLR-double knockout mice fed with Western diet (21% fat, 0.15% cholesterol w/w, without cholic acid). Curcumin (purity>or=98%), premixed with diet, was given for 4 months at a dose of 0.3 mg/ per day/ per mouse. In this model curcumin inhibited atherogenesis, measured both by "en face" method (25,15+/-2,9% vs. 19,2+/-0,6%, p<0,05) and "cross-section" method (565867+/-39764 microm2 vs. 299201+/-20373 microm2, p<0,05). Importantly, curcumin influenced neither the concentrations of cholesterol and triglycerides in blood nor animal body weight. To our knowledge, this is the first report that shows the anti-atherogenic effect of low dose of curcumin in fine model of atherosclerosis: gene-targeted apoE/LDLR-double knockout mice.
Article
Apolipoprotein B-containing lipoproteins and low-density lipoprotein play a key role in atherosclerotic vascular disease. Modified forms of low-density lipoprotein drive inflammation, an integral aspect of plaque progression. High-density lipoprotein particles are equipped to protect low-density lipoprotein from enzymatic and nonenzymatic modification. Under normal conditions, high-density lipoproteins facilitate cholesterol efflux from tissues, preventing its accumulation with deleterious consequences. However, the high-density lipoprotein particles characteristic of dyslipidemic states associated with premature atherosclerosis are typically dysfunctional as a result of alteration in their metabolism and consequently their structure and composition. Such an effect indirectly enhances low-density lipoprotein atherogenicity.
Article
Toll-like receptor 4 (TLR4) has been reported to play a critical role in the pathogenesis of atherosclerosis, the current study aimed to investigate whether curcumin suppresses atherosclerosis development in ApoE-knockout (ApoE-/-) mice by inhibiting TLR4 expression. ApoE-/- mice were fed a high-fat diet supplemented with or without curcumin (0.1% w/w) for 16 weeks. Curcumin supplementation significantly reduced TLR4 expression and macrophage infiltration in atherosclerotic plaques. Curcumin also reduced aortic interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), vascular cell adhesion molecule -1(VCAM-1) and intercellular adhesion molecule- 1(ICAM-1) expression, nuclear factor-κB (NF-κB) activity, and plasma IL-1β, TNF-α, soluble VCAM-1 and ICAM-1 levels. In addition, aortic sinus sections revealed that curcumin treatment reduced the extent of atherosclerotic lesions and inhibited atherosclerosis development. In vitro, curcumin inhibited NF-κB activation in macrophages and reduced TLR4 expression induced by lipopolysaccharide. Our results indicate that curcumin protects against atherosclerosis at least partially by inhibiting TLR4 expression and its related inflammatory reaction.
Article
Background: Curcumin possesses significant anti-atherosclerosis properties. Lipocalin-2 (LCN2) is already known as one of the most promising biomarkers of atherosclerosis. However, research on the effect of curcumin on regulating LCN2 expression in atherogenesis is very limited. The aim of the study was to investigate whether curcumin could alleviate atherosclerosis in ApoE-/- mice by down-regulating LCN2 expression. Methods: Fifty apolipoprotein E knockout (ApoE-/-) mice were fed with a western diet for 12 weeks and randomly divided into five groups: model group (Mod), positive control group (Lov, with 30 mg/kg/d lovastatin), three curcumin groups (CurL, CurM and CurH, with 40, 60 and 80 mg/kg/d curcumin), while 10 C57BL/6J mice were fed with a standard mouse chow diet as a control group (Con). LCN2 in serum and aorta, biomarkers of serum lipid and inflammation were determined and the plaque area of the atherosclerosis lesions was quantified. Results: CurM and CurH group were significantly lower than Mod group in terms of serum LCN2, lipid and inflammatory cytokine levels, plaque area and LCN2 expression in atherosclerotic lesions, similar to lovastatin treatment. Conclusions: Our findings indicate that dietary curcumin ameliorates western diet-induced atherosclerosis in ApoE-/- mice, which is related to LCN2 down-regulation, anti-hyperlipidemia effect as well as the inhibition of inflammation.
