Access to this full-text is provided by PLOS.
Content available from PLOS One
This content is subject to copyright.
RESEARCH ARTICLE
Cultural transmission modes of music
sampling traditions remain stable despite
delocalization in the digital age
Mason YoungbloodID
1,2
*
1Department of Psychology, The Graduate Center, City University of New York, New York, NY, United
States of America, 2Department of Biology, Queens College, City University of New York, Flushing, NY,
United States of America
*myoungblood@gradcenter.cuny.edu
Abstract
Music sampling is a common practice among hip-hop and electronic producers that has
played a critical role in the development of particular subgenres. Artists preferentially sample
drum breaks, and previous studies have suggested that these may be culturally transmitted.
With the advent of digital sampling technologies and social media the modes of cultural
transmission may have shifted, and music communities may have become decoupled from
geography. The aim of the current study was to determine whether drum breaks are cultur-
ally transmitted through musical collaboration networks, and to identify the factors driving
the evolution of these networks. Using network-based diffusion analysis we found strong
evidence for the cultural transmission of drum breaks via collaboration between artists, and
identified several demographic variables that bias transmission. Additionally, using network
evolution methods we found evidence that the structure of the collaboration network is no
longer biased by geographic proximity after the year 2000, and that gender disparity has
relaxed over the same period. Despite the delocalization of communities by the internet, col-
laboration remains a key transmission mode of music sampling traditions. The results of this
study provide valuable insight into how demographic biases shape cultural transmission in
complex networks, and how the evolution of these networks has shifted in the digital age.
Introduction
Music sampling, or the use of previously-recorded material in a new composition, is a nearly
ubiquitous practice among hip-hop and electronic producers. The usage of drum breaks, or
percussion-heavy sequences, ripped from soul and funk records has played a particularly criti-
cal role in the development of certain subgenres. For example, “Amen, Brother”, released by
The Winstons in 1969, is widely regarded as the most sampled song of all time. Its iconic 4-bar
drum break has been described as “genre-constitutive” [1], and can be prominently heard in
classic hip-hop and jungle releases by N.W.A and Shy FX [2]. Due to the consistent usage of
drum breaks in particular music communities and subgenres [1–5] some scholars have
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 1 / 12
a1111111111
a1111111111
a1111111111
a1111111111
a1111111111
OPEN ACCESS
Citation: Youngblood M (2019) Cultural
transmission modes of music sampling traditions
remain stable despite delocalization in the digital
age. PLoS ONE 14(2): e0211860. https://doi.org/
10.1371/journal.pone.0211860
Editor: Catharine Penelope Cross, University of St
Andrews, UNITED KINGDOM
Received: October 29, 2018
Accepted: January 23, 2019
Published: February 5, 2019
Copyright: ©2019 Mason Youngblood. This is an
open access article distributed under the terms of
the Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.
Data Availability Statement: All R scripts and data
used in the study are available in the Harvard
Dataverse repository: https://doi.org/10.7910/DVN/
Q02JJQ.
Funding: The author received no specific funding
for this work.
Competing interests: The author has declared that
no competing interests exist.
suggested that they may be culturally transmitted [6], which could occur as a direct result of
collaboration between artists or as an indirect effect of community membership.
Before the digital age, artists may have depended upon collaborators for access to the physi-
cal source materials and expensive hardware required for sampling [7]. In the 1990s, new tech-
nologies like compressed digital audio formats and digital audio workstations made sampling
more accessible to a broader audience [8]. Furthermore, the widespread availability of the
internet and social media have delocalized communities [9], and allowed global music “scenes”
to form around shared interests beyond peer-to-peer file sharing [10,11]. Individuals in online
music communities now have access to the collective knowledge of other members [12,13],
and there is evidence that online communities play a key role in music discovery [14].
Although musicians remain concentrated in historically important music cities (i.e. New York
City and Los Angeles in the United States) [15,16], online music communities also make it
possible for artists to establish collaborative relationships independently of geographic location
[17]. If more accessible sampling technologies and access to collective knowledge have allowed
artists to discover sample sources independently of collaboration [18], then the strength of
cultural transmission via collaboration may have decreased over the last couple of decades.
Similarly, if online music communities have created opportunities for interactions between
potential collaborators, then geographic proximity may no longer structure musical collabora-
tion networks.
Studies of the cultural evolution of music have primarily investigated diversity in musical
performances [19] and traditions [20], macro-scale patterns and selective pressures in
musical evolution [21–24], and the structure and evolution of consumer networks [14,25,26].
