Article

Effect of Yokukansan on Nitric Oxide Production and Hydroxyl Radical Metabolism During Cerebral Ischemia and Reperfusion in Mice

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Background: The purpose of this study was to investigate the effects of yokukansan on forebrain ischemia. Because we can measure nitric oxide production and hydroxyl radical metabolism continuously, we investigated the effect of yokukansan on nitric oxide production and hydroxyl radical metabolism in cerebral ischemia and reperfusion. Methods: Yokukansan (300 mg per kg per day) was mixed into feed and given to 8 mice for 10 days. Eight additional mice received normal feed (control). Nitric oxide production and hydroxyl radical metabolism were continuously monitored using the salicylate trapping method. Forebrain ischemia was produced in all mice by occluding the common carotid artery bilaterally for 10 minutes. Levels of the nitric oxide metabolites nitrite and nitrate were determined using the Griess reaction. Survival rates of hippocampal CA1 neurons were calculated and 8-hydroxydeoxyguanosine-immunopositive cells were counted to evaluate the oxidative stress in hippocampal CA1 neurons 72 hours after the start of reperfusion. Results: Arterial blood pressure and regional cerebral blood flow were not significantly different between the 2 groups. The level of nitrate was significantly higher in the yokukansan group than in the control group during ischemia and reperfusion. Levels of 2,3- and 2,5-dihydroxybenzoic acid were significantly lower in the yokukansan group than in the control group during ischemia and reperfusion. Although survival rates in the CA1 did not differ significantly, there were fewer 8-hydroxydeoxyguanosine-immunopositive cells in animals that had received yokukansan than in control animals. Conclusions: These data suggest that yokukansan exerts reducing hydroxyl radicals in cerebral ischemic injury.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... It has been reported that YKS added to food at a dose of 300 mg/kg for 10 days has no influence on arterial blood pressure during cerebral ischemia and reperfusion in mice. 36 However, the effects of YKS treatment on sympathetic activation during stress exposure remain unknown. In this study, we examined the effects of repeated YKS administration on acute RS-induced elevation of plasma catecholamine levels. ...
Article
Full-text available
Objectives: Yokukansan (YKS) is a traditional Japanese Kampo medicine approved by the Ministry of Health, Labour and Welfare of Japan. Recently, in addition to its indications as a drug treatment, YKS has been shown to have ameliorative effects on various psychological and behavioral responses such as anxiety, aggression, and stress responses. Stress exposure activates not only the hypothalamic–pituitary–adrenal axis but also the sympathetic nervous system. Sympathetic activation in brain regions such as the paraventricular hypothalamic nucleus (PVN) stimulates elevation of plasma catecholamine (noradrenaline and adrenaline) levels. We previously reported that various stress-related neuropeptides and several kinds of stressors, such as restraint stress (RS), increase plasma catecholamine and that brain prostanoids and their synthases mediate these responses in rats. In the present study, to determine if YKS treatment can affect stress-induced sympathetic activation, we examined the effects of YKS treatment on the RS-induced elevation of plasma catecholamine levels and related prostanoid production in the PVN of rats. Methods: YKS (1000 mg/10 mL/kg, p.o.) or vehicle was administered to rats daily for 14 days, and all rats were exposed to RS for 60 min on day 14. Before and during stress exposure on day 14, blood samples and PVN dialysates were collected and analyzed by high-performance liquid chromatography and liquid chromatography-ion trap tandem mass spectrometry, respectively. Results: Our results showed that repeated administration of YKS suppressed the RS-induced increase in plasma adrenaline but not noradrenaline. Furthermore, YKS administration also suppressed the RS-induced elevation of both prostaglandin E2 and thromboxane B2 levels in the PVN. In addition, we found that repeated administration of YKS suppressed the RS-induced increase in serotonin, gamma-aminobutyric acid, and acetylcholine in the PVN. Conclusion: Our results suggest that YKS can ameliorate stress-induced sympathetic activation via inhibition of stress responses in the brain.
... The hydroxyl radical (ÁOH) is the most representative free radical in the human body, [1,2] and it is closely related to the occurrence and development of various diseases because of its strong oxidation ability, high reaction activity, and short half-time. [3][4][5][6][7][8] For example, ÁOH can induce a series of free radical reactions, causing lipid peroxidation of membrane unsaturated fatty acids, resulting in the local destruction and even dissolution of lipid membranes. [9][10][11][12] ÁOH can also change the activity of phosphoric acid and induce the release of arachidonic acid (AA) from membrane phospholipids. ...
