Content uploaded by J. Häuser

Author content

All content in this area was uploaded by J. Häuser on Feb 10, 2019

Content may be subject to copyright.

GRAVITY BEYOND EINSTEIN?

PART II: FUN DAM EN TAL PHYSICAL PRINCIPLES,

NUMBER SYSTEMS, NOV EL GRO UP S, DAR K ENE RG Y AN D DARK MATTE R, MOND

Jochem Hauser 1, Walter Dröscher 2

*

1HPCC-Space, Hamburg and

Ostfalia Univ. of Applied Sciences, Suderburg, Germany

2Institut für Grenzgebiete der Wissenschaft, 6010 Innsbruck, Austria

This article attempts to explain the underlying physics of several recent experiments and astrophysical observations

that have been mystifying the physics community for quite some time. So far, none of the advanced theories beyond

the SMs of particle physics and cosmology have shown sufﬁcient potential to resolve these mysteries. The reason for

this failure may lie in the fact that these theories are based on the concept of extra space dimensions that appears

to be in conﬂict with numerous experiments, in particular with recent LHC data. Therefore, the novel idea of extra

number systems is introduced, replacing the idea of extra space dimensions. This approach is complemented by a

set of fundamental physical principles that provide the constraints and guidelines for a modiﬁed physical formu-

lation in agreement with known experimental reality. However, such a theory requires novel physical concepts in

conjunction with novel symmetry groups. These groups give rise to additional types of matter, termed hypercomplex

masses (which are responsible for the extreme hypercomplex gravitational ﬁelds, see below) and are also denoted as

matter ﬂavor), including, for instance, particles of negative mass, identiﬁed with dark matter. Furthermore, four-

dimensional Minkowski spacetime, assumed to be a quasi de Sitter space dS1,3, is complemented by a dual spacetime,

DdS1,3,with imaginary time coordinate, that is, time is a complex quantity. The three spatial coordinates are shared

by the two spacetimes. Dark matter is assumed to reside in DdS1,3,and therefore is principally invisible. On the

other hand, its gravitational interaction with ordinary matter (m≥0) in spacetime dS1,3is directly perceptible. The

novel group structure predicts the existence of a forth particle family of negative masses, that is, besides the dark

matter particle χof mass mχ≈ −80.77 GeV/c2there is the dark neutrino νχof mass mνχ≈ −3.23 eV. Moreover,

the hypercomplex group structure of gravity (SU(2)×SU(2)) postulates three gravitational bosons for cosmolog-

ical ﬁelds (resulting from Einstein’s GR), the graviton νGNwith spin 2, the novel gravitophoton νgp with spin 1

(existence of weak gravitomagnetic ﬁelds of GR), and the quintessence particle νqwith spin 0, that, when present,

mediates an interaction between ordinary matter (m≥0) and the ubiquitous scalar ﬁeld of dark energy. In addi-

tion, the existence of extreme gravity ﬁelds (hypercomplex-gravity) is postulated, based on the second group SU (2),

and an interaction between electromagnetism and hypercomplex-gravity is predicted, mediated by three additional

hypercomplex-gravity bosons. Some long-standing problems of cosmology will be addressed, namely the big bang

scenario and the origin of dark energy and the nature of dark matter and their relation to the MOND hypothesis

will be discussed.

*This article will be published in Zeitschrift für Naturforschung (ZNA) Physical Sciences A, de Gruyter in 2019. The full paper will be available

upon publication on Researchgate. Requests for personal preprint, comments or criticism should be sent to the corresponding author: Jochem

Hauser, E-mail: jh@hpcc-space.de.

Table of Contents

1Introduction 1

2Mysteries in Physics and the Universe 3

3Verdict of the LHC Data 8

3.1 LHC Data and New Particles ...................................... 9

4Cosmic Principles 10

4.1 Formulation of Cosmic Physical Principles ............................... 12

4.2 Cosmic Principles and No-Go Theorems ................................ 16

4.3 Cosmic Principles and Gravitation ................................... 18

5Cosmic Symmetry Group 19

5.1 Hermetry Forms ............................................. 20

5.2 Extra Number Systems versus Extra Space Dimensions ......................... 21

5.3 Lagrangians, Symmetries, and Groups .................................. 21

5.4 Cosmic Symmetry Group from Hypercomplex Numbers ......................... 24

6Cosmological Riddles 33

6.1 Novel Physical Concepts for Cosmology ................................ 34

6.2 Speeds of Light and Gravitation ..................................... 35

6.3 Big Bang Scenario Questioned ...................................... 36

6.4 Origin of Dark Energy, Dark Matter, and Baryonic Matter ....................... 38

6.4.1 Dark Energy, Inﬂation, and EHT ................................ 38

6.4.2 Existence of Dark Matter? .................................... 41

6.5 Masses of Dark Matter Particles ..................................... 45

6.6 Dark Matter Space ............................................ 46

6.7 Spacetime Lattice and Propagation Speeds ............................... 48

7Principles of Propellantless Space Propulsion 50

7.1 Physically Impossible Propulsion Concepts ............................... 52

8Summary of Physical Concepts of EHT 53

9Physics, Cosmology, and Technology

Discussion 55

Method of Theoretical Physics:

Albert Einstein, 1933

The Herbert Spencer Lecture1

Pure logical thought cannot

yield us any knowledge of the

empirical world, all knowledge

of reality starts from experience

and ends in it. Propositions ar-

rived at by purely logical means

are completely empty as regards

reality.

1. Introduction

It is now a 100 years since Sir Arthur Stanley Edding-

ton, the ﬁrst relativistic astrophysicist, led the 1919 expe-

dition to photograph the sun during a total solar eclipse in

order to ﬁnd out whether photons from distant stars were

deﬂected (bent) passing the sun as predicted by Einstein’s

theory of General Relativity (GR). The theory was con-

ﬁrmed, (within the accepted experimental accuracy of the

time) and as a result, Einstein became an instant celebrity

in the popular press. Since then, GR has passed all tests

with ﬂying colors, ruling out alternative theories, demon-

strating perfect agreement with all experimental evidence

(cf. string theory) up to today.

We deliberately start this paper with the above citation

from Einstein, which is used as a roadmap for the novel

physical concepts presented in this paper. Einstein’s re-

marks also purport a stern warning. Expressed in simpler

terms, A. Einstein reminds us that the description of phys-

ical reality is the ultimate goal of physics, which in the

end is a purely empirical science. Theoretical constructs

are certainly necessary but are subordinate to experiment

and have no life of their own unless conﬁrmed by proper

data. Approval by experimental data is the yardstick for

any theoretical model. If this cannot be achieved then it

is not a physical theory, and those ideas should be trans-

ferred to the mathematics or philosophy department. Re-

garding the present situation in theoretical physics, as dis-

cussed in Part I,3the scientiﬁc community seems to have

forgotten – at least to some extent – this admonition of

Einstein 1. A recent, highly informative and expertly writ-

ten account (from a physics point of view) on LHC data

and the state of Grand Uniﬁcation Theories is presented

by S. Hossenfelder in her excellent book: Lost in Math

whose conclusion can be summarized by one word: fail-

ure.42 In Chap. 8 of her book a brief account of string the-

ory along with a long list of its problems and attempts to

escape from experimental evidence is given. Eventually,

the author concludes It (string theory), does not, however,

describe our universe. Hardly a success story after more

than four decades.

In Sec. 2 the importance and challenge of numer-

ous experiments from particle physics and astrophysical

observations are presented, as well as measurements of

gravitational phenomena. The LHC data are also pre-

sented in Section 3 because of their importance. Based

on these empirical ﬁndings alternative physical concepts

termed matter ﬂavor and hypercomplex-gravity are intro-

duced in non-mathematical form to emphasize their phys-

ical meaning.

In Sec. 3 the latest LHC data with emphasis on the

CERN exotic search program, both from Run-1 √s=

7−8 TeV and Run-2 √s=13 TeV, will be employed to

evaluate their impact on the validity of physical theories

based on the existence of extra space dimensions. The

key ﬁnding is that these data impose extremely tight con-

straints, which may be employed to question the whole

theoretical approach, in particular when combined with

other experimental results discussed in Sec. 2. It seems,

therefore, justiﬁed to search for alternative explanations.

In the remaining part of this article the novel concept

of extra number systems (subsumed under the name EHT,

2see Part I) is introduced, and its consequences regarding

the group structure of particle physics will be considered.

Of prime importance is the prediction of additional gravi-

tational bosons that would allow the generation of extreme

gravity ﬁelds outside GR, as will be outlined further in de-

tail in Sec. 5. With regard to cosmology, a tentative ex-

planation of the origin of dark energy is given, where the

picture of a hot Big Bang is questioned by the idea of a

Quantized Bang (Sec. 6).

In Sec. 4, we start with Einstein’s advice by present-

ing in detail an assembly of fundamental physical prin-

ciples, termed cosmic physical principles, meant to gov-

ern all physical processes. This set of twelve principles,

of which the duality principle is the most important, will

be presented one by one and their impact on the vari-

1The meaning of Einstein’s words is that mathematics cannot be used as a replacement for physics as he said: "Ideas are more important than

knowledge". Physics must not be separated from experiment. We quote N. N. Taleb in Skin in the Game, Random House, 2018, p. 27: "Intellec-

tualism has a sibling: scientism, a naive interpretation of science as complication rather than science as a process and a skeptical enterprise. Using

mathematics when it’s not needed is not science but scientism". Naive in this context should be understood as without any empirical evidence.

2Note: No, EHT (Extended Heim THeory) is not Heim theory,43 despite the similarity of the names. The name EHT was selected to honor B.

Heim’s ideas of internal gauge space and elemental surface in order to construct a polymetric tensor of all physical interactions and a spacetime

lattice. The concept of eight-dimensional internal space employed in EHT is reminiscent of B. Heim’s initial (but insufﬁcient) six-dimensional

approach, but otherwise the two approaches are employing different physical concepts and there are no further relationships, except for the name,

of course. As it turned out, Heim’s ideas about the internal structure of elementary particles and his calculation of the spectrum of elementary

masses turned out to be incorrect as well as his ideas about cosmology, in particular the range of attractive gravitation.

1

ous physical phenomena will be discussed as the basis

for a different (but not too different) model of particle

physics and cosmology. It turns out that the effects stem-

ming from these simple sounding principles are amazing,

leading to the formulation of nine so-called no-go theo-

rems. Moreover, these principles require the introduction

of novel physical concepts. The most far-reaching conse-

quence is the replacement of extra spatial dimensions by

extra number systems. The physical reality of the postu-

lated extra spatial dimensions appears no longer tenable,

because the range of Newton’s law of gravitation was re-

cently experimentally found to extend down to the range

of the atomic size (10−10 m, details in the next section). A

recent discussion of the modiﬁcation of Newton’s law in

accordance with GR for cosmological distances, but not

for small distances, is given by Eingorn, Kiefer, and Zhuk

in,2demonstrating a Yukawa-type exponential screening

of the gravitational potential at distances >λ(λbeing due

to the existence of cold DM) termed the cosmic screening

by the authors who found the cosmic background to be re-

sponsible for this type of screening. Their results are con-

sistent with the largest known structure in the Universe,

the Great GRB Wall (or Hercules Corona Borealis Great

Wall), with the size of the order of 3,000 Mpc. It should

be mentioned that these results have no impact on MOND

(see below).