Although several diffusion chain experiments have addressed how cognitive biases shape
musical traits during transmission [27–29], few studies have investigated the mechanisms of
cultural transmission at the population level [30,31]. The practice of sampling drum breaks in
hip-hop and electronic music is an ideal research model for cultural transmission because of
(1) the remarkably high copy fidelity of sampled material, (2) the reliable documentation of
sampling events, and (3) the availability of high-resolution collaboration and demographic
data for the artists involved. Exhaustive online datasets of sample usage and collaboration
make it possible to reconstruct networks of artists and track the diffusion of particular drum
breaks from the early 1980s to today. Furthermore, the technological changes that have
occurred over the same time period provide a natural experiment for how the digital age has
impacted cultural transmission more broadly [32].
The aim of the current study was to determine whether drum breaks are culturally trans-
mitted through musical collaboration networks, and to identify the factors driving the evolu-
tion of these networks. We hypothesized that (1) drum breaks are culturally transmitted
through musical collaboration networks, and that (2) the strength of cultural transmission via
collaboration would decrease after the year 2000. For clarification, the alternative to the first
hypothesis is cultural transmission occurring outside of collaborative relationships (i.e. inde-
pendent sample discovery via “crate-digging” in record stores or online). Previous studies have
investigated similar questions using diffusion curve analysis [30], but the validity of inferring
transmission mechanisms from cumulative acquisition data has been called into question [33].
Instead, we applied network-based diffusion analysis (NBDA), a recently developed statistical
method for determining whether network structure biases the emergence of a novel behavior
in a population [34]. As NBDA is most useful in identifying social learning, an ability that is
assumed to be present in humans, it has been primarily applied to non-human animal models
such as birds, whales, and primates [35–37], but the ability to incorporate individual-level vari-
ables to nodes makes it uniquely suited to determining what factors bias diffusion more gener-
ally. Additionally, we hypothesized that (3) collaboration probability would be decoupled from
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 2 / 12
geographic proximity after the year 2000. To investigate this we applied separable temporal
exponential random graph modeling (STERGM), a dynamic extension of ERGM for deter-
mining the variables that bias network evolution [38].
Methods
All data used in the current study were collected in September of 2018, in compliance with the
terms and conditions of each database. For the primary analysis, the three most heavily sam-
pled drum breaks of all time, “Amen, Brother” by The Winstons, “Think (About It)” by Lyn
Collins, and “Funky Drummer” by James Brown, were identified using WhoSampled (https://
www.whosampled.com/). The release year and credits for each song listed as having sampled
each break were collected using data scraping. In order to avoid name disambiguation, only
artists, producers, and remixers with active Discogs links and associated IDs were included in
the dataset. In order to investigate potential shifts in transmission strength around 2000, the
same method was used to collect data for the eight songs in the “Most Sampled Tracks” on
WhoSampled that were released after 1990 (see S1 Appendix). One of these, “I’m Good” by
YG, was excluded from the analysis because the sample is primarily used by a single artist.
Each set of sampling events collected from WhoSampled was treated as a separate diffusion.
All analyses were conducted in R (v 3.3.3).
Collaboration data were retrieved from Discogs (https://www.discogs.com/), a crowd-
sourced database of music releases. All collaborative releases in the database were extracted
and converted to a master list of pairwise collaborations. For each diffusion, pairwise collabo-
rations including two artists in the dataset were used to construct collaboration networks, in
which nodes correspond to artists and weighted links correspond to collaboration number.
Although some indirect connections between artists were missing from these subnetworks,
conducting the analysis with the full dataset was computationally prohibitive and incomplete
networks have been routinely used for NBDA in the past [35,36,39].
Individual-level variables for artists included in each collaboration network were collected
from MusicBrainz (https://musicbrainz.org/), a crowdsourced database with more complete
artist information than Discogs, and Spotify (https://www.spotify.com/), one of the most pop-
ular music streaming services. Gender and geographic location were retrieved from the Music-
brainz API. Whenever it was available, the “begin area” of the artist, or the city in which they
began their career, was used instead of their “area”, or country of affiliation, to maximize geo-
graphic resolution. Longitudes and latitudes for each location, retrieved using the Data Science
Toolkit and Google Maps, were used to calculate each artist’s mean geographic distance from
other individuals. Albunack (http://www.albunack.net/), an online tool which draws from
both Musicbrainz and Discogs, was used to convert IDs between the two databases. Popularity
and followers were retrieved using the Spotify API. An artist’s popularity, a proprietary index
of streaming count that ranges between 0 and 100, is a better indicator of their long-term suc-
cess because it is calculated across their entire discography. Followers is a better indicator of
current success because it reflects user engagement with artists who are currently more active
on the platform. Discogs IDs are incompatible with the Spotify API, so artist names were
URL-encoded and used as text search terms.