Article
Full-text available
As a type of reactive oxygen species (ROS), hydroxyl radical (·OH) is closely associated with many kinds of diseases. The present study aimed to develo p a novel OH fluorescent probe based on coumarin, a new compound that has not been previously reported. This probe exhibited good linear range and selectivity for ·OHl, and is able to avoid interference from some metal ions and other kinds of ROS (H2O2, O2.‐, 1O2, and HClO). Meanwhile, this probe has been used to evaluate the ·OH‐scavenging efficiency of different compounds, such as isopropyl alcohol, cytosine, uracil, Tempo, Glutathione (GSH), and dimethyl sulfoxide (DMSO). Therefore, the present study shows that this probe not only can effectively measure the level of ·OH, but also can assess the ·OH‐scavenging efficiency of different compounds. Furthermore this current study suggested that following further optimization, this probe may be potentially applied in the diagnosis of oxidative stress in human body.
Article
Ethnopharmacological relevance A widely used traditional prescription, Yi-Gan San (YGS) is a remedy for neurodegenerative disorders. The formulation consists of seven Chinese medicinal materials in specific proportions, namely Uncariae Ramulus cum Uncis (Uncaria rhynchophylla (Miq.) Miq. ex Havil.), Bupleuri Radix (Bupleurum chinense DC.), Angelicae Sinensis Radix (Angelica sinensis (Oliv.) Diels), Chuanxiong Rhizoma (Ligusticum wallichii Franch.), Poria (Poria cocos (Schw.) Wolf), Atractylodis Macrocephalae Rhizoma (Atractylodes macrocephala Koidz.) and Glycyrrhizae Radix et Rhizoma (Glycyrrhiza uralensis Fisch.). Using YGS has been shown to alleviate various behavioural and psychological symptoms of dementia (BPSD). Aim of this review The goal of this review is to give up-to-date information about the traditional uses, chemistry, pharmacology and clinical efficacy of YGS based on the scientific literature and to learn the current focus and provide references in the next step. Materials and methods The database search room was accessed using the search terms “Yi-Gan San” and “Yokukansan” to obtain results from resources such as Web of Science, PubMed, Google Scholar and Sci Finder Scholar. We not only consulted the literature of fellow authors for this review but also explored classical medical books. Results YGS has been used to cure neurosis, sleeplessness, night weeping and restlessness in infants. Its chemical components primarily consist of triterpenes, flavonoids, phenolics, lactones, alkaloids and other types of compounds. These active ingredients displayed diverse pharmacological activities to ameliorate BPSD by regulating serotonergic, glutamatergic, cholinergic, dopaminergic, adrenergic, and GABAergic neurotransmission. In addition, YGS showed neuroprotective, antistress, and anti-inflammatory effects. The majority of cases of neurodegenerative disorders are treated with YGS, including Alzheimer's disease and dementia with Lewy bodies. Conclusions Based on previous studies, YGS has been used as a traditional prescription in East Asia, such as Japan, Korea and China, and it has diverse chemical compounds and multiple pharmacological activities. Nevertheless, few experimental studies have focused on chemical and quantitative YGS studies, suggesting that further comprehensive research on its chemicals and quality assessments is critical for future evaluations of drug efficacy.
Article
Background Cognitive dysfunction is often accompanied by behavioral and psychological symptoms of dementia (BPSD) in patients with Alzheimer's disease and other forms of senile dementia. BPSD include agitation, aggression, and hallucinations. BPSD have a serious effect on the quality of life of dementia patients and their caregivers, but effective drug therapy for BPSD has not been identified as yet. Typical and atypical antipsychotics that are used for the treatment of BPSD are known to cause a variety of extrapyramidal adverse events. Yokukansan (YKS, Yi‐gan san in Chinese) is a Japanese traditional herbal (kampo) medicine that is used to alleviate night‐crying and irritation in children, as well as to treat neurosis and insomnia. It is currently also used to treat BPSD. Methods In this review, we summarize the pharmacological effects of YKS in the context of BPSD. Conclusion YKS is expected to be useful in treating and/or preventing BPSD.
Article
Full-text available
Effects of the kampo medicine yokukansan on gene expression of the cystine/glutamate antiporter system Xc-, which protects against glutamate-induced cytotoxicity, were examined in Pheochromocytoma cells (PC12 cells). Yokukansan inhibited glutamate-induced PC12 cell death. Similar cytoprotective effects were found in Uncaria hook. Experiments to clarify the active compounds revealed that geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook, had cytoprotective effects. These components enhanced gene expressions of system Xc- subunits xCT and 4F2hc, and also ameliorated the glutamate-induced decrease in glutathione levels. These results suggest that the cytoprotective effect of yokukansan may be attributed to geissoschizine methyl ether, hirsuteine, hirsutine, and procyanidin B1 in Uncaria hook.