In Sec. 5 the most striking consequences from the

novel concept of an extra system of numbers with regard

to allowable physical symmetries are presented – displac-

ing the most likely experimentally disproved concept of

extra dimensions. A novel group, termed Cosmic Group,

is introduced to cover all physical phenomena as well as

its effects on both particle physics and spacetime. The

most signiﬁcant outcome is the prediction of two different

types of gravity, represented by groups SU (2)×SU(2),

resulting in the postulation of a total of six gravitational

bosons. The ﬁrst SU(2)group gives a description of Ein-

stein’s GR enhanced by the additional interaction of mat-

ter with the dark energy ﬁeld. The associated gravitational

ﬁelds are termed cosmological gravitational ﬁelds and are

of purely geometrical origin.The effect, inﬂuenced by the

presence of dark energy, is very weak and is a result of the

distribution of matter on spacetime curvature. GR also de-

scribes the feedback of spacetime curvature on the distri-

bution of matter. The observed weakness of cosmological

gravitational ﬁelds demonstrates the rigidity of the space

lattice, allowing the Universe to assume an enormous spa-

tial extension.

The gravitational bosons of the second SU(2)group

mediate much stronger gravitational ﬁelds that are pro-

posed to result from the interaction with electromag-

netism. According to the duality principle, the three cos-

mological and the three hypercomplex-gravity ﬁelds are

caused by two different sources, namely pure geometry

(spacetime curvature) and charge (in the form of elec-

tric charge and mass, represented by particles of hyper-

complex mass), and thus should not be uniﬁable. A to-

tal of four groups derived from hypercomplex numbers

(quaternions) q∈H) can be found that describe the phys-

ical properties of matter in general, i.e., both bosons and

fermions, as well as the external spacetime. The exter-

nal spacetime is complemented by an an (internal) gauge

space, termed Heim space, or, H8. An important out-

come is that there should exist four families of leptons

and quarks (Fig. 5.4), where the fourth family of particles

possesses negative masses and is assumed to represent

dark matter, living in dual spacetime (see below), and thus

cannot be observed directly in our Minkowski spacetime.

A new concept arises, denoted matter ﬂavor (analogous

to quark ﬂavor), which is derived from the hypercomplex

group structure that incorporates both dark and ordinary

matter as well as the hypercomplex masses of the three

bosons representing the postulated hypercomplex-gravity

ﬁelds.

In Sec. 6 several of the so-called cosmological riddles

are addressed (to be revisited in Part III), reconsidering

the role of the Einstein ﬁeld equations in the formation

and evolution of the Universe and critically dealing with

the presently favored idea of a Big Bang as well as dis-

cussing the origin of dark energy and dark matter, as they

result from the concept of extra number systems.

In Sec. 7 we present a preliminary discussion of pro-

pellantless propulsion (propulsion without fuel) where the

proposed gravitational spin 1 bosons are introduced. It

will be argued that the associated hypercomplex-gravity

ﬁelds can be generated in order to provide the en-

abling acceleration mechanism for propellantless propul-

sion – provided that a suitable material composition is se-

lected. A brief description of other currently considered

propellantless propulsion concepts is given, namely the

EM drive, the Woodward effect, Mach’s principle, and

Becker’s electrodynamics, demonstrating that these sys-

tems/concepts cannot function in practice.

In Sec. 8 the novel physical concepts of EHT are sum-

marized and discussed.

The ﬁnal section provides an outlook on the repercus-

sions of the novel physical concepts with regard to particle

physics, cosmology, and novel gravitational technology as

well as novel schemes for energy generation based on the

existence of hypercomplex-gravity ﬁelds.

The above discussion should have made clear that cur-

rent physics is far from complete, instead there are se-

vere challenges that are still to be resolved. The so-called

advanced physical theories, developed over the last ﬁve

decades, have not provided the tools to successfully tackle

these puzzles. Therefore, in Part I and also in this article,

alternative ideas are presented in an attempt to contribute

to an explanation, at least to some extent, of the basic con-

tradictions posed by recent experiments and astrophysical

observations.

2

... behind all the discernible

laws and connections,

there remains something subtle,

intangible and inexplicable.

Albert Einstein

2. Mysteries in Physics and the Universe

In the following, we present an attempt to construct an

alternative physical picture to resolve the riddles posed by

recent experiments that are either contradictory or remain

still unexplained. In particular, this concerns the null re-

sults of the LHC in seeing any supersymmetric particles,

the different lifetimes of the neutron, the varying size of

the proton, the discrepancies in the measured magnitude

of the gravitational constant, the enigma of missing dark

matter particles, the non-explainable existence of dark en-

ergy, and a possible spatial variation of the ﬁne structure

constant α. In cosmology there are fundamental ques-

tions concerning the Big Bang describing the origin of the

Universe, the long standing problem of the deviation from

Newton’s gravitational law for the rotational velocities of

stars in orbit about their galactic center, the measured de-

viations of Newton’s gravitational constant GN, and, most

recently, observed small differences by LIGO in the prop-

agation speeds of gravitational waves and photons. These

problems are severe, demonstrating a lack of understand-

ing at the most fundamental level of physics.

The predictions of presently favored advanced phys-

ical concepts, i.e., supersymmetry and superstring the-

ories, when compared to most recent experimental re-

sults, are even more in conﬂict (no superpartners, no uni-

ﬁcation, no naturalness3, no dark matter particles) with

observation than they were in early 2017, when Part I

of this article3was published (Fig. 6). Supersymme-

try predictions are not only in contradiction to experi-

ments from atomic and particle physics, but also from as-

trophysics as well as gravitational measurements. Most

recent results (Winter 2018) from the LHC collider AT-

LAS cooperation5have not found any excess above the

expected SM background, running for about three years

at √s=13 TeV 4. That is, none of the ﬂurries of pre-

dicted elementary particles (neither from the ATLAS nor

from CMS experiment) have been revealed up to parti-

cle masses of 1.6 TeV/c2and 2.4 TeV/c2for spin-0 res-

onances 5. These ﬁndings are conﬁrmed by most recent

ACME data (22 October 2018)6(the table-top experi-

ment is operational since 2014) and more recent results

can be found at: https://www.nature.com/articles/s41586-

018-0599-8 that constrain the value of the electron dipole

moment, EDM, to be smaller than |de|<1.1×10−31 e

m, where edenotes the electron charge. As stated in12

pp. 33-46 the electron seems to be perfectly round which

means that the new types of particles, assumed to cause a

deviation from the spherical electron orbits about atomic

nuclei, as postulated by numerous theories, do not seem to

exist. A direct consequence of these measurements is the

quasi conﬁrmation of the SM of particle physics that pre-

dicts an EDM of |de| ≈ 1.0×10−46 e m at the four loop

level and the ruling out of the predictions of supersym-

metric theories, for instance, see Fig. 4 p. 39 in,12 mean-

ing the mass of the undiscovered heavy particles to have

shifted above the 10 TeV/c2level, and thus SUSY can no

longer contribute to the solution of the hierarchy problem

and, again had to be moved out of the experimental reach,

a process going on for more than four decades, resulting

in a substantial loss of scientiﬁc credibility. Nevertheless,

theoreticians have been quick to construct a substantial

number of models consistent with these data,6predicting

particle masses in the range between 3 TeV/c2and 109

TeV/c2, hardly an informative result. However, the SM

of particle physics cannot be the ﬁnal answer and there

is a need to go beyond the SM, in order to discuss three

mysteries, namely the extreme ﬁne tuning of the Higgs

boson mass and to ﬁnd a solution of the long standing

problem of the matter-antimatter asymmetry. The third

problem, the existence of dark matter, is addressed in this

article. A perfectly round electron does not exhibit any

asymmetry, and thus its electric dipole moment must be

zero, i.e., the center of mass and the center of charge of

3A theory is called natural if it does not contain numbers that are extremely small or extremely large. The opposite is ﬁne-tuning. In that sense,

Nature is not natural, just look at the cosmological constant or compare 1 AU (astronomical unit) to the distance to the closest star, i.e., the stars

appear ﬁxed. Large numbers need explanation.

4The square root of the Lorentz invariant Mandelstam variable sprovides the sum of the particle energies in a scattering experiment, that is, for the

LHC collider with its two oppositely moving proton beams the laboratory observer is at the center-of-mass, and the total momentum of the two beams

p1+p2=0.Thus, the total beam energy calculated using the four-momenta p1,p2is s= ( p1+p2)2c2= (E1+E2,(p1+p2)c)2= (E1+E2)2=4E2.

With E2= (pµpµ−m2

0c2)c2≈p2c2in the relativistic limit, one obtains √s≈2cpp2=mpc2(1−v2/c2)−1=2×6.5=13 TeV (6.5 TeV for

each beam pipe), where mpis the proton rest mass and vdenotes the proton speed. This energy is available since the 2015 LHC upgrade.

5To be more exact, the experimenters are searching for both spin-0 resonances produced from gluon-gluon fusion and spin-2 resonances pro-

duced from gluon-gluon or quark-antiquark initial states. The 95% conﬁdence level is utilized as usual.

3

the electron (almost) coincide. The standard model pre-

dicts an electron EDM of |de| ≤ 1.0×10−46 e m. This

means that the center of mass and charge must be sepa-

rated by a distance of about 1.0×10−46 m, far below the

Planck length, and thus their distance is practically zero.

This distance is non-physical if there exists a spacetime

lattice with a grid spacing of the Planck length `Pl ≈10−35

m. The result of the standard model is not surprising, as it

is based on a continuous and ﬂat spacetime. The ACME

measurements already are at 10−31 m and dipole moments

less than 10−35 m cannot be distinguished anymore if the

Planck length is the limit, and not the ESA Integral satel-

lite value. The recent constraints on the EDM also have an

important consequence for the high energy scale, termed

grand uniﬁcation, that assumes the equality of the cou-

plings of the three subgroups SU(3)c⊗SU(2)w⊗U(1)

(uniﬁcation of couplings does not occur in the SM). To go

beyond the SM the hypothesis was made that there exists

a simple group Gat this energy scale that does embed the

three subgroups of the SM. This GUT group is assumed

to represent the complete particle content of the SM. The

smallest group possible is the group SU(5), without con-

sidering right handed neutrinos, or SO(10)if right handed

neutrinos are accounted for. At the MGUT mass scale

this group spontaneously breaks down into the three sub-

groups of the SM. However, based on the recent measure-

ments of the EDM, this is no longer possible, for a group

SO(10)at the GUT high scale is ruled out, see Fig. 4 on

p. 39 of.12 This fact also is in support of our statement

(Sec. 4) that a uniﬁcation of the four fundamental interac-

tions should not be possible because it would contradict

the principle of duality. Also the concept of technicolor

appears to be invalid. In particular, the CMS collabora-

tion started an extensive search for the neutralino and top

squark in 2016 based on proton-proton collisions at the

center-of-mass energy of 13 TeV, but so far no signiﬁcant

excess of events could be observed above the expectation

values of the SM and most likely will not be found.

Moreover, no dark matter (DM) particles have been

found by the LHC, conﬁrming the futile search of the

three dozen experiments performed over the last 35 years

(with zero results, according to S. Hossenfelder42 Chap.

9, dressed up as interesting bounds). The LUX exper-

iment (ongoing since 2013) has provided zero evidence

for DM particles, thus independently supporting both the

LHC and ACME measurements. In particular, the ﬁnd-

ings of the DAMA collaboration of a statistically signif-

icant annual modulation in the rate of nuclear interaction

events was ruled out by the Cosine -100 collaboration in

their recent publication in Nature on 5 December 2018.7

No evidence for an excess of events above the expected

background was found, and hence, there are no WIMPS.

The upper bound for the WIMP-sodium cross section is

1.14 ×10−40 cm2for WIMPS of mass 10 GeV/c2at the

90% conﬁdence level. Annual modulation is expected for

the velocity of the Earth varies relative to the Galaxy?s

dark-matter halo owing to the orbital motion of the Earth

around the Sun. According to the so-called standard dark-

matter halo model, this result rules out WIMP?nucleon in-

teractions and thus cannot be the cause of the annual mod-

ulation that was possibly observed by the DAMA collabo-

ration. As a direct consequence, supersymmetric particles

have become increasingly unlikely to exist in Nature.