Article
Context: Curcumin, an active principal of Curcuma longa Linn. (Zingiberaceae), has potent antioxidant and anti-inflammatory properties. Objectives: This study investigated the effects of curcumin on hyperlipidemia and hepatic steatosis in high-fructose-fed Wistar rats. Materials and methods: Forty male Wistar rats were divided into four groups with 10 rats in each. Two groups were fed with standard rodent diet and the other two with 60% high-fructose diet for 10 weeks. Curcumin (200 mg/kg body weight) was administered along with the diets simultaneously to each of the aforementioned diet groups. After 10 weeks of experiment, blood samples were collected from tail vein. Liver, adipose and epididymal tissues were collected after sacrifice of the animals and stored for further analyses. Results: Administration of curcumin reduced body weight (280.6 ± 7.4 g), liver weight (2.5 ± 0.2 g/100 g BW), adipose weight (1.4 ± 0.3 g/100 g BW), plasma levels of TAG (86.1 ± 13.5 mg/dL), VLDL-C (17.2 ± 2.7 mg/dL), lipid ratios and increased HDL-C (28.4 ± 4.5 mg/dL) in fructose-fed rats. Curcumin supplementation significantly lowered TAG content and decreased the protein expression of LXR-α (43%) and SREBP1c (59%) in the liver. Furthermore, curcumin suppressed the expression of lipogenic enzymes, ACLY (95%), ACC (50%) and FAS (77%) in rats fed with high-fructose diet. No significant change was found in the expression of PPAR-α. Discussion and conclusion: Curcumin prevented the high-fructose induced hyperlipidemia and hepatic steatosis.
Article
Objective: This randomized, controlled study aims to evaluate the tolerability and the efficacy of curcumin in overweight subjects affected from metabolic syndrome, with a focus on impaired glucose intolerance and android-type fat accumulation. Patients and methods: Forty-four subjects, selected among those who after 30 days of diet and intervention lifestyle have shown a weight loss < 2%, have been treated for further 30 days either with curcumin complexed with phosphatidylserine in phytosome form or with pure phosphatidylserine. Outcomes concerning anthropometric measurements and body composition were analyzed at enrollment and after 30 and 60 days. Results: Curcumin administration increased weight loss from 1.88 to 4.91%, enhanced percentage reduction of body fat (from 0.70 to 8.43%), increased waistline reduction (from 2.36 to 4.14%), improved hip circumference reduction from 0.74 to 2.51% and enhanced reduction of BMI (from 2.10 to 6.43%) (p < 0.01 for all comparisons). Phosphatidylserine did not show any statistical significant effect. Tolerability was very good for both treatments, and no drop-out was reported. Conclusions: Although preliminary, our findings suggest that a bioavailable form of curcumin is well-tolerated and can positively influence weight management in overweight people.
Article
With the aim of assessing, among others, the coronary morbidity and mortality in the past 27-month period, the last survey of the Turkish Adult Risk Factor Study was conducted in August, 2003 in the Marmara and Central Anatolian regions. Epidemiological methods applied were as previously described. In a total of 1560 individuals of the cohort, 1028 men and women were examined. Furthermore, information was obtained in 422 persons, and death was ascertained in 18 men and 13 women. Eleven new deaths of coronary origin were diagnosed at a follow-up over 2965 person-years. Estimated annual all-cause mortality amounted to 10.5 per mille, coronary mortality to 3.7 per mille. In the age-bracket 45-74 years, total mortality was 13.4 and coronary mortality 4. 2 per mille. A total of 28 cases of new fatal and nonfatal coronary heart disease (CHD) corresponded to an annual rate of 10.6 per mille. Furthermore, randomly selected 200 men and women aged 38 to 69 years from 11 communities were newly recruited in the survey's cohort for future follow-up. Though no evidence for a reduction existed in overall new CHD events, coronary and overall mortality tended to decline (to 5 and 12 per 1000 person-years, respectively) since year 2000; the decline in overall mortality appeared to take place in urban areas.
