- Access to this full-text is provided by Wiley.
- Learn more
Download available
Content available from Diversity and Distributions
This content is subject to copyright. Terms and conditions apply.
Diversity and Distributions. 2019;25:783–796. wileyonlinelibrary.com/journal/ddi
|
783
Received:23April2018
|
Revised:18O ctober2018
|
Accepted:11November2 018
DOI:10.1111/ddi.12882
BIODIVERSITY RESEARCH
Arthropod communities in fungal fruitbodies are weakly
structured by climate and biogeography across European beech
forests
Nicolas Friess1 | Jörg C. Müller2,3 | Pablo Aramendi4 | Claus Bässler2 |
Martin Brändle1 | Christophe Bouget5 | Antoine Brin6 | Heinz Bussler7 |
Kostadin B. Georgiev2,3 | Radosław Gil8 | Martin M. Gossner9 |
Jacob Heilmann‐Clausen10 | Gunnar Isacsson11 | Anton Krištín12 | Thibault Lachat13,14 |
Laurent Larrieu15,16 | Elodie Magnanou17,18 | Alexander Maringer19 | Ulrich Mergner20 |
Martin Mikoláš21,22 | Lars Opgenoorth1 | Jürgen Schmidl23 | Miroslav Svoboda21 |
Simon Thorn3 | Kris Vandekerkhove24 | Al Vrezec25 | Thomas Wagner26 |
Maria‐Barbara Winter27 | Livia Zapponi28 | Roland Brandl1 | Sebastian Seibold29
1DepartmentofEcology‐AnimalEcology,FacultyofBiology,Philipps‐UniversitätMarburg,Marburg,Germany
2BavarianForestNationalPark,Grafenau,Germany
3FieldStationFabrikschleichach,DepartmentofAnimalEcologyandTropicalBiology,UniversityofWürzburg,Biocenter,Rauhenebrach,Germany
4Vermungsgade,Copenhagen,Denmark
5Irstea,'ForestEcosystems'ResearchUnit,Nogent‐sur‐Vernisson,France
6INPT–Ecoled'IngénieursdePurpan,UMR1201DynaforINRA‐INPT,UniversityofToulouse,Toulouse,France
7AmGreifenkeller1b,Feuchtwangen,Germany
8DepartmentofEvolutionary,BiologyandEcology,InstituteofInvertebrateBiology,FacultyofBiologicalSciences,UniversityofWroclaw,Wrocław,Poland
9ForestEntomology,SwissFederalResearchInstituteWSL,Birmensdorf,Switzerland
10CenterforMacroecology,EvolutionandClimate,NaturalHistoryMuseumofDenmark,UniversityofCopenhagen,Copenhagen,Denmark
11SwedishForestA gency,Hässleholm,Sweden
12InstituteofForestEcolog ySAS,Zvolen,Slovakia
13SchoolofAgricultural,ForestandFoodSciencesHAFL,BernUniversityofAppliedSciences,Zollikofen,Switzerland
14SwissFederalResearchInstituteWSL,Birmensdorf,Switzerland
15INRA ,UMR1201DYNAFOR ,ChemindeBordeRouge,UniversityofToulouse,CastanetTolosanCedex,France
16CRPFOC ,Tolosane,France
17SorbonneUniversités,UPMCUnivParis06,CNRS,BiologieIntégrativedesOrganismesMarins(BIOM),Banyuls/Mer,France
18Réser veNaturelleNationaledelaForêtdelaMassane,Argelès‐sur‐Mer,France
19GesäuseNationalPark,Admont,Austria
20ForestCompanyEbrach,Ebrach,Germany
21FacultyofForestryandWoodSciences,CzechUniversityofLifeSciencesPrague,Prague,CzechRepublic
22PRALES,Rosina,Slovakia
23Ecologygroup,DevelopmentalBiolog y,DepartmentBiology,UniversityofErlangen‐Nuremberg,Erlangen,Germany
24ResearchInstituteforNatureandForestINBO,Geraardsbergen,Belgium
25NationalInstituteofBiology,Ljubljana,Slovenia
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
©2019TheAuthors.Diversity and DistributionsPublishedbyJohnWiley&SonsLtd.