Confusion reigns, as demonstrated by controversial

experimental ﬁndings and about twenty articles written

by well known physicists, published in the recent book by

the late J. Brockman (ed.)8entitled This Idea Must Die,

6portraying a highly controversial picture (of the physics

of string theory and supersymmetry). Therefore, present

experimental ﬁndings may suggest that it is these two the-

oretical concepts that may have to be retired despite inter-

esting mathematical features. Similar confusion is visible

with respect to key concepts of cosmology, i.e., the Big

Bang, DM, inﬂation, the multiverse idea as well as pre-

dictions concerning the ultimate fate of the Universe.

Furthermore, in Part I it was shown that Newton’s law

has been proven to uphold down to the length scale of

about 1µm(upper Figure 6). As recently as December

2017, the validity of Newton’s law has been extended by

four orders of magnitude down to 10−10 m or 0.1 nm by

Haddock et al.10 It appears that Newton’s law holds in

the atomic range as indicated by the scattering of neu-

trons. As the electron mass is about two-thousand times

smaller than the nucleon mass, gravity must result from

the nucleons (protons and neutrons) whose size is about

10−15 m, hence, gravity must be governed by the sub-

atomic length scale (lower Figure 6). Newton’s law must,

therefore, be working on the subatomic scale as well, thus

no energy could have escaped into the postulated higher

dimensions at this length scale. So far, higher space di-

mensions seem to be in basic conﬂict with all direct mea-

surements (in particular no evidence for extra spatial di-

mensions in the universe based on gravitational wave data

was found). It is now clear from the recent LIGO data that

large-wavelength gravitational waves and short-frequency

photons experience the same number of spacetime dimen-

sions18 and non-compact space dimensions do not exist, a

result that is more or less obvious, because these dimen-

sions should have been detected a long time ago. No de-

viation of the gravitational amplitude from the inverse lu-

minosity distance relationship in accordance with GR has

been observed. In other words, there is no leakage of en-

ergy into (non-compact) extra space dimensions, and that

concept, according to Fig. 6, appears to be no longer ten-

able as it seems to have been excluded by Nature. This has

far reaching consequences, not only for particle physics,

6An idea that may have to die is the idea of the existence of extra (real) space dimensions that has blocked progress in physics since its inception

in 1919 by Kaluza, because alternatives were not pursued.

4

but also for cosmology (e.g., the existence of multiverses).

The experimental results cited in Part I already ruled out

to a large extent any modiﬁcation of the classical gravita-

tional law proportional to r−2. This includes any modiﬁed

Newtonian law operating in D=d+3 dimensions (d de-

notes the number of extra space dimensions), that is,

FGN∼r−(D−1),

instead of the classical gravitational law being propor-

tional to r−2. With the new data from Haddock’s experi-

ment (Fig. 6, lower picture) the idea of a Cosmos in the

form of a brane world where gravitons freely roam the

bulk space (i.e., the higher dimensional embedding space

for the spatial 3d-brane world) has become untenable.

Advocates of a brane world hoped that if an extra spatial

dimension of extension 10−4m existed, the strength of

the gravitational interaction would resemble the strength

of the electroweak interaction. In this case, the so-called

hierarchy problem (see Part I) where the relationship of

the Planck mass, mPl , GUT mass, mGUT , and the mass of

the vector boson, W±,

mPl mGUT mW,

requiring a large ratio of mGUT /mW>1013 could have

been interpreted as a so-called holographic effect. It was

proposed that a Planck length in our 3d-brane would now

be much smaller than the (large) compactiﬁed dimension,

i.e., `Pl 10−4m, leading to the holographic effect. This

scenario is deﬁnitely ruled out by experiment.

Most recent results from experimental particle physics

seem to tell us that dark matter particles do not ex-

ist, whereas astrophysical observations (starting about

85 years ago with Zwicky in 1933)19 have provided ir-

refutable experimental evidence for their existence, e.g.,

based on gravitational lensing. However, the original as-

sumption of DM was that it occurred inside galaxies, but

the recent astronomical observations by Bidin, ESA 2010,

2012 and conﬁrmed in December 2014 seem to prove

the absence of dark matter (DM) inside galaxies, con-

ﬁning DM to the galactic halo. Despite the criticism by

Tremaine and Jovy 2012 (see Part I) this leads to a sce-

nario requiring an entirely new physical mechanism for

the explanation of the deviating galactic orbital velocities.

Dark matter has been elusive for more than eight decades

and the recent community report4with more than 100

authors (suggesting numerous novel small experiments,

as the large experiments have turned up empty handed)

sounds like a desperate attempt to ﬁnally detect the miss-

ing DM.

Also unexplained is that, based on observations of

hundreds of galaxies, it is evident that the velocities of

stars orbiting the galactic center deviate from Newton’s

gravitational law at small accelerations, assuming the to-

tal gravitational galactic mass is based on the amount of

luminous matter. The MOND (Sec. 5.4) hypothesis gives

the correct numerical values but lacks any physical expla-

nation.

An important idea coming from the novel concept of

hypercomplex groups, as will be discussed in Sec.5, is the

closely associated idea of matter ﬂavor – as an analogy

to quark ﬂavor or color ﬂavor. Different types of mat-

ter, positive, negative, and hypercomplex matter (includ-

ing imaginary matter) result from the introduction of extra

number systems that make the idea of extra space dimen-

sions superﬂuous.

Another mystery is that cosmology has no explanation

for about 68% of the energy in the Universe 7that comes

in the form of dark energy (DE) as conﬁrmed by Planck

satellite data in 2013. In Sec. 6 a novel idea is presented,

attributing the existence of DE to the evolving structure of

spacetime and therefore according to EHT DE cannot be

produced in accelerators. Such a form of energy neither

exists in the SM of particle physics, nor in the proposed

supertheories. That is, DE would be the direct result of

7The term Universe is used to mean the observable universe which is the spherical region of the universe comprising all matter that can be

observed from Earth at the present time by light or neutrino signals or gravitational waves – all with ﬁnite propagation speed – that have had

time to reach our planet since the beginning of the cosmological expansion. There is currently no accepted experimental proof for the existence

of superluminal signals. The distance a photon traversed, emitted by a galaxy tph =100 million years ago, also termed the lookback time, is

dph =ct ph as the speed of light in vacuum is independent of time. However, the distance to the other galaxy dgx >dph at the arrival of these

photons. This distance is difﬁcult to determine because it is changing while the photons are traveling owing to cosmic expansion (governed by the

Friedmann equation), characterized by Hubble’s parameter H=H(t). Its present value is called the Hubble constant H0≈22 km/s per Mly.

Hence, the spatial dimension of the Universe dU>ctU, where tU≈13.8 billion years (Planck satellite data) denotes the age of the Universe, that is,

the maximal lookback time. Notice, that cosmic expansion has no impact on physically bound systems like atoms, solar systems, or even galaxies,

because it is not strong enough to modify the effective gravitational potential into a potential that has no reversal points as shown in detail in Sec.

9.8 in the book by the authors.12 Of course, everything depends on the temporal evolution of H=H(t).

8It may be argued that superluminal speed is present in the path integral formulation of Feynman. Any arbitrary path from an initial location

xito the ﬁnal location xfis represented by a polygon in the x−tplane with the corresponding time interval [ti,tf]subdivided into ndiscrete time

intervals ∆t. For each of these (supposedly small) time intervals, however, the integration over space (x-coordinate) goes from −∞to +∞, i.e., the

length of a path is not restricted. Clearly this would mean superluminal speed for any material particle going along this path, but the path integral

formulation associates a probability amplitude hxiti|xftfiP, that is, a complex number to each path P. Hence, the resulting probability amplitude

for a particle to arrive at location xfand time tfis given by the sum over all possible paths hxiti|xftfi=∑Phxiti|xftfiP. Often the amplitude over

path Pis written in the form φ[x(t)]P:=hxiti|xftfiPto denote that φ[x(t)]Pis a functional, that is, it depends on the entire path x(t)and not on a

single number. In order to calculate such a probability amplitude the genius of Feynman, remembering remarks by Dirac concerning the role of

classical action Sin QM, postulated the relation φ[x(t)]P:=Cexp(i/¯

hS[x(t)]), where the constant Cis chosen to normalize φand S=Rtf

tiL(x,˙x,t)

is the classical action and Ldenotes the Lagrange function, e.g. kinetic minus potential energy, Ekin −V. Apart from the fact that it is not clear

how to do the integration over all paths, it seems strange that the length of path x(t)does not play any role. All possible probability amplitudes

5

the formation of the smallest units of space. 8

Regarding novel aspects of gravity outside Einstein’s

general relativity, three different types of experiments

(2006-2011) are mentioned that may have generated ex-

treme gravity-like ﬁelds at cryogenic temperatures. In

Sec. 5 additional gravitational bosons and different types

of matter are introduced that may resolve the apparently

conﬂicting data obtained from recent experiments and as-

trophysical observations as well as elucidating the nature

of dark matter and dark energy. In particular, it will be

argued that the interaction between electromagnetism and

gravity, as already surmised by Einstein in 1916, may ex-

ist owing to the phenomenon of symmetry breaking in

combination with the generation of virtual particles of

hypercomplex mass. However, this requires a differ-

ent type of gravity, dubbed hypercomplex-gravity, outside

Einstein’s GR but not inconsistent with GR.

As reported in Part I of this article3recent data from

atomic physics and particle physics as well as astrophys-

ical observations appear to have invalidated so called

supertheories developed over the last four decades and

meant to replace the standard model (SM) of particle

physics developed in the early 70s of the last century. In

Sec. 3 a review of the current search for novel particles

based on the latest LHC data will be presented along with

the repercussions on the so-called supertheories. Accord-

ing to particle physics experiments a dark matter parti-

cle does not exist, i.e., nothing was ever observed. On

the other hand, for astrophysicists the existence of dark

matter is beyond scientiﬁc doubt – it is an empirical fact.

Without dark matter there would be no galaxies. Even

worse, astrophysical measurements (according to recent

Planck satellite data) have determined 68% of the total

energy in the Universe as dark energy. Such a form of

energy does neither exist in the SM of particle physics,

nor in the proposed supertheories. As a consequence, it

may be concluded that the Universe should not exist. It

is obvious that the present extension of the symmetry of

the SM (SUc(3)×SUw(2)×Uem(1)) has led to a major

confrontation with physical reality. Already, in 1967, B.

Pontecorvo postulated a new particle, termed the sterile

neutrino, with a mass of about +1 eV/c2and generally in-

terpreted as some kind of fourth neutrino. Such a particle

may indeed exist, as indicated by the most recent experi-

mental data from the MiniBooNE experiment. However,

according to EHT, its physical properties need to be com-

pletely different from the three known lepton families yet

this is not matched by the postulated sterile neutrino, as

will be discussed in further detail in Sec. 6.4.2.

A new era of astronomical observation began with the

advent of the Hubble space telescope in the 1990s. Over

the last few years numerous additional satellites and tele-

scopes were sent into space and, in combination with so-

phisticated highly powerful ground based telescopes, e.g.

the VLT (Very Large Telescope) of the European South-

ern Observatory (ESO) in Chile, the new research ﬁeld of

astroparticle physics was initiated. It is possible that as-

troparticle research may not just supplement earthbound

accelerator research, but actually compete with it. As dis-

cussed in Part I, the future of the next generation acceler-

ator with a circumference of about 100 km is uncertain,

and Fermi’s 1954 proposition for Globatron, an acceler-

ator that spans the Earth, is no longer a realistic alterna-

tive (because of space debris apart from technical issues).

