Conference Paper

Spectrum Management Application - A Tool for Flexible and Efficient Resource Utilization

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

Thesis
5G networks are envisioned to be a paradigm shift towards service-oriented networks. In this thesis, we investigate how to efficiently combine slicing and SD-RAN to provide the required level of flexibility and programmability in the RAN infrastructure to realize service-oriented multi-tenant networks. First, we devise an abstraction of a base station to represent logical base stations and describe a virtualized network service. Second, we propose a novel standard-compliant SD-RAN platform, named FlexRIC, in the form of a software development kit (SDK). Third, we provide a modular design for a slice-aware MAC scheduling framework to efficiently manage and control the radio resources in a multi-service environment with quality-of-service (QoS) support. Finally, we present a dynamic SD-RAN virtualization layer based on the FlexRIC SDK and MAC scheduling framework to flexibly compose a multi-service SD-RAN infrastructure and provide programmability for multiple SD-RAN controllers.
Article
Full-text available
Recent years have seen the proliferation in versatile mobile devices and application services that demand different data rates and latencies. Fixed channelization configuration in today???s wireless devices fail to be efficient in the presence of such dynamic demands. In this regard, fine-grained spectrum management designs have been advocated by the research community to embrace the heterogeneity in devices and services. However, manufacturers hesitate to make hardware investments without comprehensive understanding of these designs. To break this stalemate, software-defined wireless networking (SDWN) has been pushed to market as a cost-effective paradigm. Motivated by recent innovations in SDWN, this article systematically investigates the spectrum management architecture design that reaps the benefits of SDWN while maintaining the features of fine-grained channelization. We shed light on design principles and key challenges in realizing the SDWN-enabled spectrum management architecture. With these principles and challenges in mind, we develop a general architecture with a new baseband virtualization design. We build a prototype that seamlessly integrates with the IEEE 802.11 protocol stack and commodity RF front-end. We demonstrate that the proposed architecture improves spectrum efficiency by emulating the upper layer behaviors using the traces captured in a campus WLAN.
Article
Full-text available
A range of applications in cognitive radio networks, from adaptive spectrum sensing to predictive spectrum mobility and dynamic spectrum access, depend on our ability to foresee the state evolution of radio spectrum, raising a fundamental question: To what degree is radio spectrum state (RSS) predictable? In this article we explore the fundamental limits of predictability in RSS dynamics by studying the RSS evolution patterns in spectrum bands of several popular services, including TV bands, ISM bands, cellular bands, and so on. From an information theory perspective, we introduce a methodology of using statistical entropy measures and Fano inequality to quantify the degree of predictability underlying real-world spectrum measurements. Despite the apparent randomness, we find a remarkable predictability, as large as 90 percent, in real-world RSS dynamics over a number of spectrum bands for all popular services. Furthermore, we discuss the potential applications of prediction-based spectrum sharing in 5G wireless communications.
Article
Full-text available
What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backwards compatibility. And indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities and unprecedented numbers of antennas. But unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Article
Full-text available
Cell size in cellular networks is in general fixed based on the estimated traffic load. However, the traffic load can have significant spatial and temporal fluctuations, which bring both challenges and opportunities to the planning and operating of cellular networks. This article introduces a concept of cell zooming, which adaptively adjusts the cell size according to traffic load, user requirements and channel conditions. The implementation issues of cell zooming are then presented. Finally a usage case of cell zooming for energy saving is investigated. Centralized and distributed cell zooming algorithms are developed, and simulation results show that the proposed algorithms can greatly reduce the energy consumption, which leads to green cellular networks.
Article
Network slicing is one of the key enablers to provide the required flexibility and to realize the service-oriented vision toward fifth generation (5G) mobile networks. In that sense, virtualization, softwarization, and disaggregation are core concepts to accommodate the requirements of an end-to-end (E2E) service to be either isolated, shared, or customized. They lay the foundation for a multi-service and multi-tenant architecture, and are realized by applying the principles of software-defined networking (SDN), network function virtualization (NFV), and cloud computing to the mobile networks. Research on these principles requires agile and flexible platforms that offer a wide range of real-world experimentations over different domains to open up innovations in 5G. To this end, we present Mosaic5G, a community-led consortium for sharing platforms, providing a number of software components, namely FlexRAN, LL-MEC, JOX and Store, spanning application, management, control and user plane on top of OpenAirInterface (OAI) platform. Finally, we show several use cases of Mosaic5G corresponding to widely-mentioned 5G research directions.
Article
Research and development of technologies that address the challenges of predicted growth in mobile connections and traffic volume is well known. A major challenge is the cost of meeting the objective, in terms of both infrastructure and deployment. Today, lack of dynamic control across wireless network resources is leading to unbalanced spectrum loads and a perceived capacity bottleneck. The solutions proposed by SPEED-5G through extended dynamic spectrum access (eDSA) address traffic allocation over heterogeneous wireless technologies, better load balancing across available spectrum bands, and capacity boosting through aggregation of available resources while ensuring fair coexistence. The objective of this article is to present a new framework for MAC and RRM layers for supporting eDSA and requirements of the next-generation networks.
Conference Paper
