Conference Paper

Grid-Based Motion Planning Using Advanced Motions for Hexapod Robots

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... This article is concerned with non-planar hexapod manoeuvres, which will be termed advanced motions and the scenarios shown in Figure 1 will be considered in detail. 7 The movement shown in Figure 1(a) is termed wall walking and that in Figure 1(b), chimney walking. Such manoeuvres have not previously been considered in the literature. ...
... The lumped body width and body mass were assumed according to small-scale hexapods. 7 A conservative was selected given the high friction observed from using rubber feet. 20 The three parameters of interest in this study are the overall width, l ow , lumped body width, l w and link ratio, l 2 : l 3 . ...
Full-text available
Article
Advanced motions, which utilize footholds on walls, offer considerably more opportunities for hexapods in accessing confined environment. However, there has been no research on the practical application of such motions on a hexapod. These motions are kinematically viable for the standard hexapod design with three degrees of freedom per leg but the joint requirements have yet to be identified. This article presents the motion analysis for two forms of advanced motion, wall walking and chimney walking, to study the joint requirement for executing such motions. The analysis has been verified through a series of experiments demonstrating that a hexapod with a standard design is capable of executing advanced motions.
... PID controller is also the most popular techniques which are used in non-linear systems [28]. Many cases of mobile robots have used the PID controller to improve their performance [29]- [36]. In the case of wheeled based mobile robots, the PID controller is easier to implement because they are no need a complex control for actuator movement like a multileg robot. ...
Full-text available
Article
This paper presents a design of wall following behaviour for hexapod robot based on PID controller. PID controller is proposed here because of its ability to control many cases of non-linear systems. In this case, we proposed a PID controller to improve the speed and stability of hexapod robot movement while following the wall. In this paper, PID controller is used to control the robot legs, by adjusting the value of swing angle during forward or backward movement to maintain the distance between the robot and the wall. The experimental result was verified by implementing the proposed control method into actual prototype of hexapod robot.
... PID controller is also the most popular techniques which are used in non-linear systems [28]. Many cases of mobile robots have used the PID controller to improve their performance [29]- [36]. In the case of wheeled based mobile robots, the PID controller is easier to implement because they are no need a complex control for actuator movement like a multileg robot. ...
Full-text available
Conference Paper
This paper presents a design of wall following behaviour for hexapod robot based on PID controller. PID controller is proposed here because of its ability to control many cases of non-linear systems. In this case, we proposed a PID controller to improve the speed and stability of hexapod robot movement while following the wall. In this paper, PID controller is used to control the robot legs, by adjusting the value of swing angle during forward or backward movement to maintain the distance between the robot and the wall. The experimental result was verified by implementing the proposed control method into actual prototype of hexapod robot.
Article
For kinematically redundant robots, self-motion manifolds that represent all the inverse kinematic solutions for a given end-effector location play a significant role in global motion planning. However, the efficient computation of self-motion manifolds, especially the computation of high-dimensional manifolds, is still a problem that needs to be solved. In this paper, the grid elements modeling criteria are formulated, and the specific modeling method of a grid element in the configuration space is developed. Based on the idea of cellular automata, the problem of computing self-motion manifolds is transformed into a dynamic model searching problem, and an evolution strategy is proposed to realize the efficient computation of self-motion manifolds. Finally, two examples are used to verify the effectiveness of the proposed method in computing high-dimensional self-motion manifolds. The results show that compared to the conventional methods, the proposed method can correctly identify all the self-motion manifolds with 94% reduced computational time on average.
Chapter
This paper presents the interpolation of motion primitives and the foothold planner for a hexapod which utilises advanced motions to navigate through complex environments such as narrow pathways and large holes which are surrounded by walls. Advanced motions are concerned with the use of vertical surfaces for footholds and currently consists of two motion primitives, wall and chimney walking aside from the standard ground walking. Previous work have not considered in detail the interpolation between the motion primitives for achieving continuous motion. The transition routines and foothold planning for the interpolation between these motion primitives are generated using a heuristic approach which ensures that the motion of the robot remains stable and avoids both inter-leg collision and kinematic singularity. The motion plan which includes the transition routines has been evaluated successfully in a kinematic simulation on the Corin hexapod. The results show that the robot was able to transition between the different motion primitives required for navigating through the complex environment and that such motions are realisable for hexapods.