In order to identify whether social transmission between collaborators played a role in sam-
ple acquisition, order of acquisition diffusion analysis (OADA) was conducted using the R
script for NBDA (v 1.2.13) provided on the Laland lab’s website (https://lalandlab.st-andrews.
ac.uk/freeware/). OADA uses the order in which individuals acquire a trait to determine
whether its diffusion is biased by the structure of the social network [40]. OADA was utilized
instead of time of acquisition diffusion analysis (TADA) because it makes no assumptions
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 3 / 12
about the baseline rate of acquisition [34]. For each artist, order of acquisition was determined
by the year that they first used the sample in their music. Sampling events from the same year
were given the same order. Gender, popularity, followers, and mean distance were included as
predictor variables. For gender, females were coded as -1, males were coded as 1, and individu-
als with other identities or missing values were coded as 0. For popularity, followers, and mean
distance each variable was centered around zero. Asocial, additive, and multiplicative models
were fit to all three diffusions collectively with every possible combination of individual-level
variables. Standard information theoretic approaches were used to rank the models according
to Akaike’s Information Criterion corrected for sample size (AIC
c
). Models with a ΔAIC
c
<2
were considered to have the best fit [41]. The best fitting model with the most individual-level
variables was run separately to assess the effects of each variable on social transmission. Effect
sizes were calculated according to [36]. An additional OADA was conducted using the seven
diffusions from after 1990. Individual-level variables were excluded due to insufficient demo-
graphic data. An additive model was fit to the OADA, and separate social transmission
parameters were calculated for each diffusion to identify differences in transmission strength.
Additive and multiplicative models give identical results in the absence of individual-level vari-
ables, so no model comparison was necessary.
In order to assess the effects of individual-level variables on network evolution, STERGM
was conducted using statnet (v 2016.9), an R package for network analysis and simulation.
STERGM is a dynamic social network method that models the formation and dissolution of
links over time [38]. Collaboration events involving artists from each diffusion were com-
bined to construct static collaboration subnetworks for each year between 1984 and 2017,
which were then converted into an undirected, unweighted dynamic network. Early years
not continuous with the rest of the event data (i.e. 1978 and 1981) were excluded from the
dynamic network. In order to determine whether the variables biasing network structure
have changed over time, the analysis was conducted separately with the data from 1984-1999
and 2000-2017. For each time period a set of STERGM models with every possible combina-
tion of individual-level variables were fit to the dynamic network using conditional maxi-
mum likelihood estimation (CMLE). Although STERGM can be used to separately model
both the formation and dissolution of links, this analysis was restricted to the former.
Gender, popularity, and followers were included to investigate homophily, while mean
distance was included to assess its effect on link formation. As STERGM cannot be run
with missing covariates, NA values in popularity (6.39%), followers (6.39%), and mean dis-
tance (38.49%) were imputed using the random forest method. The models from each period
were ranked according to AIC, and the best fitting models (ΔAIC <2) with the most indi-
vidual-level variables were run separately to assess the effects of each variable on network
evolution.
Results
The three most heavily sampled drum breaks of all time were collectively sampled 6530 times
(n
1
= 2966, n
2
= 2099, n
3
= 1465). 4462 (68.33%) of these sampling events were associated
with valid Discogs IDs, corresponding to 2432 unique artists (F: n= 143, 5.88%; M: n= 1342,
55.18%; Other or NA: n= 947, 38.94%), and included in the primary OADA and STERGM.
The eight samples released after 1990 were collectively sampled 1752 times (n
1
= 284, n
2
= 260,
n
3
= 248, n
4
= 198, n
5
= 194, n
6
= 193, n
7
= 192, n
8
= 182). 1305 (74.53%) of these sampling
events were associated with valid Discogs IDs, corresponding to 1270 unique artists, and
included in the additional OADA.
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 4 / 12
NBDA
The best fitting model from the primary OADA, which was multiplicative and included all
four individual-level variables, can be seen in Table 1. In support of our first hypothesis, a like-
lihood ratio test found strong evidence for social transmission over asocial learning (ΔAIC
c
=
141; p<0.001). Based on the effect sizes, transmission appears to be more likely among
females (p<0.01) and less likely among artists who are more popular (p<0.001) and have
more followers (p<0.001). Mean distance is not a significant predictor of transmission
(p= 0.89). The diffusion network and diffusion curve for all three drum breaks included in the
primary OADA are shown in Fig 1 and S1 Fig, respectively. All other models fit to the primary
OADA can be found in S1 Appendix.
The results of the additional OADA, conducted using the seven diffusions from after 1990,
can be found in S1 Appendix. A likelihood ratio test found strong evidence for social transmis-
sion overall (ΔAIC
c
= 88; p<0.001). Contrary to our second hypothesis, linear regression
found no significant relationships between either mean year of diffusion and social transmis-
sion estimate (R
2
= 0.20, p= 0.31) or median year of diffusion and social transmission estimate
(R
2
= 0.17, p= 0.36) (see S2 Fig).