Article
Changes in feeding habits are the primary environmental factor (though modifiable) commonly correlated with increases diseases such as obesity and associated comorbidities. Diets rich in fructose and sucrose have been related to the epidemic of obesity. Three groups of mice were studied during 15 weeks of consuming standard chow (SC), a high-fructose diet (HFru) and a high-sucrose diet (HSu). The animals did not present significant differences in food intake, energy intake, or body mass evolution at the end of the experiment. Although the findings in the HFru and HSu animals were not equal in magnitude, in comparison with the SC mice, the HFru and HSu animals showed hyperglycemia, hyperinsulinemia and hyperleptinemia as well as high levels of inflammatory adipokines, low adiponectin, and at high levels of total cholesterol, triacylglycerol, and liver enzymes. The liver of HFru (more) and HSu (less) groups showed fatty infiltration and areas of necroinflammation, which are characteristics of the transition from nonalcoholic fatty liver disease to nonalcoholic steatohepatitis. In addition, the HFru and HSu groups showed increased lipogenesis, gluconeogenesis, reduced beta-oxidation and antioxidant imbalance compared with the SC animals. In conclusion, current findings demonstrate comparable adverse effects on carbohydrate metabolism, inflammatory profile, antioxidant imbalance and NAFLD in the mice of the C57BL/6 strain fed a diet rich in sucrose or rich in fructose.
Article
Oxidative stress and inflammation have been proposed as emerging components of metabolic syndrome (MetS). Curcuminoids are natural polyphenols with strong antioxidant and anti-inflammatory properties. To study the effectiveness of supplementation with a bioavailable curcuminoid preparation on measures of oxidative stress and inflammation in patients with MetS. Our secondary aim was to perform a meta-analysis of data from all randomized controlled trials in order to estimate the effect size of curcuminoids on plasma C-reactive protein (CRP) concentrations. In this randomized double-blind placebo-controlled trial, 117 subjects with MetS (according to the NCEP-ATPIII diagnostic criteria) were randomly assigned to curcuminoids (n = 59; drop-outs = 9) or placebo (n = 58; drop-outs = 8) for eight weeks. Curcuminoids were administered at a daily dose of 1 g, and were co-supplemented with piperine (10 mg/day) in order to boost oral bioavailability. Serum activities of superoxide dismutase (SOD) and concentrations of malondialdehyde (MDA) and CRP were measured at baseline and at study end. Regarding the importance of CRP as a risk marker and risk factor of cardiovascular disease, a random-effects meta-analysis of clinical trials was performed to estimate the overall impact of curcuminoid therapy on circulating concentrations of CRP. The robustness of estimated effect size was evaluated using leave-one-out sensitivity analysis. Supplementation with curcuminoid-piperine combination significantly improved serum SOD activities (p < 0.001) and reduced MDA (p < 0.001) and CRP (p < 0.001) concentrations compared with placebo. Quantitative data synthesis revealed a significant effect of curcuminoids vs. placebo in reducing circulating CRP concentrations (weighed mean difference: -2.20 mg/L; 95% confidence interval [CI]: -3.96, -0.44; p = 0.01). This effect was robust in sensitivity analysis. Short-term supplementation with curcuminoid-piperine combination significantly improves oxidative and inflammatory status in patients with MetS. Curcuminoids could be regarded as natural, safe and effective CRP-lowering agents. Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Article
Whether supplementation of curcuminoids decreases serum adipocyte-fatty acid binding protein (A-FABP) level and whether this decrease benefits glucose control is unclear. One-hundred participants (n=50 administered curcuminoids, n=50 administered placebo) from our previous report on the effect of curcuminoids on type 2 diabetes in a 3-month intervention were assessed for levels of serum A-FABP, oxidative stress, and inflammatory biomarkers. Curcuminoids supplementation led to significant decreases in serum A-FABP, C-reactive protein (CRP), tumor necrosis factor-α, and interleukin-6 levels. Curcuminoids supplementation also significantly increased serum superoxide dismutase (SOD) activity. The change in serum A-FABP levels showed positive correlations with changes in levels of glucose, free fatty acids (FFAs), and CRP in subjects supplemented with curcuminoids. Further stepwise regression analysis showed that A-FABP was an independent predictor for levels of FFAs, SOD, and CRP. These results suggest that curcuminoids may exert anti-diabetic effects, at least in part, by reductions in serum A-FABP level. A-FABP reduction is associated with improved metabolic parameters in human type 2 diabetes.