Article
Full-text available
Hydroxylation of salicylate to2, 3- and2, 5–dihydroxy-benzoates (DHBs) is widely used as an index of hydroxyl radical (OH) formation in vivo and in vitro. Several recent studies indicate that peroxynitrite can lead to generation of DHBs from salicylate and it is uncertain as to whether or not OH' is involved. A similar problem may occur in the use of phenylalanine as an OH' detector. Hence formation of hydroxylation products from salicylate (or phenylalanine) may not in itself be a definitive index of OH' generation, especially in cases where such generation in physiological systems is decreased by inhibitors of nitric oxide syn-thase. Determination of salicylate (or phenylalanine) nitration products can allow distinction between peroxynitrite-dependent aromatic hydroxylation and that involving “real” OH.
Article
Full-text available
The purpose of this study was to clarify the kinetics of nitric oxide (NO) induced by either endothelial NO synthase (eNOS) or neuronal NO synthase (nNOS) after transient global forebrain ischemia. We investigated NO production and ischemic changes to hippocampal CA1 neurons in eNOS knockout (-/-) mice and nNOS (-/-) mice during cerebral ischemia and reperfusion. NO production was continuously monitored by in vivo microdialysis. Global forebrain ischemia was produced by occlusion of both common carotid arteries for 10 minutes. Levels of nitrite (NO(2)(-)) and nitrate (NO(3)(-)), as NO metabolites, in dialysate were determined using the Griess reaction. Two hours after the start of reperfusion, animals were perfused with 4% paraformaldehyde. Hippocampal CA1 neurons were divided into three phases (severely ischemic, moderately ischemic, surviving), and the ratio of surviving neurons to degenerated neurons was calculated as the survival rate. The relative cerebral blood flow (rCBF) was significantly higher in nNOS (-/-) mice than in control mice after reperfusion. Levels of NO(3)(-) were significantly lower in eNOS (-/-) mice and nNOS (-/-) mice than in control mice during ischemia and reperfusion. NO(3)(-) levels were significantly lower in nNOS (-/-) mice than in eNOS (-/-) mice after the start of reperfusion. Survival rate tended to be higher in nNOS (-/-) mice than in control mice, but not significantly. These in vivo data suggest that NO production in the striatum after reperfusion is closely related to activities of both nNOS and eNOS, and is mainly related to nNOS following reperfusion.
Article
Full-text available
Arteriogenesis supports restored perfusion in the ischemic brain and improves long-term functional outcome after stroke. We investigate the role of endothelial nitric oxide synthetase (eNOS) and a nitric oxide (NO) donor, (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate (DETA-NONOate), in promoting arteriogenesis after stroke. Adult wild-type (WT, n=18) and eNOS-knockout (eNOS(-/-), n=36) mice were subjected to transient (2.5 h) right middle cerebral artery occlusion (MCAo) and were treated with or without DETA-NONOate (0.4 mg/kg) 24 h after MCAo. Functional evaluation was performed. Animals were sacrificed 3 days after MCAo for arterial cell culture studies, or 14 days for immunohistochemical analysis. Consistent with previous studies, eNOS(-/-) mice exhibited a higher mortality rate (P<0.05, n=18/group) and more severe neurological functional deficit after MCAo than WT mice (P<0.05, n=12/group). Decreased arteriogenesis, was evident in eNOS(-/-) mice compared with WT mice, as demonstrated by reduced vascular smooth muscle cell (VSMC) proliferation, arterial density and diameter in the ischemic brain. eNOS(-/-) mice treated with DETA-NONOate had a significantly decreased mortality rate and improved functional recovery, and exhibited enhanced arteriogenesis identified by increased VSMC proliferation, and upregulated arterial density and diameter compared to eNOS(-/-) mice after stroke (P<0.05, n=12/group). To elucidate the mechanisms underlying eNOS/NO mediated arteriogenesis, VSMC migration was measured in vitro. Arterial cell migration significantly decreased in the cultured common carotid artery (CCA) derived from eNOS(-/-) mice 3 days after MCAo compared to WT arterial cells. DETA-NONOate-treatment significantly attenuated eNOS(-/-)-induced decrease of arterial cell migration compared to eNOS(-/-) control artery (P<0.05; n=6/group). Using VSMC culture, DETA-NONOate significantly increased VSMC migration, while inhibition of NOS significantly decreased VSMC migration (P<0.05; n=6/group). Our data indicated that eNOS not only promotes vascular dilation but also increases VSMC proliferation and migration, and thereby enhances arteriogenesis after stroke. Therefore, increase eNOS may play an important role in regulating of arteriogenesis after stroke.