784
|
FRIESS Et al.
26Depar tmentofBiolog y,UniversityofKoblenz‐Landau,Koblenz,Germany
27ForestResearchInstituteofBaden‐Würt temberg(FVA),Freiburg,Germany
28CentroNazionaleperloStudioelaConservazionedellaBiodiversitàForestale"BoscoFontana",Marmirolo,Italy
29TerrestrialEcolog yResearchGroup,DepartmentofEcologyandEcosystemManagement,TechnischeUniversitätMünchen,Freising,Germany
Correspondence
SebastianSeibold,TerrestrialEcology
ResearchGroup,Depar tmentofEcology
andEcosystemManagement,Technische
UniversitätMünchen,Freising,Germany.
Email:sebastian.seibold@tum.de
Funding information
RudolfandHeleneGlaserFoundation;
MinisterstvoŠkolství,Mládežea
Tělovýchovy,Grant/AwardNumber:CZ.0
2.1.01/0.0/0.0/16_019/0000803;Česká
ZemědělskáUniverzitavPraze,Grant/
AwardNumber:CIGANo.20184304
Editor:AnnaTraveset
Abstract
Aim:ThetinderfungusFomes fomentariusisapivotalwooddecomposerinEuropean
beechFagus sylvaticaforests.Thefungus,however,hasregionallydeclinedduetocen‐
turiesoflogging.Tounravelbiogeographicaldriversofarthropodcommunitiesassoci‐
atedwiththisfungus,weinvestigatedhowspace,climateandhabitatamountstruc ture
alphaandbetadiversityofarthropodcommunitiesinfruitbodiesofF. fomentarius.
Location:TemperatezoneofEurope.
Tax o n:Arthropods.
Methods:Werearedarthropodsfromfruitbodiessampledfrom61sitesthroughout
therangeofEuropeanbeechandidentified13orderstaxonomicallyorbymetabar‐
coding.WeestimatedthetotalnumberofspeciesoccurringinfruitbodiesofF. fom en‐
tarius in European beech forests using the Chao2 estimator and determined the
relativeimportanceofspace,climateandhabitatamountbyhierarchicalpartitioning
foralphadiversityandgeneralizeddissimilaritymodelsforbetadiversity.Asubsetof
fungisampleswassequencedforidentificationofthefungus’geneticstructure.
Results:ThetotalnumberofarthropodspeciesoccurringinfruitbodiesofF. fomentarius
acrossEuropeanbeechforestswasestimatedtobe600.Alphadiversityincreasedwith
increasingfruitbodybiomass;itdecreasedwithincreasinglongitude,temperatureand
latitude. Beta diversitywas mainly composed by turnover.Patterns of beta diversity
wereonlyweaklylinkedtospaceandtheoverallexplanatorypowerwaslow.Wecould
distinguishtwogenotypesofF. fomentarius,whichshowednospatialstructuring.
Main conclusion: Fomes fomentariushost s a l a r g e n u m b er o f a r th ro p o ds i n Eu r o p e a n
beechforests.Thelowbiogeographicalandclimaticstructureofthecommunities
suggeststhatfruitbodiesrepresentahabitatthatoffers similarconditionsacross
largegradientsofclimateandspace,butarecharacterizedbyhighlocalvariability
incommunitycompositionandcolonizedbyspecieswithhighdispersalability.For
European beech forests, retention of trees withF. fomentariusandpromotingits
recolonizationwhereithaddeclinedseemsapromisingconservationstrategy.
