It is not surprising that we are interested in plastics as one of the most prominent polluting agents of the twenty-first century. We have gone from producing less than 10 million tons in the 1960s to more than 300 million in the 2010s. That plastic has had time to distribute itself, fragment and enter food chains of the oceans. Studies related to the three phenomena are now one of the main objectives of various research projects and groups around the planet. The first is understanding how fragmentation is increasing the volume of macro and microplastics, how they are dispersed at the oceanic and local level, and what their chemical characteristics are. In line with these observations and quantifications, we have to understand what influence they have on organisms and how we can reduce their concentration. For example, the displacements of macroplastics are modeled relative to their dispersion according to global and local currents, giving importance to the phenomena of fouling and fragmentation, as well as understanding how the creation of microplastics is heterogeneous according to latitude, water temperatures or seasonal conditions. One of the biggest problems is, without a doubt, the chemical, morphological and size classification of plastics, especially micro and nanoplastics. This topic is crucial, as is the standardization of the measures that we consider to classify them in one way or another. This topic has been largely discussed during the last decade, and in this chapter there are cues to understand that the consensus is very close. Other issues are still pending in the complex agenda of the understanding of these pollutants. For example, the adherence of certain types of elements such as heavy metals is a relevant issue on which much information is lacking. But it is not the only knowledge gap that we have. Dynamics in the water column and in the sediment is also a main issue, since this sediment is a sink for microplastics and nanoplastics that is continually disturbed by organisms from the meiofauna. Some of these microplastics become airborne, and their range from likely emission sources is still poorly understood. The understanding of these fluxes from the land-river to the sediments passing through the water column is one of the main challenges to solve the problems derived from the presence of such macro, micro and nano items. Marine organisms are the ones that, apparently, are the most affected by this increase in solid contamination, especially microplastics. Today they are found at any latitude, from the poles to the equator, even in places as surprising as sea ice or abyssal depths. In fact, microplastics are found in very remote places, interfering with the diet of various planktonic and benthic organisms. There are many questions to be resolved, among others, how temperature affects the retention of microplastics in organisms, or which are the most vulnerable species. And we have to understand one important issue: many of those marine organisms affected by micro and nano plastics are part of our diet. Therefore, understanding the rate of transmission in food chains in general and in our consumption in particular is a major issue. That is why we looked for solutions, such as the use of bioremediators (active suspension feeders such as sponges, sea squirts, etc.) in areas where the abundance of microplastics is especially high. Bacteria are also beginning to be used as active decomposers of microplastics, a solution that could help eliminate a large amount of this material about which we still have too many knowledge gaps regarding the health of ecosystems and our own health. The synergy of efforts to understand all these different variables is crucial. During the next decade we do have to solve this plastic problem, with coordination, standardization and the application of different tools to execute the solutions of different associated problems.