Instead, a high luminosity upgrade of the LHC, termed

HL-LHC, to 60 fb−1is planned for 2026 (ﬁve times the

number of the present number of collisions per unit time

and area at the collision point of the two colliding beams),

with a further increase to 3,000 fb−1in 2035. In any

case, the particle energy provided by the cosmic accel-

erator cannot be matched, but perhaps improved record-

ing equipment may enable us to make use of it. Already,

when CERN was established in 1953, the study of cosmic

rays was formulated as one of the major scientiﬁc goals of

CERN.

The recent results of the H.E.S.S. collaboration (ﬁn-

ished 2015) starkly question another cornerstone of to-

day’s astrophysics, namely the occurrence of the Big

Bang. From the proposed hot Big Bang nucleosynthesis

comes the main evidence for dark matter as a type of ex-

otic, non-baryonic matter. Supersymmetry (SUSY), based

on extra dimensions, provides the framework for a parti-

cle species that ﬁts the observed properties of dark mat-

ter. The lightest supersymmetric particle (LSP), which

is stable, comes in the form of four neutralinos, consid-

ered to be the perfect WIMP. WIMPS (Weakly Interacting

Massive Particles) can only weakly interact with ordinary

matter, e.g. nucleons. Nevertheless, several experiments

(XENON1T, DAMA, CMDS, Edelweiss, PandaX, see be-

low), have been operating for decades, to directly detect

collisions of WIMPs and ordinary matter, but to no avail.

For instance, in 2012 the XENON100 experiment at the

Gran Sasso Laboratories produced a WIMP cross section

limit of 2.0×10−49 m2for a WIMP mass of 55 GeV/c2

appear to arrive at the same time tfinterfering simultaneously at xf, resulting in a single amplitude, which, when squared, gives the probability

to ﬁnd the particle at location (xf,tf). A single probability amplitude cannot be measured and thus has no physical reality, i.e., it is not a signal,

that is, it cannot be used to transport information. The information is contained in the square of the probability amplitude (upon interference of

amplitudes took place) which gives the probability to ﬁnd the particle at xfin an interval dx and at time tfin an interval dt. In other words, as

probability amplitudes are not physical entities, they cannot be used to send physical signals. The measured probability does not provide any hint on

the structure of the interference pattern. Different sets of probability amplitudes represent different interference pictures, but if the same probability

distribution results, they describe the same physical reality. Hence, there is no possibility to distinguish between these different sets of probability

amplitudes. In other words, a changing interference pattern cannot be detected so long the resulting probability distribution remains invariant. In a

similar way, the exchange of two identical particles in a physical system cannot be observed, which may be realized with superluminal speed, but

this process is not accompanied by any information transport.

6

at 90% conﬁdence level. On 18 May 2017 XENON1T,

the successor experiment, reduced this limit (for a spin-

independent WIMP-nucleon elastic scattering cross sec-

tion) to 7.7×10−51 m2for a 35 GeV/c2WIMP mass at

90% conﬁdence level.20 Hence, together with recent AT-

LAS and CMS data (Sec. 3), evidence is mounting that

WIMPs do not exist.

This futile search also questions the hypothesis of a

hot Big Bang (Sec. 6). If the Universe was ﬁlled with a

hot plasma immediately after the Big Bang the relativistic

WIMPs would have collided with each other and ordinary

particles would have been produced by WIMP annihila-

tion. This process would have slowed with the cooling of

the expanding universe. Given the strength of the weak

force, it can be calculated that today there must be ﬁve

times more cold relic WIMPs (DM) than ordinary parti-

cles. Not a single WIMP was ever detected. Hence, the

hot Big Bang picture may not be correct.

In addition, many supersymmetry theories predict

their lightest superpartner to be stable in form of a neutral,

weakly interacting particle – WIMP. This ghostly particle

is searched for by the LHC – as will be discussed in Sec.

3 – so far in vain.

According to the ideas of EHT, to be discussed below,

the concept of a Big Bang may have to be replaced by a

Quantized Bang (Sec. 6.3). In addition, these nil ex-

perimental results also speak against two key concepts in

physics, namely supersymmetry and extra spatial dimen-

sions, the cornerstones in all advanced particle theories.

Gravity and electromagnetism are the two-long range

interactions known in current physics. In 1911 Heike

Kamerlingh Onnes in Leiden reported on the phenomenon

of superconductivity in mercury below a critical tem-

perature T

Cshowing that the electrical resistance of a

conducting material effectively could be zero. In anal-

ogy, the EHT model predicts the existence of a similar

effect for gravity, for which the name hypercomplex-

gravity was coined. That, however, has to be outside GR

which is based on the curvature of spacetime. By con-

trast, hypercomplex-gravity ﬁelds arise from the interac-

tion with electromagnetic ﬁelds in spacetime through (ad-

ditional) gravity mediator bosons of spin 1, and not by

acting on spacetime. These ﬁelds represent a new, second

type of gravitational interaction that is of the same type

as the electromagnetic, weak nuclear force, and the strong

nuclear force. In that sense it would be correct to state the

existence of four fundamental interactions, whereas GR is

to be considered as the interaction of the spacetime lat-

tice with any kind of matter, i.e., affecting the motion of

all physical entities that carry energy. Einsteinian grav-

itation does not exhibit the classical property of being a

force mediated by bosons. Of course, a spin 2 boson,

termed the graviton, can be postulated in order to comply

with the general picture of physical force, but it is more

a mathematical convenience, and not a physical necessity.

Moreover, such a boson was never observed. Einstein’s

equivalence principle predicts the equality of inertial mass

and gravitational mass, but it is not clear that this idea

holds at the quantum level and the latest experiment, July

2018, did not ﬁnd any hint for the existence of a graviton

particle. It also seems that a gravitational Casimir effect

does not exist. Quantum theory allows the superposition

of states, which means that a massive particle may be in

two different states at the same time and because different

states do have different energy levels they necessarily (re-

member Einstein’s E=mc2) represent different masses.

Then the total mass gets also fuzzy and thus may be in

conﬂict with Einstein’s equivalence principle (so far no

deviation has been found). It seems that if a particle obeys

Heisenberg’s uncertainty principle (meaning that the sys-

tem has two non-commuting observables) it necessarily

may be in conﬂict with Einstein’s equivalence principle

(see the recent paper by Zych and Brukner14). How-

ever, a lively discussion on the quantum nature of grav-

ity already took place in 1957 (see the ﬁnal chapter in16),

pp. 260, including the eminent physicists R. P. Feynman,

Bondi, Rosenfeld, Bargmann, de Witt, Belinfante, and J.

Wheeler. This question has not been decided upon, as

the recent paper by Marletto and Vedral15 shows. They

suggest the gravitational ﬁeld be probed by two masses,

extending a proposal by R.P. Feynman of 1957 discussed

in.16 The ﬁrst mass, being in a superposition of two loca-

tions, becomes entangled with the ﬁeld (similar to dipho-

ton entanglement), while the second mass, also in a super-

position, is used to report the entanglement. First, if two

quantum systems (i.e., two masses) can be spatially super-

posed and become entangled through the interaction of a

gravitational ﬁeld, then that gravitational ﬁeld itself must

be quantum capable of possessing two non-commuting

observables.

This prediction allowed the pair to propose tests that

would tease out the quantum behavior of gravitational ac-

celeration. So far, the major difference between the two

classical long range forces is that electromagnetic ﬁelds

can be generated in the laboratory, while gravitational

ﬁelds (so long as gravity is considered to be of geometric

nature) cannot be engineered. By contrast, hypercomplex-

gravity ﬁelds should be similar in strength to electromag-

netic ﬁelds for they do not originate from geometry.

According to GR gravitational ﬁelds can only be pro-

duced by large static or moving masses, e.g., planets or

stars. In Einstein’s time (1915) EM was the only other

known interaction and Einstein devoted the rest of his ca-

reer trying to unify these two forces, but also searched for

a direct interaction between electromagnetism and gravity

as Faraday had already surmised. The gravitomagnetic

ﬁelds predicted by GR are far too small to be of techni-

cal interest. This situation will not change because recent

observations and simulations by Parsa et al.17 are con-

ﬁrming GR also in the nonlinear range. In other words,

7

ten biography on the life and scientiﬁc work of Burkhard

Heim was published by von Ludwiger (in German).107 A

few years later, the need for advanced space propulsion

methods based on ﬁeld propulsion was discussed again in

the books by Seifert, 1959108 and Corliss, 1960111 as well

as by Samaras.112 In the ﬁfties and sixties of the last cen-

tury, ﬁeld propulsion, i.e., space propulsion without pro-

pellant, was a domain of intense research, but, as is well

known, this once active ﬁeld did not produce any space

propulsion technology, and in the following decades re-

search in this area completely subsided. At that time there

existed an active scientiﬁc program aimed beyond the ever

attractive force of Newtonian gravity.

The ﬁeld saw a revival with the NASA break-

through physics propulsion program (1996-2001)113 ,

which ended without having generated usable practical or

theoretical consequences concerning novel space propul-

sion methods. It became clear from this project that en-

gineering reﬁnement of existing technology as well as

known physical laws were not suitable in providing break-

through propulsion. A review of the state of the art as of

2003 was then given by J. E. Allen.114 In his ﬁnal critique,

Sec. 5, Allen concludes that the necessary breakthrough

has not been achieved.

The quest for propellantless propulsion has a long

history, meaning propulsion systems that rely upon the

exchange of momentum and energy with their reference

frame through the use of physically generated forces. In

particular, in the 1950’s in the United States, a compre-

hensive research program on gravity control propulsion

was set up in aerospace industry as well as 14 universities.

First, three concepts are discussed that recently have been

investigated as a physical basis for breakthrough propul-

sion. It will be shown that the EM drive, the Woodward

propulsion idea, based on Mach’s principle, which states

that the acceleration of massive particles can only be mea-

sured relative to other matter in the UnIverse, i.e., its in-

ertia must depend on the distribution of the other matter

in the Universe as well as any concept based on Kaluza-

Klein theory are physically unfeasible. Any breakthrough

in propulsion or energy generation, in order to become a

real game changer, needs to be functioning without fuel.

This insight is not new, and was already discussed in the

book on space propulsion by Corliss, 1960,111 termed

ﬁeld propulsion, and was actively researched in indus-

try and academia at that time. Rocket propulsion cannot

be abandoned at present, because it is currently the only

technology available that is providing sufﬁcient thrust to

deliver material to low earth orbit (LEO) or communi-

cation satellites to geostationary orbit. Second, if we

are serious about spaceﬂight, a crash propulsion research

program based on fundamental physics should be started

forming a task force dedicated to the aim of studying

whether there exists novel gravitational physics that could

lead to the development of propellantless propulsion.

This physical principle was already envisioned by W.

Corliss and other physicists half a century ago. A novel

physical principle for spaceﬂight as well as energy gen-

eration is needed ﬁrst, then everything else will fall into

place, i.e., the proper technology will follow from this

principle. The technology must be feasible, whereas

wormholes and spacetime warping may be unrealistic or

impossible and antimatter for spaceﬂight is technologi-

cally unobtainable in the foreseeable future, but it should

be accepted that, at least in the beginning, the science of

any novel propulsion system, necessarily, will have to be

speculative, for it cannot be based on current physics.

What could this new physical principle be? Obvi-

ously, it has to do with both gravitation and spacetime.

Planetary gravitation needs to be overcome during launch,

and once in space, a vehicle is moving through a medium

called spacetime. Spacetime is considered a dynamical

physical ﬁeld, because it is inseparably associated with

the all pervading ﬁeld of dark energy, and thus assumed

to carry both energy (in form of information) and momen-

tum. Momentum exchange between the space vehicle and

spacetime needs to take place, which is assumed to re-

sult in additional spacetime dynamics, that is, contraction

or expansion. Instead of interacting with its fuel, the

spacecraft is interacting with the surrounding spacetime.

How? Through the generation of gravity-like (acceler-

ation) ﬁelds outside GR by the mechanism of (delayed)

symmetry breaking.