KEY WORDS
deadwood,Fagus sylvatica,Fomes fomentarius,insects,invertebrates,restoration,saproxylic,
sporocarp
1 | INTRODUCTION
Most parts of the temperate zone of Europe—from the Iberian
Peninsula to the Black Sea and from southern Italy to southern
Sweden—are naturallycoveredby forestsdominated by European
beechFagus sylvatica (Fig ure 1). These forests, however,have de‐
clined over recent centuries due to deforestation until around
1800,andsincethenduetoconversiontoconifer‐dominated(Pinus
sylvestris,Picea abies)plantations(Dirkx,1998;Schelhaas,Nabuurs,&
Schuck,2003).Historicdeforestationanddegradationhaverecently
been reinforced by large‐scale clear‐cutting of old‐growth beech
forestsin regionsthat,until recently, were rather unaffected (e.g.,
intheCarpathians;Vanonckelen&VanRompaey,2015;Mikolášet
al.,2017).Sincethe distributionofEuropean beechisrestricted to
thetemperatezoneofEurope,theEUhas acknowledgeditsglobal
responsibilitybylistingseveraltypesofbeechforestasNatura2000
|
785
FRIESS E t al.
habitats(CounciloftheEuropeanUnion,).Furthermore,someofthe
lastnaturaloralmostnaturalEuropeanbeechforestsarepartofthe
UNESCO World Heritage “Ancient and PrimevalBeech Forests of
theCarpathians andOther RegionsofEurope”(http://whc.unesco.
org/en/list/1133).Despitethesecommitmentstoconservingbiodi‐
versityinEuropeanbeechforests,ourunderstandingoflarge‐scale
driversof biodiversity inbeechforests remainslimited,hampering
systematic conservation planning, given prevalent area conflicts
(Ammeretal.,2018;Kouki,Hyvärinen,Lappalainen,Martikainen,&
Similä,2012;Margules&Pressey,2000).
ThespeciespooloforganismsassociatedwithEuropeanbeech
forestscanbeexpectedtobestructuredacrosslargespatialscales
reflecting different underlying mechanisms. European beech was
one of the last tree species to recolonize central and northern
EuropefromitsmajorrefugiainsouthernEuropeafterthelastgla‐
ciation and is still expandingits range towards the north andeast
(Magri, 2008). Understorey plant diversity in European beech for‐
estsreflectsthishistoryandisdeterminedbydistancetothenear‐
estknownmajorrefuge(Jiménez‐Alfaroetal.,2018;Willner,Pietro,
&Bergmeier,2009).Inaddition,populationsofEuropeanbeechmay
alsohavepersistedinmicrorefugiaincentralEurope(Robin,Nadeau,
Grootes,Bork,&Nelle,2016).Duetoitshighcompetitivenessand
climate tolerance,Europeanbeech covers a widerange of climatic
conditions (Figure 1; Brunet, Fritz, & Richnau, 2010), which might
structurecommunities(Heilmann‐Clausenetal.,2014).Towardsits
ecologicalrangelimits,increasingpresenceofothertreespeciesand
arthropodsassociatedtothesetrees (Brändle&Brandl,2001)may
furtherinfluencetheregionalspeciespool.
These natural drivers ofcommunity structure in beech forests
interact with anthropogenic factors. Forest clearing and forest
manageme nt have been more intens e in western than in e astern
Europeresultinginagradientofhabitatlossofnaturalbeechforest
and conse quently fragme ntation of these fo rests from eas t–west
(Abrego,Bässler,Christensen, & Heilmann‐Clausen, 2015;Kaplan,
Krumhardt, & Zimmermann,2009;Larsson,2001). Manyspecialist
speciesforold‐growthbeechforestshavethusbecomerarerorlo‐
callyextinctinwesternEuropeandcantodayonlybefoundineast‐
ernEurope(Eckeltetal.,;Speight,1989).