Full-text available
Conference Paper
We present a framework for quadrupedal locomotion over highly challenging terrain where the choice of appropriate footholds is crucial for the success of the behaviour. We use a path planning approach which shares many similarities with the results of the DARPA Learning Locomotion challenge and extend it to allow more flexibility and increased robustness. During execution we incorporate an on-line force-based foothold adaptation mechanism that updates the planned motion according to the perceived state of the environment. This way we exploit the active compliance of our system to smoothly interact with the environment, even when this is inaccurately perceived or dynamically changing, and update the planned path on-The-fly. In tandem we use a virtual model controller that provides the feed-forward torques that allow increased accuracy together with highly compliant behaviour on an otherwise naturally very stiff robotic system. We leverage the full set of benefits that a high performance torque controlled quadruped robot can provide and demonstrate the flexibility and robustness of our approach on a set of experimental trials of increasing difficulty.
Full-text available
Conference Paper
We present a framework for dynamic quadrupedal locomotion over challenging terrain, where the choice of appropriate footholds is crucial for the success of the behaviour. We build a model of the environment on-line and on-board using an efficient occupancy grid representation. We use Any-time-Repairing A∗ (ARA∗) to search over a tree of possible actions, choose a rough body path and select the locally-best footholds accordingly. We run a n-step lookahead optimization of the body trajectory using a dynamic stability metric, the Zero Moment Point (ZMP), that generates natural dynamic whole-body motions. A combination of floating-base inverse dynamics and virtual model control accurately executes the desired motions on an actively compliant system. Experimental trials show that this framework allows us to traverse terrains at nearly 6 times the speed of our previous work, evaluated over the same set of trials.
Full-text available
Conference Paper
The objective of this paper is to present the evolution and the state-of-the- art in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limi- tations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still un- solved, that remain defying robotics research, are also addressed.
Full-text available
Conference Paper
NetworkX is a Python language package for exploration and analysis of networks and network algorithms. The core package provides data structures for representing many types of networks, or graphs, including simple graphs, directed graphs, and graphs with parallel edges and self loops. The nodes in NetworkX graphs can be any (hashable) Python object and edges can contain arbitrary data; this flexibility mades NetworkX ideal for representing networks found in many different scientific fields. In addition to the basic data structures many graph algorithms are implemented for calculating network properties and structure measures: shortest paths, betweenness centrality, clustering, and degree distribution and many more. NetworkX can read and write various graph formats for eash exchange with existing data, and provides generators for many classic graphs and popular graph models, such as the Erdoes-Renyi, Small World, and Barabasi-Albert models, are included. The ease-of-use and flexibility of the Python programming language together with connection to the SciPy tools make NetworkX a powerful tool for scientific computations. We discuss some of our recent work studying synchronization of coupled oscillators to demonstrate how NetworkX enables research in the field of computational networks.
Full-text available
Article
This paper studies the quasi-static motion of large legged robots that have many degrees of freedom. While gaited walking may suce on easy ground, rough and steep terrain requires unique sequences of footsteps and postural adjustments specically adapted to the terrain's local geometric and physical properties. This paper presents a planner that computes these motions by combining graph searching to generate a sequence of candidate footfalls with probabilistic sample-based planning to generate continuous motions that reach these footfalls. To improve motion quality, the proba- bilistic planner derives its sampling strategy from a small set of motion primitives that have been generated oine. The viability of this approach is demonstrated in simu- lation for the six-legged lunar vehicle athlete and the humanoid hrp-2 on several example terrains, including one that requires both hand and foot contacts and another that requires rappelling.
Full-text available
Article
We present a control architecture for fast quadruped locomotion over rough terrain. We approach the problem by decomposing it into many sub-systems, in which we apply state-of-the-art learning, planning, optimization, and control techniques to achieve robust, fast locomotion. Unique features of our control strategy include: (1) a system that learns optimal foothold choices from expert demonstration using terrain templates, (2) a body trajectory optimizer based on the Zero-Moment Point (ZMP) stability criterion, and (3) a floating-base inverse dynamics controller that, in conjunction with force control, allows for robust, compliant locomotion over unperceived obstacles. We evaluate the performance of our controller by testing it on the LittleDog quadruped robot, over a wide variety of rough terrains of varying difficulty levels. The terrain that the robot was tested on includes rocks, logs, steps, barriers, and gaps, with obstacle sizes up to the leg length of the robot. We demonstrate the generalization ability of this controller by presenting results from testing performed by an independent external test team on terrain that has never been shown to us.