STERGM
For both time periods the second best fitting STERGM models (ΔAIC <2) included all four
individual-level variables, the results of which can be seen in Table 2. All other models can be
found in S1 Appendix. Across both periods there appears to be homophily based on popularity
(p<0.001) and gender (M: p<0.001; F: ps<0.05). In support of our third hypothesis, mean
distance negatively predicts link formation only before 2000 (p<0.001). Additionally, there
is a heterophilic effect of followers only after 2000 (p<0.001). Based on the effect sizes, there
has been a nearly three-fold decrease in the strength of homophily among females. Conversely,
the strengh of homophily by popularity has actually increased since 2000. The results of the
STERGM analysis assuming different transition years (e.g. 1994, 1996, 1998, 2002, 2004,
2006) can be found in S1 Appendix. Linear regression found significant positive relationships
between both popularity and number of collaborations (R
2
= 0.048, p<0.001) and followers
and number of collaborations (R
2
= 0.090, p<0.001) (see S3 Fig).
A goodness-of-fit analysis was conducted by generating simulated networks (n = 100) from
the parameters of the best fitting model and comparing them to the observed network statistics
Table 1. The results of the multiplicative model for the OADA including all individual-level variables.
Multiplicative Model—Order of Acquisition
Estimate Effect size p
Gender -0.11 0.81 <0.01
Popularity -0.013 0.86 <0.001
Followers -9.6E-8 0.92 <0.001
Mean distance -1.8E-9 1 0.89
Likelihood Ratio Test
AIC
c
p
With social transmission 14719 <0.001
Without social transmission 14860
The top panel shows the model estimate, effect size, and p-value for each individual-level variable. The bottom panel
shows the AIC
c
for the model with and without social transmission and the p-value from the likelihood ratio test.
https://doi.org/10.1371/journal.pone.0211860.t001
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 5 / 12
[42]. For both time periods, the global statistics (i.e. gender, popularity, followers, mean dis-
tance) from the simulated networks were not significantly different from those observed, indi-
cating that both models are good fits for the variables in question. Structural statistics (i.e.
degree, edgewise shared partner, minimum geodesic distance) from the simulated networks
were significantly different from those observed, indicating that both models are not good fits
for the structural properties of the network. The results of this analysis can be found in S1
Appendix.
Fig 1. The diffusion of all three drum breaks through the combined collaboration network. At each time point individuals who have not yet used
one of the drum breaks (informed) are shown in white, individuals who first used one of the drum breaks in a previous time step (previously informed)
are shown in blue, and individuals who first used one of the drum breaks in the current time step (newly informed) are shown in red.
https://doi.org/10.1371/journal.pone.0211860.g001
Table 2. The results of the STERGM analyses for before and after 2000.
STERGM 1984-1999 2000-2017
Effect size pEffect size p
Gender (F) 6.86 <0.001 2.23 <0.05
Gender (M) 1.70 <0.001 2.43 <0.001
Popularity 0.84 <0.001 0.54 <0.001
Followers 1.02 0.64 1.96 <0.001
Mean distance 0.87 <0.001 0.99 0.82
The table shows the effect size and p-value for gender, popularity, followers, and mean distance during each time period.
https://doi.org/10.1371/journal.pone.0211860.t002
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 6 / 12
Discussion
Using high-resolution collaboration and longitudinal diffusion data, we have provided the first
quantitative evidence that music samples are culturally transmitted via collaboration between
artists. Additionally, in support of the widespread assertion that the internet has delocalized
artist communities, we have found evidence that geographic proximity no longer biases the
structure of musical collaboration networks after the year 2000. Given that the strength of
transmission has not weakened over the same time period, this finding indicates that collabo-
ration remains a key cultural transmission mode for music sampling traditions. This result
supports the idea that the internet has enhanced rather than disrupted existing social interac-
tions [9].
Gender appears to play a key role in both network structure and cultural transmission.
Across the entire time period, collaborations were more likely to occur between individuals of
the same gender. Additionally, the probability of cultural transmission appears to be much
higher for female artists. This effect could be a result of the much higher levels of homophily
among women before 2000. Previous work has suggested that high levels of gender homophily
are associated with gender disparity [43–45], which is consistent with the historic marginaliza-
tion of women in music production communities [1,10,46]. Although the proportion of
female artists in the entire dataset is extremely low (*6%), the reduction in homophily among
female artists after 2000 could be reflective of increasing inclusivity [47].
Artists with similar levels of popularity were also more likely to collaborate with each other.