Article
Human studies of curcumin extract on lipid-lowering effect have not been completely investigated and have had controversy results. This study tested the effect of daily curcumin extract for 12 weeks on weight, glucose, and lipid profiles in patients with metabolic syndrome. Sixty-five patients were randomized into two groups; 33 patients taking curcumin extract capsule (630 mg thrice daily) and 32 patients taking a placebo capsule thrice daily for 12 weeks. At 12 weeks after the curcumin extract consumption, the level of high-density lipoprotein cholesterol (HDL-C) significantly increased from 40.96 ± 8.59 to 43.76 ± 2.79 mg/dL (p < 0.05), and the level of low-density lipoprotein cholesterol (LDL) was significantly reduced (120.55 ± 36.81 to 106.51 ± 25.02 mg/dL, p < 0.05). The triglyceride-lowering effect, a reduction of 65 mg/dL, was also found in this study. In subgroups analysis, the consumption of curcumin may have a lowering cholesterol effect in male patients and an increasing HDL-C effect in female patients, both of which result in a decrease of T-Chol/HDL-C ratio. The intake of the curcumin extract of 1890 mg/day for 12 weeks was associated with lipid-lowering effect but did not improve weight and glucose homeostasis in the patients with metabolic syndrome. Daily curcumin consumption may be an alternative choice to modify cholesterol-related parameters, especially in metabolic syndrome patients. Copyright © 2014 John Wiley & Sons, Ltd.
Article
Objective: Consuming curcumin may benefit health by modulating lipid metabolism and suppressing atherogenesis. Fatty acid binding proteins (FABP-4/aP2) and CD36 expression are key factors in lipid accumulation in macrophages and foam cell formation in atherogenesis. Our earlier observations suggest that curcumin's suppression of atherogenesis might be mediated through changes in aP2 and CD36 expression in macrophages. Thus, this study aimed to further elucidate the impact of increasing doses of curcumin on modulation of these molecular mediators on high fat diet-induced atherogenesis, inflammation, and steatohepatosis in Ldlr(-/-) mice. Methods: Ldlr(-/-) mice were fed low fat (LF) or high fat (HF) diet supplemented with curcumin (500 HF + LC; 1000 HF + MC; 1500 HF + HC mg/kg diet) for 16 wks. Fecal samples were analyzed for total lipid content. Lipids accumulation in THP-1 cells and expression of aP2, CD36 and lipid accumulation in peritoneal macrophages were measured. Fatty streak lesions and expression of IL-6 and MCP-1 in descending aortas were quantified. Aortic root was stained for fatty and fibrotic deposits and for the expression of aP2 and VCAM-1. Total free fatty acids, insulin, glucose, triglycerides, and cholesterol as well as several inflammatory cytokines were measured in plasma. The liver's total lipids, cholesterol, triglycerides, and HDL content were measured, and the presence of fat droplets, peri-portal fibrosis and glycogen was examined histologically. Results: Curcumin dose-dependently reduced uptake of oxLDL in THP-1 cells. Curcumin also reduced body weight gain and body fat without affecting fat distribution. During early intervention, curcumin decreased fecal fat, but at later stages, it increased fat excretion. Curcumin at medium doses of 500-1000 mg/kg diet was effective at reducing fatty streak formation and suppressing aortic expression of IL-6 in the descending aorta and blood levels of several inflammatory cytokines, but at a higher dose (HF + HC, 1500 mg/kg diet), it had adverse effects on some of these parameters. This U-shape like trend was also present when aortic root sections were examined histologically. However, at a high dose, curcumin suppressed development of steatohepatosis, reduced fibrotic tissue, and preserved glycogen levels in liver. Conclusion: Curcumin through a series of complex mechanisms, alleviated the adverse effects of high fat diet on weight gain, fatty liver development, dyslipidemia, expression of inflammatory cytokines and atherosclerosis in Ldlr(-/-) mouse model of human atherosclerosis. One of the mechanisms by which low dose curcumin modulates atherogenesis is through suppression of aP2 and CD36 expression in macrophages, which are the key players in atherogenesis. Overall, these effects of curcumin are dose-dependent; specifically, a medium dose of curcumin in HF diet appears to be more effective than a higher dose of curcumin.