Article
Full-text available
The effectiveness and safety of yokukansan (TJ-54), a traditional Japanese medicine (kampo) for the treatment of the behavioural and psychological symptoms of dementia (BPSD), were evaluated in 106 patients diagnosed as having Alzheimer's disease (AD) (including mixed-type dementia) or dementia with Lewy bodies. Patients were randomly assigned to group A (TJ-54 treatment in period I and no treatment in period II; each period lasting 4 wk) or group B (no treatment in period I and TJ-54 treatment in period II). BPSD and cognitive functions were evaluated using the Neuropsychiatric Inventory (NPI) and the Mini-Mental State Examination (MMSE), respectively. Activities of daily living (ADL) were evaluated using Instrumental Activities of Daily Living (IADL) in outpatients and the Barthel Index in in-patients. For the safety evaluation, adverse events were investigated. Significant improvements in mean total NPI score associated with TJ-54 treatment were observed in both periods (Wilcoxon test, p=0.040 in period I and p=0.048 in period II). The mean NPI scores significantly improved during TJ-54 treatment in groups A and B (p=0.002 and p=0.007, respectively) but not during periods of no treatment. Among the NPI subscales, significant improvements were observed in delusions, hallucinations, agitation/aggression, depression, anxiety, and irritability/lability. The effects of TJ-54 persisted for 1 month without any psychological withdrawal symptoms in group A. TJ-54 did not show any effect on either cognitive function or ADL. No serious adverse reactions were observed. The present study suggests that TJ-54 is an effective and well-tolerated treatment for patients with BPSD.
Article
Background: The purpose of this study was to investigate the effects of memantine on brain ischemia. Because we can measure nitric oxide (NO) production and hydroxyl radical metabolism continuously, we investigated the effect of memantine on NO production and hydroxyl radical metabolism in cerebral ischemia and reperfusion. Methods: Memantine (25 µmol/kg) was administered intraperitoneally to 6 C57BL/6 mice 30 minutes before ischemia. Seven additional mice received no injection (controls). NO production and hydroxyl radical metabolism were continuously monitored using bilateral striatal microdialysis in vivo. Hydroxyl radical formation was monitored using the salicylate trapping method. Forebrain ischemia was produced in all mice by occluding the common carotid artery bilaterally for 10 minutes. Levels of the NO metabolites nitrite (NO2-) and nitrate (NO3-) were determined using the Griess reaction. Survival rates of hippocampal CA1 neurons were calculated and 8-hydroxydeoxyguanosine (8-OHdG)-immunopositive cells were counted to evaluate the oxidative stress in hippocampal CA1 neurons 72 hours after the start of reperfusion. Results: The regional cerebral blood flow was significantly higher in the memantine group than in the control group after reperfusion. Furthermore, the level of 2,3-dihydroxybenzoic acid was significantly lower in the memantine group than in the control group during ischemia and reperfusion. Levels of NO2- and NO3- did not differ significantly between the 2 groups. Although survival rates in the CA1 did not differ significantly, there were fewer 8-OHdG-immunopositive cells in animals that had received memantine than in control animals. Conclusions: These data suggest that memantine exerts partially neuroprotective effects against cerebral ischemic injury.
Article
The aim of this study was to investigate the neuroprotective effects of yokukansan, a traditional Kampo medicine, on the behavioral dysfunction induced by cerebral ischemia/reperfusion injury in gerbils. Gerbils were treated with yokukasan by oral gavage for 30 days, once per day, until the day before induction of ischemia, -which was induced by occluding the bilateral common carotid artery for 5min. The effects of yokukansan (50, 100 and 300mg/kg) were examined by measuring neuronal damage and behavioral deficits (locomotor activity, 8-arm radial maze task). The anti-inflammatory and anti-oxidant properties of yokukansan were also examined. Administration of yokukansan at 300mg/kg significantly reduced hippocampal neuronal death after brain ischemia, inhibited the ischemia-induced inflammatory response and DNA oxidative damage. Yokukansan also reduced ischemia-induced locomotor hyperactivity and improved memory impairment. These findings suggest that yokukansan can inhibit the inflammatory response, oxidative damage and subsequent neuronal death induced by cerebral ischemia/reperfusion injury, and also can contribute to improvement in neurological deficits following such injury.
Article
The aim of our retrospective study was to investigate the efficacy and safety of Yokukansan(TJ-54)in treating delirium during hospitalization following acute stroke. We retrospectively analyzed the patients 1)who were admitted to our single stroke center from January 2010 to December 2011 due to acute stroke within four days from onset, 2)who presented with delirium after admission, which was diagnosed according to the Diagnostic and Statistical Manual of Mental Disorders-IV-Text Revision(DSM-IV-TR)criteria, and 3)who received 2.5g of Yokukansan(TJ-54)three times a day for treating delirium and which was continued until discharge or until onset of adverse effects. We investigated the patient's baseline characteristics, the period of Yokukansan treatment, history of using of another psychotropic drug and complications. We used the Delirium Rating Scale(DRS)to assess delirium state before and at five days after initiation of Yokukansan(TJ-54). We analyzed 77 patients retrospectively. Their mean age was 79.3 years old, and 48 patients(62%)were female. Median DRS score was improved from 15(interquartile range;14-18)to 8(interquartile;6-13), statistically significant(p<0.01)at five days after the initiation of Yokukansan(TJ-54). The median period of Yokukansan(TJ-54)treatment was seven days. There were no patients who received psychotropic drugs or who were suspected of developing oversedation due to Yokukansan(TJ-54). In our study, delirium symptoms following acute stroke improved after Yokukansan(TJ-54)treatment. A randomized controlled trial is needed to establish the effectiveness of Yokukansan(TJ-54)in delirium after stroke.