The increase in homophily by popularity after 2000 could be the result of an increase in skew,
whereby fewer artists take up a greater proportion of the music charts [48]. In addition, the
probability of cultural transmission appears to be higher among less popular artists, even
though they are slightly less collaborative. This effect could be linked to cultural norms within
“underground” music production communities. In these communities, collective cultural pro-
duction is sometimes prioritized over individual recognition [49,50]. This principle is best
demonstrated by the historic popularity of the white-label release format, where singles are
pressed to blank vinyl and distributed without artist information [49,50]. In more extreme
cases, individual artists who experience some level of mainstream success or press coverage
risk losing credibility, and may even be perceived as undermining the integrity of their music
community [50,51]. Concerns about credibility could cause individuals to selectively copy less
popular artists or utilize more rare samples (i.e. De La Soul’s refusal to sample James Brown
and George Clinton because of their use by other popular groups [52]). Future research should
investigate whether the “high prestige attached to obscurity” [50] in these communities may be
driving a model-based bias for samples used by less popular artists or a frequency-based bias
for samples that are more rare in the population [53]. A frequency-based novelty bias was
recently identified in Western classical music using agent-based modeling [31], and similar
methods could be utilized for sampling.
Similarly to popularity, the number of followers an individual has negatively predicts trans-
mission probability. However, artists with similar numbers of followers were actually less likely
to collaborate with each other after 2000. This result could be due to the fact that followers is a
better indicator of current popularity, but has lower resolution further back in time. Newer art-
ists with inflated follower counts who collaborate with older, historically-important artists
with lower follower counts may still be expressing homophily based on overall popularity.
There are several limitations to this study that should be highlighted. Firstly, the time lag
inherent in the user editing of WhoSampled means that older transmission records are more
complete. Algorithms for sample-detection [54] may allow researchers to reconstruct full
transmission records in the future, but these approaches are not yet publicly available.
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 7 / 12
Secondly, MusicBrainz and Spotify had incomplete demographic data for some artists (i.e.
gender and geographic location), which may have introduced bias into our model estimates.
Lastly, Discogs primarily documents official releases, which means that more recent releases
on streaming sites like Soundcloud are not well-represented. In combination with the exclu-
sion of artists without Discogs IDs, this indicates that less prominent artists may be underrep-
resented in the dataset. Fortunately, social networks are fairly robust to missing data, especially
when networks are large, centralized, and disproportionately include central nodes [55–57].
Additionally, simulation studies evaluating the robustness of NBDA indicate that it performs
well under fairly high levels of sampling error and bias [34,58–60], risks that are mitigated
by the fact that the network was reconstructed from published collaborations rather than tem-
poral co-occurrence data. Data on collaborative relationships between artists are less likely to
suffer from significant observation error because (1) they do not have to be statistically trans-
formed or filtered before network construction and (2) they result in cultural artifacts that are
part of the public record. The crowd-sourced nature of these data is unlikely to impact the
results, given that comparative studies of other crowd-sourced, quantitative datasets indicate
that they have high accuracy [61–63].
The results of this study provide valuable insight into how demographic variables, particu-
larly gender and popularity, have biased both cultural transmission and the evolution of collab-
oration networks going into the digital age. In addition, we provide evidence that collaboration
remains a key transmission mode of music sampling traditions despite the delocalization of
communities by the internet. Future research should investigate whether decreased homophily
among females is actually linked to greater inclusivity in the music industry (e.g. booking rates,
financial compensation, media coverage), as well as whether the inverse effect of popularity on
cultural transmission probability is a result of a model-based bias for obscurity or a frequency-
based bias for novelty.
Supporting information
S1 Appendix. Statistical output, goodness-of-fit tests, and supplementary analyses.
(PDF)
S1 Fig. The combined diffusion curve for all three drum breaks included in the primary
OADA. The proportion of informed individuals is on the y-axis, and the year is on the x-axis.
Although recent research suggests that inferring acquisition modes from diffusion curves is
unreliable, it appears that the curve may have the S-shape indicative of social transmission
prior to the early-2000s.
(TIFF)
S2 Fig. The relationship between diffusion years and transmission strengths for all seven
diffusions included in the additional OADA. The mean (left) and median (right) years of dif-
fusion are on the x-axis, and the social transmission estimates from the additive model are on
the y-axis. Linear regression found no significant relationships between either mean year of
diffusion and social transmission estimate (R
2
= 0.20, p= 0.31) or median year of diffusion
and social transmission estimate (R
2
= 0.17, p= 0.36).
(TIFF)
S3 Fig. The relationship between popularity and followers and the number of collabora-
tions for each artist in the dataset. Popularity and followers are on the x-axis, and number
of collaborations is on the y-axis. Linear regression found significant positive relationships
between both popularity and number of collaborations (R
2
= 0.048, p<0.001) and followers
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 8 / 12
and number of collaborations (R
2
= 0.090, p<0.001).
(TIFF)
Acknowledgments
I would like to thank David Lahti and Carolyn Pytte, as well as all members of the Lahti lab, for
their valuable conceptual and analytical feedback.
Author Contributions
Conceptualization: Mason Youngblood.
Data curation: Mason Youngblood.