Article
We previously found that curcuminoids decreased blood glucose and improved insulin resistance by reducing serum free fatty acids (FFAs) and increasing fatty acid oxidation in skeletal muscle of diabetic rats. This study was to investigate whether curcuminoids have beneficial effects on type 2 diabetic patients, and its possible mechanisms. Overweight/obese type 2 diabetic patients (BMI ≥ 24.0; fasting blood glucose ≥ 7.0 mmol/L or postprandial blood glucose ≥11.1 mmol/L) were randomly assigned to curcuminoids (300 mg/day) or placebo for 3 months. Bodyweight, glycosylated hemoglobin A1c (HbA1c,%), serum fasting glucose, FFAs, lipids, and lipoprotein lipase (LPL) were determined. A total of 100 patients (curcuminoids, n = 50; placebo, n = 50) completed the trial. Curcuminoids supplementation significantly decreased fasting blood glucose (p < 0.01), HbA1c (p = 0.031), and insulin resistance index (HOMA-IR) (p < 0.01) in type 2 diabetic patients. Curcuminoids also led to a significant decrease in serum total FFAs (p < 0.01), triglycerides (P = 0.018), an increase in LPL activity (p < 0.01). These findings suggest a glucose-lowering effect of curcuminoids in type 2 diabetes, which is partially due to decrease in serum FFAs, which may result from promoting fatty acid oxidation and utilization.
Article
Turmeric has been used in traditional medicine for the treatment of jaundice and other liver ailments, ulcers, parasitic infections, various skin diseases, sprains, inflammation of the joints, cold and flu symptoms. It is also used for preserving food as antimicrobial. Chemical constituents of turmeric rhizomes include volatiles and non-volatiles. The chemical constituents of volatile oil were identified using GC and GC-MS. ar-Turmerone, zingiberene, turmerone and curlone are found to be the major compounds in volatile oil. The non-volatile compounds of turmeric are the colouring agent and are found to be a rich source of phenolic compounds viz., curcumin, demethoxycurcumin and bisdemethoxycurcumin. There are a number of reports available on isolation of curcuminoids. However, solvent extraction was found to most effective. Besides this, a number of methods have been reported for the estimation of cucuminoids, along with absorption, flourimetric and HPLC methods. However, HPLC methods are found to be suitable for the determination of individual curcuminoids. Curcuminoids are found to posses antioxidant, anti-inflammatory and anti-mutagenic properties and protects the body from mutagens such as smoke and other pollutants. Recent investigations suggest that curcuminoids are active in the external treatment of certain cancerous conditions; this is presumably related to the cytotoxicity of these substances, which has been demonstrated on cell cultures, including tumour cells. As a result of extensive research on the chemical constituents on volatile oil, isolation, identification and analytical methods of curcuminoids and biological activities of curcuminoids are summarised in this review.
Article
Adipocyte differentiation is a key process in determining the number of mature adipocytes in the development of obesity. Here, we examined the function of curcumin, a dietary polyphenol found in turmeric, and its underlying mechanisms in adipocyte differentiation. Our study reveals that curcumin exerts an anti-adipogenic function both in 3T3-L1 murine cells and in human primary preadipocytes as determined by intracellular lipid accumulation assay, quantitative analysis of adipocyte marker gene expression and a noninvasive multimodal Coherent Anti-Stokes Raman Scattering (CARS) microscopic analysis of intracellular curcumin. The inhibitory action of curcumin was largely limited to the early stage of adipocyte differentiation, where curcumin was found to inhibit mitotic clonal expansion (MCE) process as evidenced by impaired proliferation, cell-cycle entry into S phase and the S to G2/M phase transition of confluent cells, and levels of cell cycle-regulating proteins with no significant effect on cell viability and cytotoxicity. This, in turn, resulted in inhibition of mRNA levels of early adipogenic transcription factors, particularly Krüppel-like factor 5 (KLF5), CCAAT/enhancer binding proteinα (C/EBPα) and peroxisome proliferator-activated receptorγ (PPARγ), in the early stage of adipocyte differentiation. Supplementation with rosiglitazone, a PPARγ ligand, during the early stage of adipocyte differentiation partially rescued curcumin-inhibited adipocyte differentiation. Collectively, our results show that curcumin is an anti-adipogenic dietary bioactive component largely involved in the modulation of the MCE process during the early stage of adipocyte differentiation.