Article
There is currently no meta-analysis of the efficacy and tolerability of Yokukansan in the treatment of behavioral and psychological symptoms of dementia. We used information obtained from the PubMed and Cochrane Library databases until October 2012. We conducted a systematic review and meta-analysis of individual patient data from randomized controlled trials comparing Yokukansan with usual care (UC, i.e., controls). Standardized mean difference and weighted mean difference were calculated. All studies used the Neuropsychiatric Inventory (NPI) for the evaluation of behavioral and psychological symptoms of dementia. Four relevant studies (total n = 236) were identified. Yokukansan was superior to UC in the reduction of total NPI scores (p = 0.0009, weighted mean difference =-7.20, I(2) = 0%). In addition, Yokukansan was more efficacious in reducing scores on the NPI subscale (delusions, hallucinations, and agitation/aggression) than UC (p < 0.00001-0.0009). Yokukansan treatment also improved activities of daily living scores compared with UC (p = 0.04, standardized mean difference = -0.32, I(2) = 0%). Mini-mental state examination scores did not differ between the Yokukansan and UC treatment groups. Yokukansan was not different from UC regarding discontinuation due to any cause. Our results suggest that Yokukansan has a beneficial effect on NPI and on ADL scores and that Yokukansan seems to be a well-tolerated treatment. Copyright © 2013 John Wiley & Sons, Ltd.
Article
Geissoschizine methyl ether (GM) in Uncaria hook, a galenical constituent of yokukansan is thought to be one of active components in the psychotropic effect of yokukansan, a traditional Japanese medicine (kampo medicine). However, there is no data on the blood-brain barrier (BBB) permeability of Uncaria hook-derived alkaloids containing GM. In this study, we investigated the BBB permeability of seven Uncaria hook alkaloids (GM, isocorynoxeine, isorhynchophylline, hirsuteine, hirsutine, rhynchophylline, and corynoxeine) using in vivo and in vitro methods. In the in vivo experiment, seven alkaloids in the plasma and brain of rats orally administered with yokukansan were measured by liquid chromatography-mass spectroscopy/mass spectrometric multiple reaction monitoring assay. In the in vitro experiment, the BBB permeability of seven alkaloids were examined using the BBB model composed of co-culture of endothelial cells, pericytes, and astrocytes. In the in vivo study, six components containing GM but not isocorynoxeine were detected in the plasma, and three (GM, hirsuteine, and corynoxeine) of components were detected in the brain. The in vitro BBB permeability data indicated that seven alkaloids were able to cross brain endothelial cells in culture conditions and that the BBB permeability of GM was higher than those of the other six alkaloids. These results suggest that target ingredient GM in yokukansan administered orally is absorbed into the blood and then reaches the brain through the BBB. This evidence further supports the possibility that GM is an active component in the psychotropic effect of yokukansan.
Article
Behavioral and psychological symptoms of dementia (BPSD) are commonly seen in patients with dementia. Current pharmacological approaches to treatment are inadequate, despite the availability of serotonergic agents to ameliorate anxiety, one of the symptoms of BPSD. The herbal medicine yokukansan has been demonstrated to improve BPSD in a randomized, single-blinded, placebo-controlled study. However, the mechanisms of the anxiolytic effect of yokukansan have not been clarified. There are also no reports on the anxiolytic effect of yokukansan in cerebrovascular ischemia models. In this study, we examined whether rats subjected to repeated cerebral ischemia exhibited anxiety-like behavior in a plus-maze task, a light/dark box test and an open-field task. We then investigated the effect of yokukansan on anxiety-like behavior in ischemic rats. Repeated ischemia was induced by the four-vessel occlusion method in which a 10-min ischemic episode was repeated once after 60 min. Yokukansan was orally administered once a day for 14 days from 7 days before ischemia induction. The last administration was performed 1 h before the behavioral experiments. The ischemic rats showed anxiety-like behavior in all three tasks, suggesting that this rat may be a good model for anxiety in cerebrovascular dementia. Yokukansan exhibited anxiolytic effects on the anxiety-like behavior in rats subjected to repeated cerebral ischemia, and exerted antagonistic effects on the wet-dog shakes induced by 1-(2,5-dimethoxy-4-indophenyl)-2-amino propane, a serotonin receptor (5-HT(2A)) agonist. This study revealed that yokukansan shows anxiolytic effects not only in normal animals but also in cerebrovascular model rats.