Formal analysis: Mason Youngblood.
Investigation: Mason Youngblood.
Methodology: Mason Youngblood.
Resources: Mason Youngblood.
Software: Mason Youngblood.
Validation: Mason Youngblood.
Visualization: Mason Youngblood.
Writing – original draft: Mason Youngblood.
Writing – review & editing: Mason Youngblood.
References
1. Whelan AM. The “Amen” Breakbeat as Fratriarchal Totem. In: Gender and Music. Heidelberg: Univer-
sitatsverlag Winter; 2009. p. 111–133.
2. Collins S. Amen to that. M/C Journal. 2007; 10(2).
3. Frane AV. Swing Rhythm in Classic Drum Breaks From Hip-Hop’s Breakbeat Canon. Music Perception.
2017; 34(3):291–302. https://doi.org/10.1525/mp.2017.34.3.291
4. Va
¨keva
¨L. Garage band or GarageBand
®
? Remixing musical futures. British Journal of Music Educa-
tion. 2010; 27(1):59–70. https://doi.org/10.1017/S0265051709990209
5. Rodgers T. On the process and aesthetics of sampling in electronic music production. Organised
Sound. 2003; 8(3):313–320. https://doi.org/10.1017/S1355771803000293
6. Bown O, Eldridge A, McCormack J. Understanding interaction in contemporary digital music: From
instruments to behavioural objects. Organised Sound. 2009; 14(2):188–196. https://doi.org/10.1017/
S1355771809000296
7. Lloyd R. Unauthorized Digital Sampling in the Changing Music Landscape. Journal of Intellectual Prop-
erty Law. 2014; 22(1):143–176.
8. Bodiford JR. Sharing Sounds: Musical Innovation, Collaboration, and Ideological Expression in the Chil-
ean Netlabel Movement. University of Michigan; 2017.
9. DiMaggio P, Hargittai E, Neuman WR, Robinson JP. Social Implications of the Internet. Annual Review
of Sociology. 2001; 27:307–336. https://doi.org/10.1146/annurev.soc.27.1.307
10. Ebare S. The Computerization of Practice in Peripheral Music Communities. Simon Fraser University;
2003.
11. Alexandraki C, Valsamakis N. Enabling virtual music performance communities. In: Virtual Community
Practices and Social Interactive Media: Technology Lifecycle and Workflow Analysis. Hershey: IGI
Global; 2009. p. 378–399.
12. Salavuo M. Open and informal online communities as forums of collaborative musical activities and
learning. British Journal of Music Education. 2006; 23(3):253–271.
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 9 / 12
13. Lazar J, Preece J. Social Considerations in Online Communities: Usability, Sociability, and Success
Factors; 2002.
14. Garg R, Smith MD, Telang R. Measuring Information Diffusion in an Online Community. Journal of Man-
agement Information Systems. 2011; 28(2):11–38. https://doi.org/10.2753/MIS0742-1222280202
15. Florida R, Jackson S. Sonic city: The evolving economic geography of the music industry. Journal of
Planning Education and Research. 2010; 29(3):310–321. https://doi.org/10.1177/0739456X09354453
16. Graham S. Global and Local Underground/Fringe Scenes. In: Sounds of the Underground. University
of Michigan Press; 2016. p. 28–50.
17. Kruse H. Local Identity and Independent Music Scenes, Online and Off. Popular Music and Society.
2010; 33(5):625–639. https://doi.org/10.1080/03007760903302145
18. Makelberge N. Rethinking collaboration in networked music. Organised Sound. 2012; 17(1):28–35.
https://doi.org/10.1017/S1355771811000483
19. Ellis BK, Hwang H, Savage PE, Pan BY, Cohen AJ, Brown S. Identifying style-types in a sample of
musical improvisations using dimensional reduction and cluster analysis. Psychology of Aesthetics,
Creativity, and the Arts. 2018; 12(1):110–122. https://doi.org/10.1037/aca0000072
20. Savage PE, Brown S. Mapping Music: Cluster Analysis Of Song-Type Frequencies Within And
Between Cultures. Ethnomusicology. 2014; 58(1):133–155. https://doi.org/10.5406/ethnomusicology.
58.1.0133
21. Mauch M, Maccallum RM, Levy M, Leroi AM, Mauch M. The evolution of popular music: USA 1960–
2010. Royal Society Open Science. 2015; 2. https://doi.org/10.1098/rsos.150081 PMID: 26064663
22. Percino G, Klimek P, Thurner S. Instrumentational complexity of music genres and why simplicity sells.
PLoS ONE. 2014; 9(12):1–16. https://doi.org/10.1371/journal.pone.0115255
23. Savage PE, Brown S, Sakai E, Currie TE. Statistical universals reveal the structures and functions of
human music. Proceedings of the National Academy of Sciences. 2015; 112(29):8987–8992. https://
doi.org/10.1073/pnas.1414495112
24. Rodriguez Zivic PH, Shifres F, Cecchi GA. Perceptual basis of evolving Western musical styles. Pro-
ceedings of the National Academy of Sciences. 2013; 110(24):10034–10038. https://doi.org/10.1073/
pnas.1222336110
25. Schlitter N, Falkowski T. Mining the Dynamics of Music Preferences from a Social Networking Site. In:
2009 International Conference on Advances in Social Network Analysis and Mining. Athens, Greece;
2009.