Onsmallerspatialscales,speciescommunities canbe affected
bytheregionalclimate acting as environmental filterasshown for
wood‐inhabitingbeetlesandfungiinbeechforests(Bässler,Müller,
Dziock,&Brandl,2010;Mülleretal.,2012)andminutetree‐fungus
beetlesinfruitbodies(Reibnitz,1999).Moreover,notonlylarge‐scale
gradients of anthropogenic pressure can influence communitiesin
FIGURE 1 Mapofthe61samplingsitesofthisstudy.ThegreenareadepictsthepredictedcurrentdistributionofEuropeanbeech
Fagus sylvatica(Brusetal..,2011).ThenumbersinthemapcorrespondtothestudysiteIDinsupportinginformationAppendixS2and
AppendixS3:TableS3.1.Circlesindicatethe52studysitesforwhichdataonallarthropodswereavailable;squaresindicatetheninesites
forwhichonlybeetledatawereavailableandwhicharepartoftheanalysesinSupportinginformationAppendixS4.Blackfillingindicates
siteswithactiveforestmanagementandwhitefillingindicatesunmanagedsites.Leftinset:AtypicalexampleofaEuropeanbeechtree
withfruitbodiesofFomes fomentarius. PhotographbyThomasStephan.Rightinset:Meanannualtemperatureandannualprecipitationof
allstudysites(filledcirclesandsquares(seeabove))and10,000randomlysampledpointsinthedistributionofF.sylvaticarepresentingthe
climatespacewherebeech‐dominatedforestsareoccurring
786
|
FRIESS Et al.
beech forests butalsothe amountofavailablehabitat at localand
landscapescales(Fahrig,2013;Seiboldetal.,2017)andtheconnec‐
tivityofhabitat patches (Abrego et al., 2015; Nordén et al.,2018;
Rukke,2000).
Fun giareth emainbiot icagent sofwooddecom posit ionan dt heir
myceliaandfruitbodiesareanimportantfoodformanyarthropods
astheycontain higherconcentrationsofnutrientsstoredin amore
ac ces sibl efor mtha ninundec ayed woo d(Fi lipi ak,S obczyk, &Weine r,
2016;Merrill&Cowling,1966;Stokland,Siitonen,&Jonsson,2012).
Inparticular,fungalfruitbodies,especiallypolypores,serveashabi‐
tatformany fungicolousarthropod species(Schigel,2012).Studies
ofthediversityandcompositionoffungicolousarthropodcommuni‐
tieshavesofarbeenrestrictedtolocalandregionalscales,andgen‐
erallyindicatethatmanyarthropodspeciesarehost‐specific(Jonsell
&Nordlander,2004;Komonen,2001).Occurrenceandabundanceof
fungicolousarthropodspeciesonsingletreesandforeststandsde‐
pendonhabitatavailability(Rukke,2000).Attheregionalscale,turn‐
overinspeciescompositionhasbeenfoundtobehighamongfungal
host spe cies, but low amon g sites across host sp ecies (Komonen,
2001).Sofar,nostudyhasinvestigateddiversitypatternsoffungic‐
olousarthropodsatcontinentalscales(Schigel,2012).
ThetinderfungusFomes fomentariusisoneofthemaindecom‐
posersofwoodinmanybeechforestsinEurope.However,F. fomen‐
tarius has a much l arger range tha n European bee ch covering the
temperate and boreal zones of Europe, Asia and Nor th America.
Outsidebeechforests,itoccursespeciallyinriparianandborealfor‐
estsonBetula,Populus, Alnus orotherhardwoodtrees(Matthewman
&Pielou,1971;Reibnitz,1999;Rukke,2000).Asawhite‐rotfungus,
itcan efficiently break down lignocellulose andcontributes tothe
death ofweakenedliving trees, thus promoting naturalforest dy‐
namics(Butin,1989).Itsfruitbodiesandthecreateddeadwoodare
habitatformanyarthropodspecies (Schigel,2012).Their commu‐
nitycompositionislargelyaffectedbythephysicalconditionsofthe
fruitbodieswhichchangewithongoingdecomposition(Dajoz,1966;
Reibnitz, 1999; Thunes &Willassen, 1997).Thus, in order to cap‐
ture the w hole local com munity occur ring in F. fomentarius differ‐
entstagesofdecompositionhavetobetakenintoaccount(Graves,
1960).