The only approach that may have the potential as

breakthrough may be the generation of gravity-like ﬁelds

that are outside GR. In order to overcome the enormous

technical challenges posed on conventional propulsion

systems by the drag of gravity, it becomes obvious that

only propulsion without propellant can solve this prob-

lem. Field propulsion, aptly named by W. R. Corliss in

his book Propulsion Systems for Space Flight Space, Aca-

demic Press, 1960, was then an active topic of research,

however, without delivering any practical results. Space

propulsion is still dealing with the technologies (and haz-

ards) developed in the 50s and 60s of the last century,

and the vision portrayed by Wernher von Braun in his fa-

mous article in Collier’s magazine in 1952, entitled Man

on the Moon, did not become a reality. A manned Mars

mission, despite all the claims made by the various Mars

projects — as the ﬁrst author, while working at the Euro-

pean Space Agency, knows from ﬁrst hand experience —

will not take place any time soon, unless a breakthrough

in propulsion physics can be achieved.

Recently several authors published propulsion con-

cepts on Weber’s electrodynamics but Weber’s electrody-

namics was developed before Maxwell and does not seem

to provide any additional physics.

There are recent articles citing Weber’s EM formula-

tion as if something new could be obtained from it. First,

51

Weber was before Einstein, and it is not clear whether or

not his formulation is even Lorentz invariant.

Maxwell’s description of EM has accounted for all ob-

served EM phenomena since its inception in 1864. More-

over, and this is most important, Maxwell’s theory is the

foundation for QED (quantum electrodynamics) that has

been conﬁrmed to extreme experimental accuracy.

Even the slightest misconception in Maxwell’s EM

would have been detected and corrected. Nothing like that

was ever observed. Even in the latest LHC data taken at

13 TeV the tiniest deviation would have been seen. So,

even if Weber were also correct (which is doubtful, but

unknown) nothing can be gained from Weber’s theory that

cannot be explained with Maxwell’s theory that is much

easier to handle, and, as we know, is Lorentz invariant, it

remains correct at relativistic speed. Any research in this

direction will not lead to any new results.

Extreme gravitomagnetic ﬁelds, termed hypercomplex-

gravity (see below) may be generated by the interaction

between gravity and electrodynamics (in the so-called

Heim experiment), seem to be the only physically realis-

tic chance for propellantless propulsion. Extreme grav-

itomagnetic (or hxpercomplex) ﬁelds might have been

measured by M. Tajmar as was analyzed in12 as well as in

several other papers. However, there is no smoking gun

proving their existence.

There is no way for hypercomplex gravitational ﬁelds

to exist within Einstein’s GR, which means that com-

pletely novel physics concepts have to be introduced as

discussed in this article.

7.1. Physically Impossible Propulsion Concepts

Unphysical EM Drive

Recently the EmDrive, see, http://www.newscientist.com

/data/images/archive/2568/25681402.jpg, that has been

around since 1999, was hailed as the Engine That Might

Break Physical Laws by generating an asymmetric force

owing to different EM radiation pressures on the side

walls of a closed cylindrical resonator. But this is wish-

ful thinking.109 By squeezing a closed Coke can on one

side and trapping electromagnetic radiation inside, the can

is supposed to move in the direction of the smaller cross

section. This will never happen. This is a pure electro-

magnetic phenomenon and all descriptions citing an in-

teraction with the vacuum are equally false. As recent ex-

periments have shown (see the above reference) the vac-

uum is extremely stable and extracting energy from the

vacuum, i.e., bringing the vacuum to a lower energy state

requires extreme amounts of energy. No simple EM phe-

nomenon can cause such an interaction with the vacuum.

Therefore, regardless who has measured what, these are

artifacts. According to W. Pauli: This is not right. It is

not even wrong.

Microwave ovens don’t ﬂy. There is absolutely no ex-

perimental evidence for a varying speed of light, c, within

the truncated cone cavity, nor does cchange outside the

cavity. It is mentioned in the New Scientist article that

1 kW of power is needed to generate 1.2 mN of thrust.

Compare this to the Saturn V that generated 33,000 kN of

thrust (5 F-1 engines each at 6.7 MN thrust). Using an EM

drive would amount to generating a power of 2.75 ×1010

kW, that is, one would need about 30,000 large nuclear

power plants to produce this amount of thrust. Apart from

the fact that this kind of energy source would destroy any

material device, it would be the most inefﬁcient way to

ﬂy. It also might be a little heavy, because nuclear power

plants are not lightweight. There is no reasonable phys-

ical principle backing the EM drive, not even an uncon-

ventional theoretical idea.

Using de Broglie’s (1928 and later D. Bohm’s 1952 )

interpretation of QM, does not result in any new physics.

We are talking about a novel (at that time) interpretation

of QM different from (now outdated) Bohr’s idea. Never

did Bohm postulate that the virtual particles of the vac-

uum can affect his necessary non-local (i.e., faster than

light) pilot wave!

An interaction with dark matter particles, as men-

tioned in the article, with the microwaves inside is not

possible either. Dark matter, as its name is telling us, is

not charged and electromagnetically inactive, otherwise it

would have been detected. DM is not subject to electro-

magnetic interaction. There is no physical basis for the

EM drive, which is based on a solely conventional EM

phenomenon. Otherwise, just squeeze a coke can on one

side and get some microwave radiation inside, and the can

should start moving in the direction of the smaller surface.

Regardless of what has been measured, this cannot be real

thrust.

Mach’s Principle Retired

The Woodward drive is also discussed in,109, 110 being

developed since the 1990s, and it is equally physically un-

feasible. It is based on Mach’s principle which, as is now

known, is physically incorrect.

First, Mach’s principle is not part of General Relativ-

ity. With the existence of the Higgs boson conﬁrmed by

the LHC (postulated 1964, measured July 2012 at CERN)

particle mass comes from the interaction with the scalar

Higgs ﬁeld and not from the interaction with the other

masses in the Universe as postulated by E. Mach in the

19th century. Mach’s principle is also in conﬂict with Ein-

stein’s GR as the rest mass of a particle is a relativistic

invariant that is an intrinsic property and does not depend

on the distribution of the surrounding masses in the Cos-

mos as claimed by E. Mach. His idea is not based on

physical facts but more on philosophy.

Moreover, if the inertial mass of a proton were af-

fected by mass distributions on the cosmological scale,

then there must be an anisotropy in the inertia of every

52

proton on Earth! Because of the mass distribution in our

own galaxy any proton would be accelerated towards the

galactic center and would have a mass different from a

proton subject to an acceleration in the opposite direction,

simply because the mass of the galaxy is concentrated in

the galactic center.

This could be measured very accurately by the Moess-

bauer effect and NMR technique (frequency) but such an

effect was never observed.

For any experiment performed on the rotating Earth,

the proton mass should depend on direction – according

to Mach. This is clearly not the case! With the existence

of the Higgs boson, Mach’s principle became an outdated

idea and is a relic of the 19th century mechanistic world-

view. Hence, there is no physical principle for the Wood-

ward drive. Inertia is an intrinsic property of matter and is

not related to other masses. The Higgs boson was found,

and it is the source giving matter to otherwise massless

particles. As we know, Einstein’s Weak Equivalence Prin-

ciple (WEP) has proved to be correct to a very high de-

gree, and thus it is correct to state that mI=mGE.

Kaluza-Klein theory of ﬁve dimensions is incorrect.

This theory is physically wrong, because it requires

Fµν Fµν =0,and thus leads to the wrong Lagrangian for

EM. That is, any ﬁve-dimensional theory (four spatial di-

mensions) is necessarily incompatible with EM.

Prediction is very difﬁcult,

especially if it is about the fu-

ture.

Niels Bohr

8. Summary of Physical Concepts of EHT

Finally, it seems appropriate to summarize the novel

physical ideas, collected under the name EHT and pre-

sented in the previous sections to demonstrate their drastic

physical implications in extending both the SM of particle

physics and cosmology. The inﬂux of recent experiments

(Sec. 5.2) played a major role in the formulation of these

principles. In particular, EHT requires giving up the cher-

ished concept of extra space dimensions replacing it by

introducing extra systems of numbers. As a direct result,

see Eq. 5.2, two novel types of matter were introduced,

which are termed negative matter (dark matter) and hyper-

complex matter (virtual particles) that are not described

in both SR and GR. Hence, physical phenomena that are

based on the presence of this type of matter, that is, ﬁelds,

may not be subject to the constraints imposed by these

two theories.

At the core root of these extensions is the set of foun-

dational physical principles (Sec. 4) that have dramatic

consequences for both cosmology and particle physics 32.

The concept of duality proved to be of overriding im-

portance. It is at the foundation for the existence of the

Cosmos, because the two fundamental energy concepts of

EHT, namely the energy of information due to Szilàrd, as

expressed by Eq. 4.2, and the energy of mass, that is,

Einstein’s famous equation E=mc2, are considered as a

physical realization of this principle. These two energy

forms can be converted into each other. Information en-

ergy of the expanding spacetime lattice is transformed into

matter energy. That is, the potential energy of the evolv-

ing spacetime lattice transforms into dark energy (DE),

the precursor of matter.

Hence, string theory and supersymmetry as postulated

under EHT are rendered untenable and also Grand Uniﬁ-

cation Theories (GUT) will not be feasible in their cur-

rently foreseen form. Nevertheless, in cosmology, the

concept of the Big Bang seems to have to be replaced by

aQuantized Bang (see below). Also, the GUT era in the

course of cosmic evolution appears to be infeasible.EHT

also makes novel predictions. Extreme gravitational ﬁelds

outside GR should exist, dubbed hypercomplex gravita-

tional ﬁelds, a fourth family of leptons and quarks is pre-

dicted, and the existence of dark energy and dark matter

are explained in the context of EHT. Furthermore, both

time, t, as well as the speed of light in vacuum, c, get pro-

moted from real to complex that requires an extension of

the concept of Einstein’s spacetime. Finally, the concept

of matter is promoted from real to hypercomplex matter.

1. The formulation of EHT is based on the set of fun-

damental physical principles that cannot be proved,

but are formulated according to generally accepted

physical principles in accordance with the known

experimental results (Sec. 4). These principles have

far reaching consequences for both the SM of parti-

cle physics and cosmology.

2. The complete uniﬁcation of physical interactions is

not possible according to the principle of duality.

3. The concept of extra number systems replaces the

idea of extra space dimensions. Since the 1970s,

32Further physical justiﬁcation of these principles is not possible and necessarily leads into the realm of metaphysics. This does not mean that

arguments from metaphysics are to be rejected, but simply states that these rules are outside of physics. Another major example that leads also

outside of physics are the numerical values of the physical coupling constants that, at least in EHT, are based on number theory. It should be clearly

stated that the roots of the Cosmos are to be sought outside of physics and thus cannot be explained. Hence, the question which process may be

responsible for setting up the proper blueprints governing the evolution of the Cosmos cannot be decided by physics. Science in general and physics

in particular can only take the observed facts as a given and try to construct adequate models, but are incapable of providing explanations for any

underlying objective. These restrictions and the ensuing contradictions were clearly described in B. Heim’s paper entitled Welt der Weltbilder.118

53

Figure 10. The group structure obtained from extra number systems in the form of hypercomplex numbers leads to additional groups that results in a total of

15 gluons and 6 gravitational bosons as well as three photons.

string theory and supersymmetry have been con-

tradicting all experiments of particle and atomic

physics that were speciﬁcally conceived to prove

their existence. In particular, the continuously

improved measurements of the range of validity

of Newton’s gravitational law down to the atomic

scale has rendered the concept of extra space di-

mensions untenable (Fig. 6). The paradigm shift

of EHT therefore replaces extra dimensions by ex-

tra number systems that give rise to the concept

of hypercomplex masses. A direct physical con-

sequence is the existence of extreme gravitomag-

netic ﬁelds, that are outside GR. These novel types

of mass are also considered to be responsible for

the existence of a fourth family family of leptons

and quarks which are instrumental in the explana-

tion for dark matter.