Full-text available
Article
In recent years hexagonal hexapod robots gained the interest of international research community. The aim of this paper is twofold. First, after summarizing all known gaits of such robots, we introduce some improvements both for normal conditions and for fault tolerance. Then we show the advantages of hexagonal hexapod robots over rectangular ones by comparing different gaits from theoretical and experimental points of view. Stability, fault tolerance, turning ability, and terrain adaptability are analyzed. For reaching these aims we also introduce a robot kinematics that considers at the same time supporting and transferring legs. The trajectories of feet are described as well. Finally, single leg stride selection is studied for side wave and for kick-off gaits to optimize walking ability and energy management. The theoretical results presented herein have been validated with experiments conducted on a prototype of the Novel Robotics System for Planetary Exploration (Rovetta et al ., “New Robot Concepts for Mars Soil Exploration: Mechanics and Functionality,” ASTRA 2004, Eighth ESA Workshop on Advanced Space Technologies for Robotics and Automatian , Nordwijk, The Netherlands Nov. 2–4, 2004) (NOROS), developed by Politecnico di Milano and Beijing University of Astronautics and Aeronautics, and the results are summarized in this paper.
Article
The Integrated Limb Mechanism (ILM) concept deals with a dual arm-leg integrating the leg for locomotion and the arm for manipulation, while it enables a robot, for example, to operate flexibly in different work and situations, dual use requires that components are compact and mobile. Integrated software controlling the leg and arm is also required for implementing the actual robot. The ILM robot ASTEIRSK has six limbs arranged radially around the center to enable locomotion and manipulation capabilities omnidirectionally. ASTERISK features upper and lower symmetrical body and workability. We propose a design for the ILM and develop a small robot I/O controlling robot motion and monitoring sensors. In multimodal performance, ASTERISK uses omnidirectional drive control to walk hexapodally alternating tripod gait and creeping for restricted mobility. The new transportation way of hexapod walking style on a grid ceiling is proposed. Experiments deal with the detection of heat sources using infrared sensors and remote control to handle an object using two arms.
Article
Achieving full autonomy in a mobile robot requires combining robust environment perception with onboard sensors, efficient environment mapping, and real-time motion planning. All these tasks become more challenging when we consider a natural, outdoor environment and a robot that has many degrees of freedom (DOF). In this paper, we address the issues of motion planning in a legged robot walking over a rough terrain, using only its onboard sensors to gather the necessary environment model. The proposed solution takes the limited perceptual capabilities of the robot into account. A multisensor system is considered for environment perception. The key idea of the motion planner is to use the dual representation concept of the map: (i) a higher-level planner applies the A* algorithm for coarse path planning on a low-resolution elevation grid, and (ii) a lower-level planner applies the guided-RRT (rapidly exploring random tree) algorithm to find a sequence of feasible motions on a more precise but smaller map. This paper contributes a new method that can identify the terrain traversability cost to the benefit of the A* algorithm. A probabilistic regression technique is applied for the traversability assessment with the typical RRT-based motion planner used to explore the space of traversability values. The efficiency of our motion planning approach is demonstrated in simulations that provide ground truth data unavailable in field tests. However, the simulation-verified approach is then thoroughly tested under real-world conditions in experiments with two six-legged walking robots having different perception systems.
Book
Planning algorithms are impacting technical disciplines and industries around the world, including robotics, computer-aided design, manufacturing, computer graphics, aerospace applications, drug design, and protein folding. Written for computer scientists and engineers with interests in artificial intelligence, robotics, or control theory, this is the only book on this topic that tightly integrates a vast body of literature from several fields into a coherent source for teaching and reference in a wide variety of applications. Difficult mathematical material is explained through hundreds of examples and illustrations.
Conference Paper
Legged robots have the potential to navigate a much larger variety of terrain than their wheeled counterparts. In this paper we present a hierarchical control architecture that enables a quadruped, the "LittleDog" robot, to walk over rough terrain. The controller consists of a high-level planner that plans a set of footsteps across the terrain, a low-level planner that plans trajectories for the robot's feet and center of gravity (COG), and a low-level controller that tracks these desired trajectories using a set of closed-loop mechanisms. We conduct extensive experiments to verify that the controller is able to robustly cross a wide variety of challenging terrains, climbing over obstacles nearly as tall as the robot's legs. In addition, we highlight several elements of the controller that we found to be particularly crucial for robust locomotion, and which are applicable to quadruped robots in general. In such cases we conduct empirical evaluations to test the usefulness of these elements.