Treescolonized by the fungus have been suggested as afocal
habitat for biodiversity conservation in beech forests (Larrieu
et al., 2018; Mül ler, 2005). Howe ver, due to centuri es of logging
and direct persecution for phytosanitary reasons, populations of
this fungus have declined orbecamelocally extinctin many areas
(Vandekerkhove etal., 2011;Zytynskaet al.,2018). Toguide con‐
servation planning andstrategies inEuropeanbeechforests, such
asthe selectionof areastobe setaside forconservation(Bouget,
Parmain,&G ilg ,2014)orforacti verestoratio nbyde adwoodenrich‐
ment(Dörfler,Gossner,Müller,&Weisser,2017), it isnecessaryto
understandhowarthropodcommunities—whichrepresentthelarg‐
estfractionofanimalbiodiversityinforests—arebiogeographically
structured.
In this study, we reared arthropods from fruitbody samples of
F. fomentarius across the whole distributional range of European
beech.Ouraimsweretoestimatealphaandbetadiversityofarthro‐
podsinfruitbodiesofF. fomentariusandtodise nt angletheeffect sof
post‐glacialrecolonizationofitshosttree,macro‐climate,anthropo‐
genicpressureandhabitatamountondiversitypatterns.Specifically,
weexpected (a) decreasing alphadiversity and increasingnested‐
nesswithlatitudeduetotherecolonizationhistoryofbeech,(b)de‐
creasingalphadiversity and increasing nestednessfromeast‐west
due to the an thropogenic l and use histor y, (c)i ncreasing tur nover
withincreasingdifferencesinmacro‐climaticconditionsacrossboth
latitudinalandlongitudinalspace,and(d)increasingalphadiversity
withincreasinghabitatamountatlocalandlandscapescales.
2 | METHODS
2.1 | Collection of Fomes fomentarius fruitbodies
We collected fruitbodies from 61 beech‐dominated forest sites
across the distributional range of F. sylvatica (Figure 1) between
JuneandAugust2013.Thesesiteswerechosentocoverthenatural
distributionofF. sylvatica,aswellasthefullrangeofclimaticcondi‐
tions withinthis area(Figure1).Wewerenot abletoincludesites
from someparts of thedistributionalrange,for example southern
England,whereF. fomentarius isalmostabsentforhistoricalreasons
(Abreg o, Christensen, B ässler, & Ainswort h, 2017). Sites were lo‐
cated inunmanaged (36) and managed forests (25); both manage‐
mentcategorieswereevenlydistributedacrossEurope(Figure1).
Forarthropodrearing,wecollected10fruitbodiesofF. fomentar‐
iuspersitefoll owi nga stand ardizedpro toc ol.A ssem blagesi nhab iting
fruitbodiesofbracketfungichangewithongoingfruitbodydecom‐
position.Therefore,wesampledfruitbodiesatdif ferentsuccessional
stagesofdecay.Ateachsite,samplingincludedfruitbodiesattached
towoodthathadjustrecentlydiedandwerestillmoist(3to4fruit‐
bodies)andfruitbodiesthathadbeendeadforalongertime(6to7
frui tbodies).Thelatterwer ee itherdrywhens tillatta chedtowoo d(3
to4fruitbodies)orwetwhenlyingontheground(3to4fruitbodies).
Thissamplingprotocolaimedatcoveringmostoftheavailablehab‐
itatheterogeneityrepresentedbythefruitbodies.Thetotalvolume
sampledpersiterangedbetween0.2and21.7kg(mean:2.7kg)and
didnotrepresent the local availabilityoffruitbodies as transporta‐
tionandrearinglogisticsrestrictedthesampledvolume.
In additi on, we collect ed samples of li ving fruitb odies to anal‐
ysethe geneticstructure withinthe population of F. fomentarius in
Europe.Fromthesesamples,weappliedamicrowave‐basedmethod
toextractDNA(Dörnte&Kües,2013)andamplifiedsequencesfor
theinternaltranscribedspacer(ITS)regionandtheelongationfactor
α(efa)genebytouchdownPCR(fordetails,seeSupportinginforma‐
tionAppendixS1).