4. The fundamental mathematical group is O(32,H)

that is broken down into four symmetry groups

(Sec. 5).

5. The unphysical concept of the Big Bang is replaced

by the Quantized Bang. The evolution of the uni-

verse originates from generation of the ﬁrst discrete

elemental surface by quantum ﬂuctuations, mark-

ing the transition from nonexistence to existence.

The next quantum ﬂuctuation can cause the ele-

mental surface to disappear or it may create a sec-

ond elemental surface that interacts with the ﬁrst

one due to the spin of these two metrons. This re-

leases a quantum of information energy that is con-

verted into a quantum of dark energy that immedi-

ately will act to expand the spacetime comprising

two metrons. Therefore, the probability for a third

metron to be generated is higher than the probabil-

ity for the second metron to disappear. Thus the

increase in the number of space atoms will be ex-

ponential, driven by the generated dark energy. A

highly simpliﬁed model of this inﬂation model is

given in Chap. 9 in .12 The spacetime lattice goes

quickly from discrete to continuous, allowing the

use of the Einstein ﬁeld equations in conjunction

with dark energy (responsible for inﬂation). Even-

tually, photons are generated from dark energy –

ending inﬂation – and mediate the force that de-

ﬁnes electric charge which are also the source for

ordinary and dark matter.

6. Another basic modiﬁcation concerns the notion of

spacetime as formulated by Einstein. There is a

dual spacetime, dS(3,1)that contains dark matter

making dark matter principally unobservable in our

spacetime. However, the gravitational impact of

DM can be observed.

7. As a result of the four O(8,H)groups there ex-

ist six gravitational bosons. Three of these bosons

νGE,νgp ,νqare for the cosmological gravitational

ﬁelds that are of purely geometric nature, and can-

not be uniﬁed with the three other forces.

8. The three particles representing the extreme gravit-

omagnetic ﬁeld are believed to result from an inter-

action with electromagnetism, and are spin 1 ﬁelds.

This type of gravitation, termed , is thought to be

uniﬁable with the strong interaction.

9. DM seems to be absent within galaxies but is con-

54

centrated in halos. Thus, the result of the MOND

formula (which does give the correct acceleration)

cannot be explained by DM as DM does not exist

within galaxies. A discussion was presented to ob-

tain the MOND formula based on the presence of

two types of DE particles, attractive and repulsive,

i.e., by polarization through the higher mass density

inside galaxies that is 107times higher compared to

intergalactic space.

10. The extreme gravitomagnetic ﬁelds may be utilized

as a means for space propulsion without propellant.

The key seems to be a speciﬁc material composition

(two or more metallic components) that might work

at ambient temperature.

The basis for the novel physics presented is a collec-

tion of foundational physical principles which individu-

ally are generally accepted and proved by experience and

experiment. The application of these principles results

in major implications for cosmology, including a closed

topology of the universe, modifying the cosmic genesis by

replacing the hot big bang with a quantized bang and ex-

plaining the nature of dark energy and its role in inﬂation.

Furthermore, these principles predict the non-existence of

singularities (i.e., wormholes are not considered feasible

physical objects). In addition, the fundamental principles

are employed to discuss the MOND hypothesis and to give

a derivation of the MOND formula but without giving up

on Newton’s gravitational law.

An extended group structure for the description of el-

ementary particles is produced by introducing extra sys-

tems of numbers – quaternions (hypercomplex numbers,

non- commutative) Hand octonions (non- associative)

O. The extra number systems also account for addi-

tional types of matter (negative, −mand hypercomplex

im,j m ,κm), replacing the extra space dimensions of

string theory.

These novel types of matter are instrumental because

the existence of a fourth family of particles of negative

mass is predicted representing dark matter.

It is postulated that dark matter particles are located

in dual de Sitter spacetime DdS1,3but their gravitational

interaction is observed in normal spacetime. Dd S1,3

is marked by an imaginary time component, i t , but

shares the spatial components of our spacetime manifold

dS1,3. Hence, dark matter particles cannot be detected

in our spacetime. The existence of (virtual) hypercom-

plex masses may explain the measured discrepancies of

the proton diameter and the contradiction in the measured

lifetimes of the neutron.

The group structure using the ﬁeld of hypercom-

plex numbers gives rise to twelve elementary charges

and six gravitational bosons with three gravitational con-

stants Gp,Ggp ,Gq(see text). The six gravitational bosons

comprise two groups, the ﬁrst three are the cosmologi-

cal bosons νGE(the graviton, spin 2 particle from Ein-

stein’s theory of gravity), νgp (spin 1 ), νq(spin 0) that

might mediate the forces for the cosmological ﬁelds, un-

less they are of pure geometric origin. In addition, ac-

cording to EHT, an interaction between gravity and elec-

tromagnetism should occur, mediated by three additional

gravitational bosons ˜

νGN,˜

νgp (spin 1 ), ˜

νq(spin 0), that

are produced either at low temperatures in the laboratory

(symmetry breaking) or at high temperatures in the vicin-

ity of quasars. In both cases extreme gravitomagnetic (or

hypercomplex) ﬁelds Bgp should have been generated that

may be up to 18-20 orders of magnitude larger than the

gravitomagnetic ﬁelds of GR. If their existence can be

conﬁrmed they are clearly outside general relativity. The

reported change in the ﬁne structure constant αfseen in

the vicinity of quasars may be another hint of the pres-

ence of these extreme gravitomagnetic ﬁelds which are

believed to modify the permeability of free space, µ0. The

extreme gravitomagnetic ﬁelds may be produced by those

rotating black holes in the form of quasars. New propul-

sion and energy generation technology might follow from

extreme gravitomagnetic ﬁelds that are owing their exis-

tence to the conversion of photons γinto gravitophotons

˜

νgp reﬂecting the particle nature of the resulting extreme

Bgp ﬁeld.

Any sufﬁciently advanced tech-

nology is indistinguishable from

magic.

Arthur C. Clarke

9. Physics, Cosmology, and Technology

Discussion

One of the key features of EHT lies in the formula-

tion of the underlying physical principles employed by

Nature, because everything follows once these principles

have been set up. Einstein himself considered this the very

ﬁrst step before any mathematical formulation of a theory

should take place.

If we are wrong at this step then there is no hope in

setting up a comprehensive theory of both space and mat-

ter. An incorrect theory means that the theory has to be

adjusted – creating more epicycles.

As of winter 2018, the LHC data have provided zero

evidence for any of the concepts employed in advanced

physical theories that have ruled particle physics for more

than four decades, namely, supersymmetry, extra space di-

55

mensions, and GUT (Grand Uniﬁcation Theory). This is

a strong sign that Nature is using a different set of rules.

Hence, in this article novel ideas were presented in order

to resolve the long standing deadlock.

The new concepts of hypercomplex numbers, dual

spacetime, and elemental surfaces for spacetime neces-

sarily lead to different physics in the form of negative

and hypercomplex mass as well as different groups

in physics based on the ﬁeld of hypercomplex numbers.

For instance, there should be a fourth family of particles,

however accounting for DM. In addition, the existence of

hypercomplex masses is postulated (virtual particles that

are supposed to be generated in the interaction between

electromagnetism and gravitation) that give rise to grav-

ity bosons of spin 1, thus producing the much stronger

ﬁelds, as discussed above. In other words, there should

exist a second type of gravity outside GR. By contrast,

the cosmological gravity ﬁelds are aptly described by Ein-

stein’s GR. Moreover, the Big Bang hypothesis should be

replaced by the Quantized Bang idea, based on the exis-

tence of the metron (elemental surface). DM is composed

of negative mass and residing in dual spacetime while

only its gravitational interaction can be observed in our

spacetime. That is, DM particles cannot be detected in

our spacetime, nor can they be produced by accelerators.

As there are no singularities in the Cosmos, the geometry

of the Universe must be closed, and eventually expansion

(symmetry breaking) is converted into contraction. The

baryonic asymmetry is attributed to cosmic motion.

The overriding principle in physics as discussed here

is the principle of duality. This may sound vague but,

as was shown, duality imposes severe constraints both on

any physical theory of matter and cosmology. The long

sought grand uniﬁcation of all physical laws, even at ex-

treme energies, does not seem to be possible.

For instance, duality requires that from the very ﬁrst

instant of the Cosmos both spacetime (ﬁrst as a lattice,

later on in the evolution as a manifold) and dark energy

are formed at the same time. Together with the quantiza-

tion principle for elemental surfaces, it leads to a Quan-

tized Bang strictly obeying energy conservation (apart

from quantum ﬂuctuations). In other words, there was

no Big Bang violating the principle of energy conserva-

tion. Based on the existence of the metron the Big Bang

hypothesis should be replaced by the Quantized Bang.

The Cosmos seems to be governed by two energy prin-

ciples that are dual to each other: Szilard’s energy prin-

ciple that measures the energy resulting from informa-

tion (or organization), and Einstein’s energy principle of

matter (or radiation). In the evolution (including inﬂa-

tion) of the Universe the information energy (potential en-

ergy, negative) of the spacetime lattice (sugar cube crystal

model) is converted into the precursor of matter energy,

i.e., dark energy (positive energy density). This quantized

bang cosmology accounts for the existence of dark energy

as well as the subsequent inﬂation period.

There must be a symmetry breaking mechanism that

converts DE into DM and OM (or NOM), reducing the

amount of DE and putting an end to inﬂation. As there

are no singularities in the Cosmos, the geometry of the

Universe must be closed, and eventually expansion (by

symmetry breaking) is converted into contraction. The

baryonic asymmetry is attributed to cosmic motion.

The other key idea is the extension of the isospin space

concept to an 8-dimensional gauge space H8, Heim space,

with subspace structure 1-3-2-2, from which the overall

group structure for matter and spacetime is derived. There

are no extra space dimensions (no strings). Instead extra

number systems, i.e., Nature utilizes the ﬁeld of hyper-

complex numbers, which extends the idea of matter and

antimatter. This in turn leads to the idea of extreme grav-

itomagnetic ﬁelds mediated by virtual particles of hyper-

complex mass that act like a catalyzer, i.e., they trigger the

reaction but are not visible in the initial and ﬁnal states of

a process.

The duality principle further impacts matter and

spacetime. These are two different quantities that cannot

be uniﬁed, instead they represent two sides of the same

coin.

In this regard, there is no way to unify all physical

interactions. Einstein’s cosmological ﬁelds may be rep-

resented by three mediator gravity bosons, but are the re-

sult of spacetime geometry (time dependent curvature is

equivalent to the propagation of gravity waves). It is not

at all clear that gravitational spin 2 bosons really exist that

can be measured like photons. They may, however, exist

as auxiliary physical entities.

In accordance with the duality principle, matter is dif-

ferent from geometry and cannot be expressed by geome-

try. This means the geometrization of physics as foreseen

by Wheeler et al. may not be feasible. Furthermore, the

Einstein ﬁeld equations cannot describe an equality be-

tween matter and geometry, but express an equivalence

only. Rather, matter and spacetime inﬂuence each other

and therefore can be expressed only as an equivalence. As

a result, the Planck length may not represent a meaningful

length scale for pure geometry phenomena. The results

of the ESA Integral satellite indicate a length scale much

smaller than the Planck length for the grid spacing of the

spacetime lattice. Hence, Planck’s constant ¯

hshould not

occur in an expression for this grid spacing. Instead, the

Schwarzschild radius of the proton (18 orders of magni-

tude smaller than the Planck length) may be the correct

measure. It should be noted that presently we presume

there is no gravitational interaction (Einstein) among lep-

tons, only hadron-hadron and hadron-lepton, in addition

to the novel gravitational interaction, with the dark en-

ergy ﬁeld itself, manifested by the expansion of space-

time (which is too small to be measured in propellantless

propulsion).

