Conference Paper

Solution for Recommendation of Apposite ID Photo

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Facial expression recognition has been an active research area in the past ten years, with growing application areas including avatar animation, neuromarketing and sociable robots. The recognition of facial expressions is not an easy problem for machine learning methods, since people can vary significantly in the way they show their expressions. Even images of the same person in the same facial expression can vary in brightness, background and pose, and these variations are emphasized if considering different subjects (because of variations in shape, ethnicity among others). Although facial expression recognition is very studied in the literature, few works perform fair evaluation avoiding mixing subjects while training and testing the proposed algorithms. Hence, facial expression recognition is still a challenging problem in computer vision. In this work, we propose a simple solution for facial expression recognition that uses a combination of Convolutional Neural Network and specific image pre-processing steps. Convolutional Neural Networks achieve better accuracy with big data. However, there are no publicly available datasets with sufficient data for facial expression recognition with deep architectures. Therefore, to tackle the problem, we apply some pre-processing techniques to extract only expression specific features from a face image and explore the presentation order of the samples during training. The experiments employed to evaluate our technique were carried out using three largely used public databases (CK+, JAFFE and BU-3DFE). A study of the impact of each image pre-processing operation in the accuracy rate is presented. The proposed method: achieves competitive results when compared with other facial expression recognition methods −96.76% of accuracy in the CK+ database - it is fast to train, and it allows for real time facial expression recognition with standard computers.
Conference Paper
Full-text available
Automatic facial expression recognition system has many applications including, but not limited to, human behavior understanding, detection of mental disorders, and synthetic human expressions. Two popular methods utilized mostly in the literature for the automatic FER systems are based on geometry and appearance. Even though there is lots of research using static images, the research is still going on for the development of new methods which would be quiet easy in computation and would have less memory usage as compared to previous methods. This paper presents a quick survey of facial expression recognition. A comparative study is also carried out using various feature extraction techniques on JAFFE dataset.
Article
Full-text available
Facial expressions are widely used in the behavioral interpretation of emotions, cognitive science, and social interactions. In this paper, we present a novel method for fully automatic facial expression recognition in facial image sequences. As the facial expression evolves over time facial landmarks are automatically tracked in consecutive video frames, using displacements based on elastic bunch graph matching displacement estimation. Feature vectors from individual landmarks, as well as pairs of landmarks tracking results are extracted, and normalized, with respect to the first frame in the sequence. The prototypical expression sequence for each class of facial expression is formed, by taking the median of the landmark tracking results from the training facial expression sequences. Multi-class AdaBoost with dynamic time warping similarity distance between the feature vector of input facial expression and prototypical facial expression, is used as a weak classifier to select the subset of discriminative feature vectors. Finally, two methods for facial expression recognition are presented, either by using multi-class AdaBoost with dynamic time warping, or by using support vector machine on the boosted feature vectors. The results on the Cohn-Kanade (CK+) facial expression database show a recognition accuracy of 95.17% and 97.35% using multi-class AdaBoost and support vector machines, respectively.
Conference Paper
Full-text available
With the advent of new, low-cost 3D sensing hardware such as the Kinect, and continued efforts in advanced point cloud processing, 3D perception gains more and more importance in robotics, as well as other fields. In this paper we present one of our most recent initiatives in the areas of point cloud perception: PCL (Point Cloud Library - http://pointclouds.org). PCL presents an advanced and extensive approach to the subject of 3D perception, and it's meant to provide support for all the common 3D building blocks that applications need. The library contains state-of- the art algorithms for: filtering, feature estimation, surface reconstruction, registration, model fitting and segmentation. PCL is supported by an international community of robotics and perception researchers. We provide a brief walkthrough of PCL including its algorithmic capabilities and implementation strategies.
Article
Full-text available
Deformable model fitting has been actively pursued in the computer vision community for over a decade. As a result, numerous approaches have been proposed with varying degrees of success. A class of approaches that has shown substantial promise is one that makes independent predictions regarding locations of the model’s landmarks, which are combined by enforcing a prior over their joint motion. A common theme in innovations to this approach is the replacement of the distribution of probable landmark locations, obtained from each local detector, with simpler parametric forms. In this work, a principled optimization strategy is proposed where nonparametric representations of these likelihoods are maximized within a hierarchy of smoothed estimates. The resulting update equations are reminiscent of mean-shift over the landmarks but with regularization imposed through a global prior over their joint motion. Extensions to handle partial occlusions and reduce computational complexity are also presented. Through numerical experiments, this approach is shown to outperform some common existing methods on the task of generic face fitting.