2.2 | Arthropod rearing
Toreararthropods,allfruitbodiesofthesamesite(fromnowoncalled
“sample”) w ere put into a cardbo ard box (25cm×25cm×50cm)
in an unheated well‐ventilated storage room with a seasonal
|
787
FRIESS E t al.
temper ature regime. A tra nsparent collec ting jar was att ached to
eachboxandfilledwith90%ethanoltocollectarthropodsattracted
tolight.Collectingjarswereemptiedeverytwomonthsandarthro‐
podsinside theboxeswerecollectedbyhand. Rearingwascarried
outfor12monthsforeachsample.
2.3 | Arthropod identification and classification
Reared ar thropod specimens were stored in ethanol and beetles
were determined to species level by taxonomists. The remaining
fauna was identified by metabarcoding using next‐generation se‐
quencin g carried out by Adv anced Identific ation Methods G mbH
(Munich,Germany;fordetails,seeSupportinginformationAppendix
S1).Arthropodsequenceswerematched against the publicly avail‐
able DNA barcode library within the Barcode of Life (BOLD—
v4.boldsystems.org; Ratnasingham & Hebert, 2007). Laboratory
problemsimpededtheuseofnext‐generationsequencingforsam‐
plesfromninesites(Figure1).
Weconsideredallspeciesthatwererearedfromfruitbodysam‐
ples,includingspeciesthatusehollowfruitbodiesas shelterorde‐
velopattheinterfacebetweenfruitbodiesandwhite‐rottenwood.
However, since this i ncludes specie s that do not intera ct directly
with the fruitbody, we additionally analysed the data excluding
these species.Basedon literature,we classified species orgenera
thatare knownto feeddirectly on thefungaltissue or exclusively
preyuponmycetophagousspeciesas“fungispecialists”(Supporting
informationAppendixS2);andweclassifiedallspeciesaccordingto
theirtrophiclevelasconsumers(i.e.,speciesthatfeedonnon‐animal
tissue),predators(i.e.,speciesthatfeedonanimaltissue)orparasit‐
oids(i.e.,speciesthatdeveloponorwithinsinglehostorganismsand
ultimatelykilltheirhost).
2.4 | Environmental predictor variables
Coordinatesofeachsitewererecordedin the fieldusinghandheld
GPSdevices(SupportinginformationAppendixS3,TableS3.1).We
extracteddataonall19bioclimaticvariablesforeachsitefromthe
WorldClim database (Hijmans, Cameron, Parra, Jones, & Jarvis,
2005).Sincebioclimaticvariablesareoftencorrelated,weperformed
aprincipalcomponentanalysisonthecorrelationmatrixfortemper‐
atureandprecipitationvariablesseparately(i.e.,temperature:BIO1
–11;precipitation:BIO12–19).Thefirsttwoprincipalcomponents
explainedmostofthevariationinbothdatasets(temperature:75%;
precipitation:91%;SupportinginformationAppendixS3,TableS3.2)
andweresubsequentlyusedasaproxyforbioclimaticconditionsat
thesites.Thefirstprincipal componentsrepresented a gradient in
meantemperatureorprecipitationwithhighvaluesindicatingsites
withoverallhightemperatureorsumsofprecipitation,respectively.
Thesecondprincipalcomponentsrepresentedagradientinseason‐
ality withhigh values forsites displaying hightemperature orpre‐
cipitationseasonality,respectively.
Too btain a proxy f or landscap e‐scale habi tat amount an d an‐
thropogenicpressure,we calculated the proportionofforestcover
surroundingthe sitesforradiifrom 100 to 5,000m(100‐msteps).
Forest coverwithina radiusof700maround siteshadthehighest
independenteffectonalphadiversity,andthus,thisradiuswascho‐
senforfurtheranalyses(SupportinginformationAppendixS3,Figure
S3.1).WeuseddatabasedonLandsatsatelliteimagesfromtheda‐
tabaseonGlobalForestChange(Hansenetal.,2013),whichisavail‐
ablewithaspatialresolutionofapproximately25metresperpixel,
withvaluesrangingfrom0to100perpixelencodingtheproportion
ofcanopyclosureforallvegetationtallerthan5minheight.Toeval‐
uatetheroleofsamplesize(asaproxyforlocalhabitatamount)for
alphaand betadiversity,werecordedthetotal dryweightoffruit‐
bodiespersampleafter12monthsofrearing.Proportionsofforest
coverwerelogit‐transformedandsamplesizewasloge‐transformed.