56

The other idea is that a dual spacetime exists. In our

spacetime matter is positive, while in dual spacetime mat-

ter is negative. Both spacetimes share the same three spa-

tial coordinates, but time is real in our spacetime while it

is imaginary in dual spacetime. The same holds for the

speed of light.

However, the extreme gravitomagnetic or ﬁelds, group

SU(2), are mediated by three gravity bosons that are like

other mediator bosons from particle physics, and thus are

completely different from the Einstein cosmological grav-

ity ﬁelds.

Moreover, because of duality the weak and EM forces

can be uniﬁed and the strong and the force may be uniﬁed.

The uniﬁcation of the two remaining interactions should

not be possible. This said, there could not have been a

GUT era in the early cosmic evolution when gravity be-

came distinct from the other three forces, that still were

united at the GUT energy.

Coupling constants are outside physics and are (in

EHT) based on number theory, meaning there could be a

relationship between prime numbers and the structure of

irreducible groups in physics. However, we do not have

a really convincing derivation of these numbers, a lot of

guesswork and speculation is involved.

The above ideas have major ramiﬁcations for the two

standard models of particle physics and cosmology, and

require major extensions of both models. In particular,

there are no strings, and in the SM of cosmology there is

no Big Bang. Dark matter cannot be found in our space-

time, instead it resides in dual space, because its mass is

negative. This straightforwardly leads to a forth family of

particles and also requires 15 gluons. The largest modiﬁ-

cation concerning gravity are ﬁelds that are both attractive

and repulsive and interact with the other three interactions

as well as with the dark energy ﬁeld. Moreover, the uni-

verse is closed and at some time in the future expansion

should change into contraction. In addition, the MOND

formula is correct, but Newton’s law is valid down to the

atomic scale. The origin of DE and DM are explainable

from the novel ideas of EHT. The predictions concern-

ing the generation of extreme gravitomagnetic or ﬁelds

should be fairly easy to test by setting up proper experi-

ments.

This, in a nutshell is, how we see the framework of

EHT, but there remain a lot of details to be ﬁlled in.

Needless to say, there are still a lot of riddles and many

other topics exist to be explored, such as the principle of

structure formation and organization. The Universe is def-

initely not the result of so called-self organization or acci-

dental processes, but there seems to be a governing mech-

anism that is directing all physical processes. Hence, the

entelechial and aeonic dimensions in internal Heim space

H8.

Acknowledgments

This article is dedicated to the eminent Andreas Resch,

P Dr. Dr., C.Ss.R. Professor and Director at the Insti-

tut für Grenzgebiete der Wissenschaft, Innsbruck, Austria

to acknowledge his scientiﬁc work, Imago Mundi, whose

prime subject was and is the creation of a consistent Welt-

bild, to unify both science and humanities, bridging the

gap that still seems to divide these two disciplines and

to Hozumi Gensho Roshi, Professor of applied sciences

at Hanazono University, Kyoto, Japan for his teachings

(teisho) of more than thirty years (e.g., youtube videos)

in Europe explaining the nature of reality. These two em-

inent scholars, though from very different backgrounds,

have dedicated their works to the quest for ultimate real-

ity, thus elucidating the underlying reality of the Cosmos.

The authors are most grateful to Prof. Greg Daigle,

former adjunct professor at the Univ. of Minnesota,

U.S.A., for numerous e-mail discussions and literature

hints as well as his relentless efforts to improve the style,

clarity, and contents of this paper.

The TIKZ programming efforts of Dr. H.-G. Paap,

HPCC Regensburg in preparing the ﬁgures are greatly ap-

preciated as well as the discussions with my colleague

(ﬁrst author), Prof. Dr. T. Waldeer, Ostfalia University.

References

[1] Einstein, A.: On the Method of Theoretical Physics, The Herbert

Spencer lecture, delivered at Oxford, June 10, 1933. Published in

Mein Weltbild, Amsterdam, Querida Verlag, 1934.

[2] Eingorn, M.: Cosmic screening of the gravitational interaction,

arXiv:1711.01759v1 [gr-qc], 6 November 2017.

[3] Hauser, J., W. Dröscher: Gravity beyond Einstein? Part I: Physics

and the Trouble with Experiments, Z. Naturforsch. 2017; 72(6)a:

493 −525.

[4] US Cosmic Visions: New Ideas in Dark Matter 2017 : Community

Report, arXiv:1707.04591v1 [hep-ph], 14 July 2017, 102 pp.

[5] ATLAS Collaboration: Search for supersymmetry in events with

b-tagged jets and missing transverse momentum in pp collisions

at √13s=13 TeV with the ATLAS detector, arXiv:1708.09266v1

[hep-ex], 30 August 2017.

[6] Cesarotti, C. : Interpreting the Electron EDM Constraint,

arXiv:1810.07736v1 [hep-ph] 17 October 2018.

[7] Cosine-100 collaboration: An experiment to search for dark-matter

interactions using sodium iodide detectors, Springer Nature 564,

pp. 83-86 (2018).

[8] Brockman J. (ed.) : This Idea Must Die, Harper Perennial, 2015.

[9] CERN: LHC prepares for new achievements, CERN News, 3 De-

cember 2018.

[10] Haddock: A Search for deviations from the inverse square

law of gravity at nm range using a pulsed neutron beam,

arXiv:1712.02984v1 [nucl-ex], 8 December 2017.

[11] GERDA Collaboration: Background free search for neutrinoless

double beta decay with Gerda Phase II, arXiv:1703.00570v2 [nucl-

ex], 5 April 2017.

[12] Dröscher, W. & J. H. Hauser: An Introduction to the Physics, Astro-

physics, and Cosmology of Gravity-Like Fields, 526 pp., color, pub-

57

lished by HPCC-Space GmbH (www.hpcc-space.de), Hamburg,

Germany, 2016, available from www.amazon.com.

[13] CERN://atlas.cern/tags/cms-collaboration,

http://cerncourier.com/cws/article/cern/71412, accessed 1 June

2018.

[14] Zych,M. and Brukner, C.: Quantum formulation of the Einstein

equivalence principle, 13 August 2018, Nature Physics.

[15] Marletto, C., Vedral, V. : Gravitationally-induced entanglement be-

tween two massive particles is sufﬁcient evidence of quantum effects

in gravity, arXiv:1707.06036v2 [quant-ph], 9 December, 2017.

[16] Cécile M. DeWitt and Dean Rickles (eds.): The Role of Gravita-

tion in Physics, Report from the 1957 Chapel Hill Conference, re-

published as open access in 2011 by Max Planck Research Library

for the History and Development of Knowledge (eds. J. Renn, R.

Schlögl, B. F. Schutz), 298 pp.

[17] Parsa, et al.: Investigating the Relativistic Motion of the Stars Near

the Supermassive Black Hole in the Galactic Center, ApJ, 12 June

2017.

[18] Pardo, K. : Limits on the number of spacetime dimensions from

GW170817, arXiv:1801.08160v3 [gr-qc], 17 July 2018.

[19] Zwicky, F.: Die Rotverschiebung von extragalaktischen Nebeln,

Helvetica Physica Acta, Heft II, 6, 110, 1933.

[20] Agostini, F.: The XENON project: backgrounds and new results,

https://www.bo.infn.it/xenon/sito_web_Bologna/tesi/tesi_agostini_

dottorato.pdf, 15 August 2017, PhD Thesis, Gran Sasso Science

Institute, Italy.

[21] Hespel, C.: Des Univers Multiples, Espace et Astrophysique, No.

21, Janvier 2018, pp. 64-80.

[22] Barrau, A.: Des Univers Multiples, Dunod 2017

[23] Ambjorn, J., Jurkiewicz, J., R. Loll: The Self Organizing Quantum,

Scientiﬁc American, August 2008.

[24] Ambjorn, J., Jurkiewicz, J., R. Loll: Quantum Gravity: the art

of building spacetime, Chap. 18 in Quantum Gravity, ed. D. Oriti,

Cambridge Univ. Press, 2009.

[25] Ambjorn, J., A. Görlich, Jurkiewicz, J., R. Loll: CDTan Entropic

Theory of Quantum Gravity, arXiv:1007.2560v1 [hep-th], 15 Jul

2010.

[26] Ambjorn, J.: Recent results in CDT quantum gravity,

arXiv:1509.08788v1 [gr-qc], 29 September 2015.

[27] ESA Integral satellite measurements, see

https://www.esa.int/Our_Activities/Space_Science/Integral

_challenges_physics_beyond_Einstein.

[28] Ambjorn, J.: The impact of topology in CDT quantum gravity,

arXiv:1604.08786v1 [hep-th], 29 April 2016.

[29] Heim, B.: Vorschlag eines Weges einer einheitlichen Beschreibung

der Elementarteilchen, Zeitschrift für Naturforschung, 32a, 1977,

pp. 233-243.

[30] Kiefer, C.: Der Quantenkosmos, S. Fischer, 2009.

[31] Kiefer, C.: Quantum Gravity, Oxford University Press, 2012, 3rd.

ed.

[32] Will, C. M.: Theory and Experiment in Gravitational Physics,

Cambridge University Press, 2nd ed., 2018.

[33] Penrose, R.: The Road to Reality, Jonathan Cape, 2004.

[34] Siegel, E.: Beyond the Galaxy, 2016, World Scientiﬁc, 376 pp.,

Chaps. 9 and 10.

[35] Mannheim, P.: Alternatives to Dark Matter and Dark Energy,

arXiv:astro-ph/0505266v2, 1 August 2005.

[36] Zee, A.: Quantum Field Theory in a Nutshell, Princeton University

Press, 2nd ed. 2010.

[37] Bern, Z.: Do I have to Draw a Diagram: A Tale of Quantum Grav-

ity, KITP Public Lecture April 20, 2016, UCLA & KITP.

[38] Bern, Z. et al.: Gravity Amplitudes as Generalized Double Copies,

arXiv:1701.02519v2 [hep-th], 1 May 2017.

[39] Calcagni, C. L.: Classical and Quantum Cosmology, Springer

2017, in color, 843 pp.

[40] Baltimore A.: Viruses, Engineering & Science, No 1, 2004, Cali-

fornia Institute of Technology.

[41] Tong, D.: The Unquantum Quantum, Scientiﬁc American, Decem-

ber 2012.

[42] S. Hossenfelder: Lost in Math, Basic Books, New York, June 2018,

291 pp.

[43] Auerbach, T., I. von Ludwiger: Heim’s Theory of Elementary Parti-

cle Structures, Journal of Scientiﬁc Exploration,Vol. 6, No. 3, 1992,

pp. 217-231.

[44] Yogananda, Paramahansa: Wine of the Mystic: The Rubaiyat of

Omar Khayyam, Self-Realization Fellowship, 1995, p.81.

[45] Witten, E: Magic, Mystery, and Matrix, Notices of the AMS, Vol-

ume 45, Number 9, pp. 1124-1129.

[46] Kane, G.: Supersymmetry and Beyond, Foreword by E. Witten, Ba-

sic Books, New York, 2013.

[47] Andriot, D., G. L. Gómez: Signatures of extra dimensions in grav-

itational waves, arXiv:1704.07392v2 [hep-th], 21 June 2017.

[48] Arkani-Hamed, N.: The hierarchy problem and new dimensions at

a millimeter. Physics Letters B429, 3-4, 1998. pp 263-272.

[49] Schmüser, P.: Feynman-Graphen und Eichtheorien für Experimen-

talphysiker (Lecture Notes in Physics), Springer 1998.

[50] Prakash, N.: Mathematical Perspectives on Theoretical Physics: A

Journey from Black Holes to Superstrings, Imperial College Press,

2003.