Article
Yokukansan is a traditional Japanese medicine consisted of seven medicinal herbs and has been used for treatment of neurosis, insomnia, and behavioral and psychological symptoms of dementia in Japan. The aim of the present study is to clarify the active compounds responsible for the protective effect of yokukansan against glutamate-induced cytotoxicity in PC12 cells. PC12 cells which is a tool for selective evaluation of test substances against oxidative stress was used in the present study. The cell survival rates or glutathione (GSH) levels were evaluated by a MTT reduction assay or GSH assay based on the GSH reductase enzymatic recycling method, respectively. Glutamate (1-17.5mM) induced cell death of PC12 cells in a concentration- dependent manner. Yokukansan (125-500μg/ml) inhibited the glutamate-induced PC12 cell death. When the effects of extracts of the seven constituent herbs in yokukansan on the cell death were examined, Uncaria thorn was found to have the highest potency in the protection. To clarify the active compounds in Uncaria thorn, the effects of seven alkaloids (rhynchophylline, isorhynchophylline, corynoxeine, isocorynoxeine, hirsutine, hirsuteine, and geissoschizine methyl ether) on the cell death were further examined. The protective effects were found in hirsutine, hirsuteine, and geissoschizine methyl ether, which also ameliorated the glutamate-induced decrease in GSH levels. These results suggest that yokukansan protects against PC12 cell death induced by glutamate-mediated oxidative stress, i.e., reduction of intracellular GSH level, and the effect may be mainly attributed to a synergistic effect of the hirsutine, hirsuteine, and geissoschizine methyl ether in Uncaria thorn.
Article
Stroke is a major public health problem leading to high rates of death and disability in adults. Excessive stimulation of N-methyl-D-aspartate receptors (NMDARs) and the resulting neuronal nitric oxide synthase (nNOS) activation are crucial for neuronal injury after stroke insult. However, directly inhibiting NMDARs or nNOS can cause severe side effects because they have key physiological functions in the CNS. Here we show that cerebral ischemia induces the interaction of nNOS with postsynaptic density protein-95 (PSD-95). Disrupting nNOS-PSD-95 interaction via overexpressing the N-terminal amino acid residues 1-133 of nNOS (nNOS-N(1-133)) prevented glutamate-induced excitotoxicity and cerebral ischemic damage. Given the mechanism of nNOS-PSD-95 interaction, we developed a series of compounds and discovered a small-molecular inhibitor of the nNOS-PSD-95 interaction, ZL006. This drug blocked the ischemia-induced nNOS-PSD-95 association selectively, had potent neuroprotective activity in vitro and ameliorated focal cerebral ischemic damage in mice and rats subjected to middle cerebral artery occlusion (MCAO) and reperfusion. Moreover, it readily crossed the blood-brain barrier, did not inhibit NMDAR function, catalytic activity of nNOS or spatial memory, and had no effect on aggressive behaviors. Thus, this new drug may serve as a treatment for stroke, perhaps without major side effects.
Article
To evaluate the efficacy and safety of Yokukansan, a traditional Chinese herbal medicine, for treating behavioral and psychological symptoms of dementia (BPSD) in patients with Parkinson disease (PD; n=7) and those with PD with dementia (PDD; n=7). BPSD are often seen in patients with senile dementia and have serious deleterious effects on the lives of patients and caregivers. Recent studies indicate that the traditional Chinese herbal medicine Yokukansan may be safe and beneficial for the treatment of BPSD patients. We treated 7 PD and 7 PDD patients for 4 weeks with Yokukansan and observed them without Yokukansan for 4 weeks. Changes in behavioral and psychological symptoms were evaluated every 4 weeks according to the Neuropsychiatric Inventory (NPI) scale. Significant improvements in behavioral and psychological symptoms, particularly in the incidence and duration of hallucinations, were observed in most PD and PDD patients after 4 weeks of Yokukansan treatment. No significant changes were observed in the laboratory tests, cognitive function, activities of daily living, or parkinsonism. Our results suggest that Yokukansan improves BPSD in both PD and PDD patients without worsening their cognitive function, ability to perform activities of daily living, or parkinsonism.