Article
Full-text available
Most automatic expression analysis systems attempt to recognize a small set of prototypic expressions, such as happiness, anger, surprise, and fear. Such prototypic expressions, however, occur rather infrequently. Human emotions and intentions are more often communicated by changes in one or a few discrete facial features. In this paper, we develop an automatic face analysis (AFA) system to analyze facial expressions based on both permanent facial features (brows, eyes, mouth) and transient facial features (deepening of facial furrows) in a nearly frontal-view face image sequence. The AFA system recognizes fine-grained changes in facial expression into action units (AU) of the Facial Action Coding System (FACS), instead of a few prototypic expressions. Multistate face and facial component models are proposed for tracking and modeling the various facial features, including lips, eyes, brows, cheeks, and furrows. During tracking, detailed parametric descriptions of the facial features are extracted. With these parameters as the inputs, a group of action units (neutral expression, six upper face AU and 10 lower face AU) are recognized whether they occur alone or in combinations. The system has achieved average recognition rates of 96.4 percent (95.4 percent if neutral expressions are excluded) for upper face AU and 96.7 percent (95.6 percent with neutral expressions excluded) for lower face AU. The generalizability of the system has been tested by using independent image databases collected and FACS-coded for ground-truth by different research teams
Article
Importance of personal authentication increases according to the progress of advanced information society and web service. This paper describes the personal authentication by using Kinect sensor. Feature quantities of the human face and the human voice are obtained through the Kinect sensor. Personal authentication is performed with the machine learning algorithms with the feature quantities. The neural network, support vector machine and Bayesian network are compared in the experimental results. The results show that the neural network is the most promising.
Conference Paper
We report our image based static facial expression recognition method for the Emotion Recognition in the Wild Challenge (EmotiW) 2015. We focus on the sub-challenge of the SFEW 2.0 dataset, where one seeks to automatically classify a set of static images into 7 basic emotions. The proposed method contains a face detection module based on the ensemble of three state-of-the-art face detectors, followed by a classification module with the ensemble of multiple deep convolutional neural networks (CNN). Each CNN model is initialized randomly and pre-trained on a larger dataset provided by the Facial Expression Recognition (FER) Challenge 2013. The pre-trained models are then fine-tuned on the training set of SFEW 2.0. To combine multiple CNN models, we present two schemes for learning the ensemble weights of the network responses: by minimizing the log likelihood loss, and by minimizing the hinge loss. Our proposed method generates state-of-the-art result on the FER dataset. It also achieves 55.96% and 61.29% respectively on the validation and test set of SFEW 2.0, surpassing the challenge baseline of 35.96% and 39.13% with significant gains.
Article
表情の表出に深く関与していると考えられる,眉と目の端点や鼻と口の周囲の顔特徴点を顔画像から抽出し,無表情時と表情表出時の特徴点の相互関係の変化から表情を認識する手法を提案する.顔特徴点から容易に求めることのできる,2つの顔特徴点間の距離の変化や,3つの顔特徴点で構成される領域内の画素の輝度分布変化を特徴量として表情認識に使用するため,効率的な認識が可能となる.さらに,特徴量の分散比に基づいて特徴量の有用性を推定し,有用な特徴量のみを用いて主成分分析による特徴抽出を行うことにより,認識精度と認識速度のトレードオフを考慮した表情認識を行う.
Article
The tracking and recognition of facial activities from images or videos have attracted great attention in computer vision field. Facial activities are characterized by three levels: First, in the bottom level, facial feature points around each facial component, i.e., eyebrow, mouth, etc., capture the detailed face shape information. Second, in the middle level, facial action units, defined in the Facial Action Coding System, represent the contraction of a specific set of facial muscles, i.e., lid tightener, eyebrow raiser, etc. Finally, in the top level, six prototypical facial expressions represent the global facial muscle movement and are commonly used to describe the human emotion states. In contrast to the mainstream approaches, which usually only focus on one or two levels of facial activities, and track (or recognize) them separately, this paper introduces a unified probabilistic framework based on the Dynamic Bayesian network to simultaneously and coherently represent the facial evolvement in different levels, their interactions and their observations. Advanced machine learning methods are introduced to learn the model based on both training data and subjective prior knowledge. Given the model and the measurements of facial motions, all three levels of facial activities are simultaneously recognized through a probabilistic inference. Extensive experiments are performed to illustrate the feasibility and effectiveness of the proposed model on all three level facial activities.
Article
In this paper, two novel methods for facial expression recognition in facial image sequences are presented. The user has to manually place some of Candide grid nodes to face landmarks depicted at the first frame of the image sequence under examination. The grid-tracking and deformation system used, based on deformable models, tracks the grid in consecutive video frames over time, as the facial expression evolves, until the frame that corresponds to the greatest facial expression intensity. The geometrical displacement of certain selected Candide nodes, defined as the difference of the node coordinates between the first and the greatest facial expression intensity frame, is used as an input to a novel multiclass Support Vector Machine (SVM) system of classifiers that are used to recognize either the six basic facial expressions or a set of chosen Facial Action Units (FAUs). The results on the Cohn-Kanade database show a recognition accuracy of 99.7% for facial expression recognition using the proposed multiclass SVMs and 95.1% for facial expression recognition based on FAU detection.
Facial Expression Recognition by Ensemble Learning Using Movements of Facial Feature Points [in Japanese]
  • nomiya