[51] Traunmüller, H: Towards a More Well-Founded Cosmology, Z.

Naturforsch., October 2018, DOI: 10.1515/zna-2018-0217 and

https://www.researchgate.net/publication/328007338.

[52] Wilczek, F.: QCD Exposed in Fantastic Realities: 49 Mind Jour-

neys and a Trip to Stockholm, World Scientiﬁc, 2006.

[53] Wilczek, F.: QCD Made Simple, Physics Today, August 2000, pp.

22-28.

[54] Rodrigues, D. C.: Absence of a fundamental acceleration scale in

galaxies, arXiv:1806.06803v1 [astro-ph.GA] 18 June, 2018.

[55] Mc Gaugh, S. S.: Presence of a fundamental acceleration scale in

galaxies, 13 November, 2018.

[56] Rodrigues, D. C.: Reply to Presence of a fundamental acceleration

scale in galaxies and ? A common Milgromian acceleration scale

in nature, arXiv:1811.05882v1 [astro-ph.GA] 14 November, 2018.

[57] P. Lie: Fitting the radial acceleration relation to individual SPARC

galaxies, Astronomy & Astrophysics, 18 July 4, 2018, 12pp.

[58] Kaku, M.: Quantum Field Theory, Oxford, 1993.

[59] Malcadena, J.: The Illusion of Gravity, Scientiﬁc American,

November 2005, pp. 56-63.

[60] Malcadena, J., L. Susskind: Cool horizons for entangled black

holes, arXiv:1306.0533v2 [hep-th], 11 July 2013, 48 pp.

[61] Carroll, S.: From here to Eternity, Dutton, 2010.

[62] Zee, A.: Einstein’s Gravity in a Nutshell, Princeton University

Press, 2013.

[63] Dröscher, W., J. Hauser: Emerging Physics for Novel Field Propul-

sion, 46th AIAA/ASME/SAE/ASE Joint Propulsion Conference

and Exhibit, AIAA 2010-NFF1, 26-28 July 2010, Nashville, TN

(available at www.hpcc-space.com).

[64] Dröscher, W., J. Hauser: Physics of Axial Gravity-Like Fields, 47th

AIAA/ASME/SAE/ASE Joint Propulsion Conference and Exhibit,

AIAA 2011-6042, 31 July - 3 August 2011, San Diego, CA, 23 pp.

(available at www.hpcc-space.com).

[65] Cuoco, A. et al.: Novel dark matter constraints from antiprotons

in the light of AMS-02, arXiv:1610.03071v1 [astro-ph.HE], 10 Oct

2016.

[66] Dröscher, W.: Reality of Gravity-Like Fields? Part I: Experiments

that Challenge Current Physics, Journal of Space Exploration, Vol-

ume 3, Issue 2, Mehta Press, November 2014.

[67] Hauser, J: Reality of Gravity-Like Fields? Part II: Analysis of Grav-

itomagnetic Experiments, Journal of Space Exploration, Volume 3,

Issue 2, Mehta Press, November 2014.

[68] Greiner, W.: Classical Mechanics, Point Particles and Relativity,

Chap. 28, Springer 2004.

[69] Zeidler, E.: Quantum Field Theory I, Basics in Mathematics and

Physics, Springer 2005.

58

[70] Ijjas, A., P. J. Steinhardt, and A. Loeb: Cosmic Inﬂation Theory

Faces Challenges, Scientiﬁc American February 2017.

[71] Ligo.org: Constraints on cosmic strings using data from the ﬁrst

Advanced LIGO observing run., arXiv:1712.01168v2 [gr-qc], 2

May 2018.

[72] Siegel, E.: Merging Neutron Stars Deliver Deathblow To Dark Mat-

ter And Dark Energy Alternatives, October 25, 2017 (this is not a

science paper, but a science blog).

[73] Penrose, R.: The Large, the Small and the Human Mind, Cambridge

University Press, 1999.

[74] ATLAS Collaboration: Search for scalar dark energy in tt¯ + ET

miss

and mono-jet ﬁnal states with the ATLAS detector, ATL-PHYS-

PUB-2018-008, 29th June 2018, 12 pp.

[75] Xenon Collaboration: First Dark Matter Search Results from the

XENON1T Experiment, PRL 119, 181301 (2017) Physical Review

Letters, 3 November 2017.

[76] Wiltshire, D. L., A. Coley: The Case for Putting Aside Dark Energy

to Reevaluate General Relativity, Wire, 30 June 2017.

[77] Dam, L. H., A. Heinesen, D. L. Wiltshire: Apparent cosmic ac-

celeration from type Ia supernovae, arXiv:1706.07236v2 [astro-

ph.CO] 13 September 2017.

[78] IceCube collaboration: Searches for Sterile Neutrinos with the Ice-

Cube Detector, arXiv:1605.01990v2 [hep-ex], 29 August 2016.

[79] Genzel, R: Strongly baryon-dominated disk galaxies at the peak of

galaxy formation ten billion years ago, Nature 15 March 2017, No.

3.

[80] Ahlers, M., Halogen F.: Opening a New Window onto the Universe

with IceCube, arXiv:1805.11112v1 [astro-ph.HE], 28 May 2018.

[81] MiniBooNe Collaboration: Observation of a Signiﬁcant Excess of

Electron-Like Events in the MiniBooNE Short-Baseline Neutrino

Experiment, arXiv:1805.12028v1 [hep-ex], 30 May 2018.

[82] Povh, B: Teilchen und Kerne, Springer 2014.

[83] Erratum: Measurement of the reactor antineutrino ﬂux and spec-

trum at Daya Bay [Phys. Rev. Lett. 116, 061801 (2016)] F. P. An

et al. (Daya Bay Collaboration) Phys. Rev. Lett. 118, 099902, Pub-

lished 1 March 2017.

[84] IceCube Collaboration: Search for sterile neutrino mixing using

three years of IceCube DeepCore data, arXiv:1702.05160v2 [hep-

ex], 26 June 2017.

[85] Grupen, C.: Einstieg in die Astroteilchenphysik, Springer 2018,

440 pp.

[86] Mauro, M. et al.: The origin of the Fermi-LAT γ-ray background,

arXiv:1601.04323v1 [astro-ph.HE], 17 January 2016.

[87] ADMX collaboration: A Search for Invisible Axion Dark Matter

with the Axion Dark Matter Experiment, arXiv:1804.05750v2 [hep-

ex], 17 April 2018.

[88] CMS Collaboration: Search for dark matter produced in associ-

ation with heavy-ﬂavor quark pairs in proton-proton collisions at

√13s=13 TeV, arXiv:1706.02581v1 [hep-ex], 8 June 2017.

[89] Siegel, E.: Could The Energy Loss From Radiat-

ing Stars Explain Dark Energy?, accessed at https-

//sciencesprings.wordpress.com/2018/06/23/from-ethan-siegel-

could-the-energy-loss-from-radiating-stars-explain-dark-energy/.

[90] Hauser, J., W. Dröscher: Emerging Physics for Novel Field Propul-

sion Science, Space, Propulsion & Energy Sciences International

Forum SPESIF-2010, American Institute of Physics, Conference

Proceedings, 978-7354-0749-7/10, 2010, 15 pp.

[91] Greene, G. L., P. Geltenbort: The Neutron Enigma, Scientiﬁc

American, April 2016, pp. 37-41.

[92] Prakash, N.: Dark Matter, Neutrinos, and our Solar System, World

Scientiﬁc, 2013.

[93] New CAST limit on the axion?photon interaction. Nature Physics,

2017.

[94] H.E.S.S. Collaboration.: Search for dark matter annihilations to-

wards the inner Galactic halo from 10 years of observations with

H.E.S.S, 1607.08142v1 [astro-ph.HE], 27 July 2016.

[95] Maestro, P.: Cosmic rays: direct measurements 1510.07683v1

[astro-ph.HE], 26 October 2015.

[96] Feng, J. et al. : Bayesian analysis of spatial-dependent cosmic-

ray propagation: astrophysical background of antiprotons and

positrons, arXiv:1610.06182v3 [astro-ph.HE], 20 December 2016.

[97] Marrochesi, P.: CALET: a high energy astroparticle physics exper-

iment on the ISS, 1512.08059v1 [astro-ph.IM], 26 December 2015.

[98] The Fermi-LAT Collaboration: Searching for Dark Matter Annihi-

lation from Milky Way Dwarf Spheroidal Galaxies with Six Years of

Fermi-LAT Data, :1503.02641v2 [astro-ph.HE], 3 November 2015.

[99] Alpha Magnetic Spectrometer, Wikipedia, accessed 27 May 2017.

[100] Feng, J., H.-H. Zhang: Dark Matter Search in Space: Com-

bined Analysis of Cosmic Ray Antiproton-to-Proton Flux Ratio and

Positron Flux Measured by AMS-02, arXiv:1701.02263v2 [hep-ph],

12 January 2017.

[101] Masi, N.: AMS-02 measurements interpretation: implications for

dark matter indirect search, IL NUOVO CIMENTO 39 C (2016)

282.

[102] Fermilab News: Construction begins on one of the world’s most

sensitive dark matter experiments, Fermilab News, 7 May 2018.

[103] Fialkov, A., R. Barkana, A. Cohen: Constraining Baryon

Dark Matter Scattering with the Cosmic Dawn 21-cm Signal,

arXiv:1802.10577v1 [astro-ph.CO], 28 February 2018.

[104] Bowman: J. D.: Probing the Epoch of Reionization with Redshifted

21 cm HI Emission, Ph D Thesis, MIT, June 2007, 147 pp.

[105] Barkana, R.: The Rise of the First Stars: Supersonic Streaming, Ra-

diative Feedback, and 21-cm Cosmology, Physics Reports, 13 May

2016, 88 pp.

[106] Cleaver, A.V.: Electro−Gravity: What it is or might be, Journal of

the British Interplanetary Society, Vol. 16, 1957/58.

[107] von Ludwiger, I.: Burkhard Heim: Das Leben eines vergessenen

Genies, Scorpio Verlag, München, Germany, 2010, 478pp.

[108] Seifert, H. (ed.).: Space Technology, Wiley 1959.

[109] Tajmar, M. : The SpaceDrive Project First Results on EMDrive and

Mach-Effect Thrusters, 69th International Astronautical Congress

(IAC), Bremen, Germany, 1-5 October 2018.

[110] Tajmar, M. : The SpaceDrive Project ? First Results on EM-

Drive and Mach-Effect Thrusters, BARCELO RENACIMIENTO

HOTEL, SEVILLE, SPAIN / 14 ? 18 MAY 2018, 10pp.

[111] Corliss, W.R. : Propulsion Systems for Space Flight McGrawHill,

1960.

[112] Samaras, D.G.: Applications of Ion Flow Dynamics, Chap.5, Pren-

tice Hall Space Technology Series, 1962.

[113] Millis, M. (ed.): NASA Breakthrough Propulsion Physics,

NASA/CP 208694, January 1999.

[114] Allen, J. E.: Quest for a novel force: a possible revolution in

aerospace, Journal of Progress in Aerospace Sciences, Volume 39,

Issue 1, Elsevier Science, January 2003, pp. 1-60.

[115] Panico, G., A. Wulzer: The Composite Nambu Goldstone Higgs,

arXiv:1506.01961v2 [hep-ph], 11 November 2015.

[116] Schwartz, M. D.: Quantum Field Theory and the Standard Model,

Cambridge Univ. Press, 2014.

[117] Loeb, A.: Theoretical Physics Is Pointless without Experimen-

tal Tests, Scientiﬁc American Space&Physics, October-November

2018, Issue 4, pp. 25-26.

[118] Heim B. : Ein Bild vom Hintergrund der Welt in Welt der Weltbilder

ed. A. Resch, Imago Mundi Vol 14, Resch Verlag, Innsbruck, 1994.

59