Article
To clarify the mechanism of yokukansan (TJ-54), a traditional Japanese medicine, against glutamate-mediated excitotoxicity, the effects of TJ-54 on glutamate uptake function were first examined using cultured rat cortical astrocytes. Under thiamine-deficient conditions, the uptake of glutamate into astrocytes, and the levels of proteins and mRNA expressions of glutamate aspartate transporter of astrocytes significantly decreased. These decreases were ameliorated in a dose-dependent manner by treatment with TJ-54 (100-700 microg/ml). The improvement of glutamate uptake with TJ-54 was completely blocked by the glutamate transporter inhibitor DL-threo-beta-hydroxyaspartic acid. Effects of TJ-54 on glutamate-induced neuronal death were next examined by using cultured PC12 cells as a model for neurons. Addition of 17.5 mM glutamate to the culture medium induced an approximately 50% cell death, as evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. TJ-54 (1-1000 microg/ml) inhibited the cell death in a dose-dependent manner. Furthermore, competitive binding assays to glutamate receptors showed that TJ-54 bound potently to N-methyl-D-aspartate receptors, in particular, to its glutamate and glycine recognition sites. These results suggest that TJ-54 may exert a neuroprotective effect against glutamate-induced excitotoxicity not only by amelioration of dysfunction of astrocytes but also by direct protection of neuronal cells.
Article
The mechanism of the abnormal increase in extracellular glutamate concentration in the hippocampus induced with 100mM KCl in zinc deficiency is unknown. In the present study, the changes in glutamate release (exocytosis) and GLT-1, a glial glutamate transporter, expression were studied in young rats fed a zinc-deficient diet for 4 weeks. Exocytosis at mossy fiber boutons was enhanced as reported previously and GLT-1 protein was increased in the hippocampus. The enhanced exocytosis is thought to increase extracellular glutamate concentration. However, the basal concentration of extracellular glutamate in the hippocampus was not increased by zinc deficiency, suggesting that GLT-1 protein increased serves to maintain the basal concentration of extracellular glutamate. The enhanced exocytosis was attenuated in the presence of 100microM ZnCl(2), which attenuated the abnormal increase in extracellular glutamate induced with high K(+) in zinc deficiency. The present study indicates that zinc attenuates abnormal glutamate release in zinc deficiency. The enhanced exocytosis was also attenuated in slices from zinc-deficient rats administered Yokukansan, a herbal medicine, in which the abnormal increase in extracellular glutamate induced with high K(+) was attenuated. It is likely that Yokukansan is useful for prevention or cure of abnormal glutamate release. The enhanced exocytosis in zinc deficiency is a possible mechanism on abnormal increase in extracellular glutamate in the hippocampus induced with high K(+).
Article
In the vascular system, endothelium-derived relaxing factor (EDRF) is the name of the local hormone released from endothelial cells in response to vasodilators such as acetylcholine, bradykinin and histamine. It diffuses into underlying smooth muscle where it causes relaxation by activating guanylate cyclase, so producing a rise in cyclic GMP levels. It has been known for many years that in the central nervous system (CNS) the excitatory neurotransmitter glutamate can elicit large increases in cGMP levels, particularly in the cerebellum where the turnover rate of cGMP is low. Recent evidence indicates that cell-cell interactions are involved in this response. We report here that by acting on NMDA (N-methyl-D-aspartate) receptors on cerebellar cells, glutamate induces the release of a diffusible messenger with strikingly similar properties to EDRF. This messenger is released in a Ca2+-dependent manner and its activity accounts for the cGMP responses that take place following NMDA receptor activation. In the CNS, EDRF may link activation of postsynaptic NMDA receptors to functional modifications in neighbouring presynaptic terminals and glial cells.
Article
The direct measurement of hydroxyl radicals in vivo is extremely difficult. Therefore, the indirect determination of hydroxyl radicals using salicylate (2-hydroxybenzoate) is widely accepted. Reverse microdialysis with glutamate led to a dose-dependent production of hydroxyl free radicals indicated by the hydroxylation adduct of salicylate, namely 2,3-dihydroxybenzoic acid. The local stimulation of hydroxyl free radical formation seems to be suitable to investigate a radical-scavenging property of potential neuroprotective drugs. In vitro experiments using the Fenton reaction may be a helpful tool to assess whether or not a substance is able to act as a radical scavenger in a cell free environment, which is easy to handle and a simple screening method before in vivo experiments were performed. In the present study we present an in vivo approach using local application of glutamate into the striatum and an in vitro screening using the Fenton reaction to induce hydroxyl radical formation. The main goal is to reliable measure hydroxyl free radicals, which are the most reactive oxygen radicals in biology and medicine.