Article
The incidence of obesity is increasing worldwide and is hence considered a major public health concern. Obesity underlies the development of several metabolic complications including cardiovascular diseases, diabetes, and inflammation. Research on ways to slow the development of obesity have traditionally focused on dietary and lifestyle modifications such as restricting caloric intake and increasing physical activity. An area that has recently aroused considerable research interest is investigating the potential role of spices, particularly the Asian spice turmeric, for combating obesity. Curcumin is the active ingredient in turmeric. Evidence suggests curcumin may regulate lipid metabolism, which plays a central role in the development of obesity and its complications. The present review addresses the evidence and mechanisms by which curcumin may play a role in downregulating obesity and reducing the impact of associated problems.
Article
Serum Paraoxonase-1(PON1) level, an anti-oxidant enzyme, decreases with diseases related to coronary heart diseases (CAH) such as diabetes, hypertension, hyperlipidemia and smoking. All clinical studies which were performed in patients with CAH have shown significant low levels and activity of PON1. These studies suggest that the PON1 level might be a marker for CAH, but more prospective and case-controlled studies are needed on this subject.
Article
This study investigated the effect of curcumin (0.05-g/100-g diet) supplementation on a high-fat diet (10% coconut oil, 0.2% cholesterol, wt/wt) fed to hamsters, one of the rodent species that are most closely related to humans in lipid metabolism. Curcumin significantly lowered the levels of free fatty acid, total cholesterol, triglyceride, and leptin and the homeostasis model assessment of insulin resistance index, whereas it elevated the levels of high-density lipoprotein cholesterol and apolipoprotein (apo) A-I and paraoxonase activity in plasma, compared with the control group. The levels of hepatic cholesterol and triglyceride were also lower in the curcumin group than in the control group. In the liver, fatty acid beta-oxidation activity was significantly higher in the curcumin group than in the control group, whereas fatty acid synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase, and acyl coenzyme A:cholesterol acyltransferase activities were significantly lower. Curcumin significantly lowered the lipid peroxide levels in the erythrocyte and liver compared with the control group. These results indicate that curcumin exhibits an obvious hypolipidemic effect by increasing plasma paraoxonase activity, ratios of high-density lipoprotein cholesterol to total cholesterol and of apo A-I to apo B, and hepatic fatty acid oxidation activity with simultaneous inhibition of hepatic fatty acid and cholesterol biosynthesis in high-fat-fed hamsters.
Article
There is mounting evidence that inflammation plays a role in the development of coronary heart disease (CHD). Observations have been made linking the presence of infections in the vessel wall with atherosclerosis, and epidemiological data also implicate infection in remote sites in the aetiology of CHD. In this article we propose a key role for the proinflammatory cytokine interleukin-6 (IL-6) in several mechanisms that contribute to the development of CHD. IL-6 is a powerful inducer of the hepatic acute phase response. Elevated concentrations of acute phase reactants, such as C-reactive protein (CRP), are found in patients with acute coronary syndromes, and predict future risk in apparently healthy subjects. The acute phase reaction is associated with elevated levels of fibrinogen, a strong risk factor for CHD, with autocrine and paracrine activation of monocytes by IL-6 in the vessel wall contributing to the deposition of fibrinogen. The acute phase response is associated with increased blood viscosity, platelet number and activity. Furthermore, raised serum amyloid A lowers HDL-cholesterol levels. IL-6 decreases lipoprotein lipase (LPL) activity and monomeric LPL levels in plasma, which increases macrophage uptake of lipids. In fatty streaks and in the atheromatous 'cap' and 'shoulder' regions, macrophage foam cells and smooth muscle cells (SMC) express IL-6, suggesting a role for this cytokine along with interleukin-1 (IL-1) and tumour necrosis factor-alpha (TNF-alpha), in the progression of atherosclerosis. Both these cytokines induce the release of IL-6 from several cell types, including SMC. During vascular injury SMC are exposed to platelets or their products, and cytokine production by SMC further contributes to vascular damage. Furthermore, circulating IL-6 stimulates the hypothalamic-pituitary-adrenal (HPA) axis, activation of which is associated with central obesity, hypertension and insulin resistance. Thus we propose a role for IL-6 in the pathogenesis of CHD through a combination of autocrine, paracrine and endocrine mechanisms. This hypothesis lends itself to testing using interventions to influence IL-6 secretion and actions.