Although the radio access network (RAN) part of mobile networks offers a significant opportunity for benefiting from the use of SDN ideas, this opportunity is largely untapped due to the lack of a software-defined RAN (SD-RAN) platform. We fill this void with FlexRAN, a flexible and programmable SD-RAN platform that separates the RAN control and data planes through a new, custom-tailored southbound API. Aided by virtualized control functions and control delegation features, FlexRAN provides a flexible control plane designed with support for real-time RAN control applications, flexibility to realize various degrees of coordination among RAN infrastructure entities, and programmability to adapt control over time and easier evolution to the future following SDN/NFV principles. We implement FlexRAN as an extension to a modified version of the OpenAirInterface LTE platform, with evaluation results indicating the feasibility of using FlexRAN under the stringent time constraints posed by the RAN. To demonstrate the effectiveness of FlexRAN as an SD-RAN platform and highlight its applicability for a diverse set of use cases, we present three network services deployed over FlexRAN focusing on interference management, mobile edge computing and RAN sharing.
Article
We are in the midst of a major paradigm shift in how we manage radio spectrum. This paradigm shift is necessitated by the growth of wireless services of all types and the demand pressure imposed on limited spectrum resources under legacy management regimes. The shift is feasible because of advances in radio and networking technologies that make it possible to share spectrum dynamically in all possible dimensions-i.e., across frequencies, time, location, users, uses, and networks. Realizing the full potential of this shift to Dynamic Spectrum Sharing will require the co-evolution of wireless technologies, markets, and regulatory policies; a process which is occurring on a global scale. This paper provides a current overview of major technological and regulatory reforms that are leading the way toward a global paradigm shift to more flexible, dynamic, market-based ways to manage and share radio spectrum resources. We focus on current efforts to implement database-driven approaches for managing the shared co-existence of users with heterogeneous access and interference protection rights, and discuss open research challenges.
Article
The ongoing development of mobile communication networks to support a wide range of superfast broadband services has led to massive capacity demand. This problem is expected to be a significant concern during the deployment of the 5G wireless networks. The demand for additional spectrum to accommodate mobile services supporting higher data rates and having lower latency requirements, as well as the need to provide ubiquitous connectivity with the advent of the Internet of Things sector, is likely to considerably exceed the supply, based on the current policy of exclusive spectrum allocation to mobile cellular systems. Hence, the imminent spectrum shortage has introduced a new impetus to identify practical solutions to make the most efficient use of scarce licensed bands in a shared manner. Recently, the concept of dynamic spectrum sharing has received considerable attention from regulatory bodies and governments globally, as it could potentially open new opportunities for mobile operators to exploit spectrum bands whenever they are underutilized by their owners, subject to service level agreements. Although various sharing paradigms have been proposed and discussed, the impact and performance gains of different schemes can be scenario-specific, and may vary depending on the nature of the sharing players, the level of sharing and spectrum access scheme. In this survey, we study the main concepts of dynamic spectrum sharing, different sharing scenarios, as well as the major challenges associated with sharing of licensed bands. Finally, we conclude this survey with open research challenges and suggest some future research directions.
Article
Driven by the need to cope with exponentially growing mobile data traffic and to support new traffic types from massive numbers of machine-type devices, academia and industry are thinking beyond the current generation of mobile cellular networks to chalk a path towards fifth generation (5G) mobile networks. Several new approaches and technologies are being considered as potential elements making up such a future mobile network, including cloud RANs, application of SDN principles, exploiting new and unused portions of spectrum, use of massive MIMO and full-duplex communications. Research on these technologies requires realistic and flexible experimentation platforms that offer a wide range of experimentation modes from real-world experimentation to controlled and scalable evaluations while at the same time retaining backward compatibility with current generation systems. Towards this end, we present OpenAirInterface (OAI) as a suitably flexible platform. In addition, we discuss the use of OAI in the context of several widely mentioned 5G research directions.
Conference Paper
This paper introduces a novel approach in increasing the capacity of LTE cellular networks. The solution is based on massive deployment of small cells by leveraging high frequency reuse at high frequency bands in conjunction with a Macrocell. The presence, discovery and usage of the small cells are controlled dynamically by a Macrocell in a master-slave configuration hence they are called Phantom Cells. To realize this concept, a new method of managing the connections between mobile terminals and small cell nodes is introduced. It is achieved by splitting the Control and User (C/U) planes of the radio link. The combination of C/U-plane split and Phantom Cells can achieve high capacity enhancement using small cells at the same time taking into consideration mobility, scalability and flexibility requirements for massive deployment. The advantages of this approach as well as the implementation aspects are described in the paper. Simulations were also conducted to verify the concept and the results show some promising capacity enhancements. The rest of the paper describes the Phantom Cell concept as well as the challenges of deploying small cells in LTE networks.
Conference Paper
Conference code: 85709, Cited By (since 1996): 1, Export Date: 21 December 2012, Source: Scopus, Art. No.: 5936254, doi: 10.1109/DYSPAN.2011.5936254, Language of Original Document: English, Correspondence Address: Mwangoka, J.W.; Instituto de Telecomunicações, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; email: joseph@av.it.pt, References: (2009) Exploiting the Digital Dividend - A European Approach, , Analysys Mason, DotEcon, and Hogan & Hartson, Report to the European Commission, August;
OpenAirInterface: A flexible platform for 5G research
  • N Nikaein
N. Nikaein et al., "OpenAirInterface: A Flexible Platform for 5G Research," ACM SIGCOMM Comp. Com. Rev., vol. 44, no. 5, pp. 33-38, Oct. 2014.
The XG Vision, Request for Comments, Version 2.0
  • Xg Working Group
XG Working Group, "The XG Vision, Request for Comments, Version 2.0," BBN Technologies, Tech. Rep., 2005.
IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems
"IEEE Standard for Policy Language Requirements and System Architectures for Dynamic Spectrum Access Systems," IEEE Standard 1900.5-2011, pp. 1-51, Jan. 2012.