Article
Brain tissue has a remarkable ability to accumulate glutamate. This ability is due to glutamate transporter proteins present in the plasma membranes of both glial cells and neurons. The transporter proteins represent the only (significant) mechanism for removal of glutamate from the extracellular fluid and their importance for the long-term maintenance of low and non-toxic concentrations of glutamate is now well documented. In addition to this simple, but essential glutamate removal role, the glutamate transporters appear to have more sophisticated functions in the modulation of neurotransmission. They may modify the time course of synaptic events, the extent and pattern of activation and desensitization of receptors outside the synaptic cleft and at neighboring synapses (intersynaptic cross-talk). Further, the glutamate transporters provide glutamate for synthesis of e.g. GABA, glutathione and protein, and for energy production. They also play roles in peripheral organs and tissues (e.g. bone, heart, intestine, kidneys, pancreas and placenta). Glutamate uptake appears to be modulated on virtually all possible levels, i.e. DNA transcription, mRNA splicing and degradation, protein synthesis and targeting, and actual amino acid transport activity and associated ion channel activities. A variety of soluble compounds (e.g. glutamate, cytokines and growth factors) influence glutamate transporter expression and activities. Neither the normal functioning of glutamatergic synapses nor the pathogenesis of major neurological diseases (e.g. cerebral ischemia, hypoglycemia, amyotrophic lateral sclerosis, Alzheimer's disease, traumatic brain injury, epilepsy and schizophrenia) as well as non-neurological diseases (e.g. osteoporosis) can be properly understood unless more is learned about these transporter proteins. Like glutamate itself, glutamate transporters are somehow involved in almost all aspects of normal and abnormal brain activity.
Article
This study investigated whether memantine, a non-competitive NMDA receptor antagonist is neuroprotective after traumatic brain injury (TBI) induced in adult rats with a controlled cortical impact device. TBI led to significant neuronal death in the hippocampal CA2 and CA3 regions (by 50 and 59%, respectively), by 7 days after the injury. Treatment of rats with memantine (10 and 20 mg/Kg, i.p.) immediately after the injury significantly prevented the neuronal loss in both CA2 and CA3 regions. This is the first study showing the neuroprotective potential of memantine to prevent the TBI-induced neuronal damage.
Article
We investigated the therapeutic effect of edaravone, a free radical scavenger, on alterations in endothelium-dependent relaxation and endothelial nitric oxide synthase (eNOS) expression in the rabbit ear central artery at 2 weeks after exposure to a dose of 45 Gy radiation with a cobalt60 unit. For treatment with edaravone, edaravone was given daily to the animals from the day before irradiation at an intrapenetreal dose of 10 mg/kg twice a day. The endothelium-dependent relaxant response to acetylcholine was markedly impaired in irradiated vessels. Edaravone treatment improved the response to the level observed in nonirradiated control vessels. Using immunohistochemical and Western blot techniques, we showed that protein expression of eNOS in irradiated vessels was reduced to about 50% of control and that edaravone treatment returned it nearly to intact levels. Gene expression of eNOS, analyzed by reverse transcription-competitive polymerase chain reaction, was found to be reduced from the control level by 47% following irradiation. The reduced level of eNOS mRNA in irradiated vessels was almost completely normalized by edaravone treatment. These results suggest that edaravone has a protective effect on the reduced expression of eNOS and its associated endothelial cell dysfunction in the vessels following irradiation. We thus assume that oxygen-free radicals may be closely related to the irradiation-induced derangement of the eNOS gene regulation.
Article
The mechanism of spinal cord injury is believed to be related to the vulnerability of spinal motor neuron cells against ischemia. We tested whether MCI-186, which is useful for treating ischemic damage in the brain, can protect against ischemic spinal cord damage. After induction of ischemia, MCI-186 or vehicle was injected intravenously. Cell damage was analyzed by observing the function of the lower limbs and by counting the number of motor neurons. To investigate the mechanism by which MCI-186 prevents ischemic spinal cord damage, we observed the immunoreactivity of Cu/Zn superoxide dismutase, neuronal nitric oxide synthase, and endothelial nitric oxide synthase. MCI-186 eased the functional deficits and increased the number of motor neurons after ischemia. The induction of neuronal nitric oxide synthase was significantly reduced by the treatment with MCI-186. Furthermore, the increase in the induction of endothelial nitric oxide synthase and Cu/Zn superoxide dismutase was more pronounced. These results indicate that MCI-186 may protect motor neurons from ischemic injury by reducing neuronal nitric oxide synthase and increasing endothelial nitric oxide synthase. MCI-186 may be a strong candidate for use as a therapeutic agent in the treatment of ischemic spinal cord injury.
Glutamate FF. a neurotransmitter in mammalian brain
Glutamate FF. a neurotransmitter in mammalian brain. J Neurochem 1984;42:1-11.
Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time
  • B Halliwell
  • H Kaur
Halliwell B, Kaur H. Hydroxylation of salicylate and phenylalanine as assays for hydroxyl radicals: a cautionary note visited for the third time. Free Radic Res 1997;27: 239-244.
Isoliquiritigenin is a novel NMDA receptor antagonist in kampo medicine yokukansan
  • Z Kawasaki
  • Y Ikarashi
  • Y Kase
Kawasaki Z, Ikarashi Y, Kase Y, et al. Isoliquiritigenin is a novel NMDA receptor antagonist in kampo medicine yokukansan. Cell Mol Neurobiol 2011;31:1203-1212.