Article
Curcumin, a widely used spice and coloring agent in food, has been shown to possess potent antioxidant, antitumor promoting and anti-inflammatory properties in vitro and in vivo. The mechanism(s) of such pleiotropic action by this yellow pigment is unknown; whether induction of distinct antioxidant genes contributes to the beneficial activities mediated by curcumin remains to be investigated. In the present study we examined the effect of curcumin on endothelial heme oxygenase-1 (HO-1 or HSP32), an inducible stress protein that degrades heme to the vasoactive molecule carbon monoxide and the antioxidant biliverdin. Exposure of bovine aortic endothelial cells to curcumin (5-15 microM) resulted in both a concentration- and time-dependent increase in HO-1 mRNA, protein expression and heme oxygenase activity. Hypoxia (18 h) also caused a significant (P < 0.05) increase in heme oxygenase activity which was markedly potentiated by the presence of low concentrations of curcumin (5 microM). Interestingly, prolonged incubation (18 h) with curcumin in normoxic or hypoxic conditions resulted in enhanced cellular resistance to oxidative damage; this cytoprotective effect was considerably attenuated by tin protoporphyrin IX, an inhibitor of heme oxygenase activity. In contrast, exposure of cells to curcumin for a period of time insufficient to up-regulate HO-1 (1.5 h) did not prevent oxidant-mediated injury. These data indicate that curcumin is a potent inducer of HO-1 in vascular endothelial cells and that increased heme oxygenase activity is an important component in curcumin-mediated cytoprotection against oxidative stress.
Article
Visceral fat is a key regulator site for the process of inflammation, and atherosclerotic lesions are essentially an inflammatory response. Fifty-six healthy premenopausal obese women (age range 25 to 44 years, body mass index 37.2+/-2.2, waist to hip ratio range 0.78 to 0.92) and 40 age-matched normal weight women were studied. Compared with nonobese women, obese women had increased basal concentrations of tumor necrosis factor-alpha (TNF-alpha, P<0.01), interleukin-6 (IL-6, P<0.01), P-selectin (P<0.01), intercellular adhesion molecule-1 (ICAM-1, P<0.02), and vascular adhesion molecule-1 (VCAM-1, P<0.05). Vascular responses to L-arginine (3 g IV), the natural precursor of nitric oxide, were impaired in obese women: reductions in mean blood pressure (P<0.02), platelet aggregation to adenosine diphosphate (P<0.05), and blood viscosity (P<0.05) were significantly lower as compared with those in the nonobese group. Concentrations of TNF-alpha and IL-6 were related (P<0.01) to visceral obesity, as well as to adhesin levels and responses to L-arginine. After 1 year of a multidisciplinary program of weight reduction (diet, exercise, behavioral counseling), all obese women lost at least 10% of their original weight (9.8+/-1.5 kg, range 7.5 to 13 kg). Compared with baseline, sustained weight loss was associated with reduction of cytokine (P<0.01) and adhesin (P<0.02) concentrations and with improvement of vascular responses to L-arginine. In obese women, endothelial activation correlates with visceral body fat, possibly through inappropriate secretion of cytokines. Weight loss represents a safe method for downregulating the inflammatory state and ameliorating endothelial dysfunction in obese women.