26. Monechi B, Gravino P, Servedio VDP, Tria F, Loreto V. Significance and popularity in music production.
Royal Society Open Science. 2017; 4(7). https://doi.org/10.1098/rsos.170433 PMID: 28791169
27. Verhoef T. The origins of duality of patterning in artificial whistled languages. Language and Cognition.
2012; 4(4):357–380. https://doi.org/10.1515/langcog-2012-0019 PMID: 23637710
28. Ravignani A, Delgado T, Kirby S. Musical evolution in the lab exhibits rhythmic universals. Nature
Human Behaviour. 2017; 1. https://doi.org/10.1038/s41562-016-0007
29. Lumaca M, Baggio G. Cultural transmission and evolution of melodic structures in multi-generational
signaling games. Artificial Life. 2017; 23:406–423. https://doi.org/10.1162/ARTL_a_00238 PMID:
28786724
30. Rossman G, Chiu MM, Mol JM. Modeling diffusion of multiple innovations via multilevel diffusion curves:
Payola in pop music radio. Sociological Methodology. 2008; 38:201–230. https://doi.org/10.1111/j.
1467-9531.2008.00201.x
31. Nakamura E, Kaneko K. Statistical Evolutionary Laws in Music Styles. ArXiv e-prints. 2018;.
32. Acerbi A. A cultural evolution approach to digital media. Frontiers in Human Neuroscience. 2016; 10
(December):636. https://doi.org/10.3389/fnhum.2016.00636 PMID: 28018200
33. Laland KN, Kendal JR. What the models say about social learning. In: Fragaszy DM, Perry S, editors.
The Biology of Traditions: Models and Evidence. Cambridge: Cambridge University Press; 2003. p.
33–55.
34. Franz M, Nunn CL. Network-based diffusion analysis: a new method for detecting social learning. Pro-
ceedings of the Royal Society B: Biological Sciences. 2009; 276(1663):1829–1836. https://doi.org/10.
1098/rspb.2008.1824 PMID: 19324789
35. Aplin LM, Farine DR, Morand-Ferron J, Cockburn A, Thornton A, Sheldon BC. Experimentally induced
innovations lead to persistent culture via conformity in wild birds. Nature. 2014; 518(7540):538–541.
https://doi.org/10.1038/nature13998 PMID: 25470065
36. Allen J, Weinrich M, Hoppitt W, Rendell L. Network-Based Diffusion Analysis Reveals Cultural Trans-
mission of Lobtail Feeding in Humpback Whales. Science. 2013; 340(6131):485–488. https://doi.org/
10.1126/science.1231976 PMID: 23620054
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 10 / 12
37. Hobaiter C, Poisot T, Zuberbu¨hler K, Hoppitt W, Gruber T. Social Network Analysis Shows Direct Evi-
dence for Social Transmission of Tool Use in Wild Chimpanzees. PLoS Biology. 2014; 12(9):e1001960.
https://doi.org/10.1371/journal.pbio.1001960 PMID: 25268798
38. Krivitsky PN, Handcock MS. A separable model for dynamic networks. Journal of the Royal Statistical
Society. 2010; 76(1):29–46. https://doi.org/10.1111/rssb.12014
39. Aplin LM, Farine DR, Morand-Ferron J, Sheldon BC. Social networks predict patch discovery in a wild
population of songbirds. Proceedings of the Royal Society B: Biological Sciences. 2012; 279
(1745):4199–4205. https://doi.org/10.1098/rspb.2012.1591 PMID: 22915668
40. Hoppitt W, Boogert NJ, Laland KN Detecting social transmission in networks. Journal ofTheoretical
Biology. 2010; 263(4):544–555. https://doi.org/10.1016/j.jtbi.2010.01.004 PMID: 20064530
41. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical information-theoretic
approach. 2nd ed. Springer; 2002.