Article
The turmeric (Curcuma longa L. rhizomes) EtOH extract significantly suppressed an increase in blood glucose level in type 2 diabetic KK-A(y) mice. In an in vitro evaluation, the extract stimulated human adipocyte differentiation in a dose-dependent manner and showed human peroxisome proliferator-activated receptor (PPAR)-gamma ligand-binding activity in a GAL4-PPAR-gamma chimera assay. The main constituents of the extract were identified as curcumin, demethoxycurcumin, bisdemethoxycurcumin, and ar-turmerone, which had also PPAR-gamma ligand-binding activity. These results indicate that turmeric is a promising ingredient of functional food for the prevention and/or amelioration of type 2 diabetes and that curcumin, demethoxycurcumin, bisdemethoxycurcumin, and ar-turmerone mainly contribute to the effects via PPAR-gamma activation.
Article
Hypoxia-inducible factor-1 (HIF-1) has a central role in cellular responses to hypoxia, including the transcriptional activation of a number of genes involved in angiogenesis in tumors. We found that curcumin, a natural, biologically active compound isolated from the commonly used spice turmeric, significantly decreases hypoxia-induced HIF-1alpha protein levels in HepG2 hepatocellular carcinoma cells. Moreover, curcumin suppressed the transcriptional activity of HIF-1 under hypoxia, leading to a decrease in the expression of vascular endothelial growth factor (VEGF), a major HIF-1 target angiogenic factor. Curcumin also blocked hypoxia-stimulated angiogenesis in vitro and down-regulated HIF-1alpha and VEGF expression in vascular endothelial cells. These findings suggest that curcumin may play pivotal roles in tumor suppression via the inhibition of HIF-1alpha-mediated angiogenesis.
Article
Glucocorticoids play an essential role in the regulation of multiple physiological processes, including energy metabolism, maintenance of blood pressure and stress responses, as well as cognitive functions. On a tissue-specific level, glucocorticoid action is controlled by 11beta-hydroxysteroid dehydrogenase enzymes. The type 1 enzyme (11beta-HSD1) is a NADP(H)-dependent bidirectional enzyme in vitro and reduces cortisone to active cortisol in vivo. 11beta-HSD1 is expressed in many tissues including the liver, adipose and skeletal muscles. Chronically elevated local glucocorticoid action as a result of increased 11beta-HSD1 activity has been associated with the metabolic syndrome, which is characterized by obesity, insulin resistance, type 2 diabetes and cardiovascular complications. Recent studies indicate that the inhibition of 11beta-HSD1 mitigates the adverse effects of excessive glucocorticoid levels on metabolic parameters and provides promising opportunities for the development of therapeutic interventions. This review discusses recently disclosed 11beta-HSD1 inhibitors and their potential for the treatment of metabolic disorders.
Article
Obesity is a major risk factor for the development of type 2 diabetes, and both conditions are now recognized to possess significant inflammatory components underlying their pathophysiologies. We tested the hypothesis that the plant polyphenolic compound curcumin, which is known to exert potent antiinflammatory and antioxidant effects, would ameliorate diabetes and inflammation in murine models of insulin-resistant obesity. We found that dietary curcumin admixture ameliorated diabetes in high-fat diet-induced obese and leptin-deficient ob/ob male C57BL/6J mice as determined by glucose and insulin tolerance testing and hemoglobin A1c percentages. Curcumin treatment also significantly reduced macrophage infiltration of white adipose tissue, increased adipose tissue adiponectin production, and decreased hepatic nuclear factor-kappaB activity, hepatomegaly, and markers of hepatic inflammation. We therefore conclude that orally ingested curcumin reverses many of the inflammatory and metabolic derangements associated with obesity and improves glycemic control in mouse models of type 2 diabetes. This or related compounds warrant further investigation as novel adjunctive therapies for type 2 diabetes in man.
  • M Akpolat
  • Y Tarladaçalışır
  • Y H Uz
  • M Metin
  • G Kızılay
Akpolat M, Tarladaçalışır Y, Uz YH, Metin M, Kızılay G. [The use of curcumin in cancer treatment], Yeni Tıp Dergisi 2010;27:142-147.
  • F Balkan
Balkan F. [Metabolic syndrome], Ankara Medical Journal 2013; 13(2): 85-90.
  • P G Bradford
Bradford PG. Curcumin and obesity, Biofactors 2013; 39(1): 78-87.