42. Hunter DR, Goodreau SM, Handcock MS. Goodness of Fit of Social Network Models. Journal of the
American Statistical Association. 2008; 103(481):248–258. https://doi.org/10.1198/
016214507000000446
43. Glass C, Cook A. Do Women Leaders Promote Positive Change? Analyzing the Effect of Gender on
Business Practices and Diversity Initiatives. Human Resource Management. 2017; p. 1–15. https://doi.
org/10.1002/hrm.21838
44. Crewe L, Wang A. Gender inequalities in the City of London advertising industry. Environment and
Planning A: Economy and Space. 2018; 50(3):671–688. https://doi.org/10.1177/0308518X17749731
45. Jadidi M, Karimi F, Lietz H, Wagner C. Gender Disparities in Science? Dropout, Productivity, Collabora-
tions and Success of Male and Female Computer Scientists. Advances in Complex Systems. 2018; 21.
https://doi.org/10.1142/S0219525917500114
46. Baker S, Cohen BMZ. From snuggling and snogging to sampling and scratching: Girls’ nonparticipation
in community-based music activities. Youth & Society. 2008; 39(3):316–339. https://doi.org/10.1177/
0044118X06296696
47. Smith JA, McPherson M, Smith-Lovin L. Social Distance in the United States: Sex, Race, Religion, Age,
and Education Homophily among Confidants, 1985 to 2004. American Sociological Review. 2014; 79
(3):432–456. https://doi.org/10.1177/0003122414531776
48. Ordanini A, Nunes JC. Fewer blockbusters and more superstars: How technological innovation has
impacted convergence on the music charts. International Journal of Research in Marketing. 2016; 33
(2):297–313. https://doi.org/10.1016/j.ijresmar.2015.07.006
49. Thornton S. Club Cultures: Music, Media and Subcultural Capital. Cambridge: Polity Press; 1995.
50. Hesmondhalgh D. The British Dance Music Industry: A Case Study of Independent Cultural Production.
The British Journal of Sociology. 1998; 49(2):234–251. https://doi.org/10.2307/591311
51. Noys B. Into the ‘Jungle’. Popular Music. 1995; 14(3):321–332.
52. Lena JC. Meaning and membership: samples in rap music, 1979-1995. Poetics. 2004; 32:297–310.
https://doi.org/10.1016/j.poetic.2004.05.006
53. Boyd R, Richerson PJ. Culture and the Evolutionary Process. Chicago: The University of Chicago
Press; 1985.
54. Hockman JA, Davies MEP. Computational Strategies for Breakbeat Classification and Resequencing in
Hardcore, Jungle and Drum & Bass. In: Proc. of the 18th Int. Conference on Digital Audio Effects
(DAFx-15); 2015.
55. Smith J, Moody J. Structural effects of network sampling coverage I: Nodes missing at random. Social
Networks. 2013; 35(4):652–668. https://doi.org/10.1016/j.socnet.2013.09.003
56. Smith J, Moody J, Morgan J. Network sampling coverage II: The effect of non-random missing data on
network measurement. Social Networks. 2017; 48:78–99. https://doi.org/10.1016/j.socnet.2016.04.005
PMID: 27867254
57. Silk MJ, Jackson AL, Croft DP, Colhoun K, Bearhop S. The consequences of unidentifiable individuals
for the analysis of an animal social network. Animal Behaviour. 2015; 104. https://doi.org/10.1016/j.
anbehav.2015.03.005
58. Whalen A, Hoppitt W. Bayesian model selection with Network Based Diffusion Analysis. Frontiers in
Psychology. 2016; 7. https://doi.org/10.3389/fpsyg.2016.00409
59. Hoppitt W. The conceptual foundations of Network-Based Diffusion Analysis: choosing networks and
interpreting results. Philosophical Transactions of the Royal Society B. 2017; 372. https://doi.org/10.
1098/rstb.2016.0418
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 11 / 12
60. Wild S, Hoppitt W. Choosing a sensible cut-off point: assessing the impact of uncertainty in a social net-
work on the performance of NBDA. Primates. 2018. https://doi.org/10.1007/s10329-018-0693-4 PMID:
30302657
61. Rajagopalan MS, Khanna V, Stott M, Leiter Y, Showalter TN, Dicker A, et al. Accuracy of cancer infor-
mation on the Internet: A comparison of a Wiki with a professionally maintained database. Journal of
Clinical Oncology. 2010; 28. https://doi.org/10.1200/jco.2010.28.15_suppl.6058
62. Brown AR. Wikipedia as a Data Source for Political Scientists: Accuracy and Completeness of Cover-
age. PS: Political Science & Politics. 2011; 44(2):339–343.
63. Kra
¨enbring J, Penza TM, Gutmann J, Muehlich S, Zolk O, Wojnowski L, et al. Accuracyand Complete-
ness of Drug Information in Wikipedia: A Comparison with Standard Textbooks of Pharmacology.
PLOS ONE. 2014; 9(9). https://doi.org/10.1371/journal.pone.0106930 PMID: 25250889
Cultural transmission modes of music sampling traditions
PLOS ONE | https://doi.org/10.1371/journal.pone.0211860 February 5, 2019 12 / 12
Available via license: CC BY
Content may be subject to copyright.