2.5 | Statistical analyses
AllstatisticalanalyseswerecarriedoutusingR version3.3.2(RCore
Tea m, 2016) .T he main analyses i ncluded beetl es identified t axo‐
nomicallyandallotherarthropodsidentifiedbymetabarcodingand
werethus restricted to the52sites for which metabarcoding data
wereavailable.Additionalanalyseswereconductedforbeetledata
fromall61siteswithbeetleabundances(seeSupportinginformation
AppendicesS4andS5).
Toestimate the overall species pool, we calculated the Chao2
estimator, as implemented in the vegan package version 2.4–3
(Oksan en et al., 2018). The Chao2 es timate is a functi on of spe‐
ciesoccurringonceortwiceinthedatasetandoffersrobustlower
bound es timation for sp ecies richnes s based on inciden ces under
theassumptionthatrarespecieshavesimilardetectionprobabilities
(Chao, 1987). Cal culations were b ased on data for a ll species and
separatelyforfungispecialistsandeachtrophicguild(i.e.,consumer,
predator a nd parasitoid ) on the 52 sites. In ad dition, we use d the
rarefaction–extrapolation framework based onsp eciesincidences
acrossallsites(Chaoetal.,2014).WeusedHillnumberoftheorders
0(species richness),1 (the exponential of Shannon's entropy) and
2(the inverse of Simpson's concentration)to analyse thediversity
ofrare andcommonspecies within one framework. We used 999
replicated bootstraps to calculateconfidence intervalsaround the
species‐accumulationcurves using the iNEXT package (Hsieh, Ma,
&Chao,2016).
Alphadiversitywascalculatedasthenumberofspeciespersite.
Toestimate therelative importance of thepredictor variables, we
performedhierarchicalpartitioning—asimplementedinthehier.part
package version 1.0–4 (Walsh & Mac Nally,2013)—based ongen‐
eralizedlinearmodels.Forthegeneralizedlinearmodels,wechose
aquasipoissonerrordistributionanda log‐linkfunctionin orderto
accountforfrequentlyobservedoverdispersioninmodelsofcount
data.Ple asenotethatalternativelych oosingmod elsincludin ga no b‐
serva tion‐level ran dom effect o rm odels with a neg ative‐binomia l
errordistributiondidnotalterthemainresults.Themodelsincluded
alphadiversity as the dependentvariableandspace(latitude,lon‐
gitude),climate(meantemperature,temperatureseasonality,mean
precipitation,precipitation seasonality)andhabitatamount(forest
788
|
FRIESS Et al.
cover,sample size)aspredictor variable sets. Allcalculations were
performedseparatelyforallspecies,fungispecialistsandeachtro‐
phicguildonthe52sites.
BetadiversitywascalculatedastheSørensendissimilarityamong
all 52 sites using presence–absence information. The community
compositionofall speciesandfungi specialistswasvisualized using
non‐metricmultidimensionalscaling(NMDS).Subsequently,wefit‐
tedtheenvironmentalvectorsofspace,climateandhabitatamount
to the resulting ordination as implemented in the envfit function
using the vegan package. In ad dition, we per formed an a nalysis of
similarityin ordertotest for groupdifferences in communitycom‐
position a mong managed and un managed sites, as wel l as among
biogeographicalregionsagainusingvegan (seeSupportinginforma‐
tionAppendixS3forfurtherdetails).Furthermore,wedecomposed
beta diversity in its turnover and nestedness components based
onthe Sørensenindexfamilyas implementedinbetapart (Baselga,
Orme,Villeger,Bortoli,&Leprieur,2017).Theturnovercomponent
representsbetadiversityintroducedbythereplacementofspecies
betweensites,whilethenestednesscomponentrepresentsthebeta
diversityintroducedbytheremoval/gainofspeciesbetweensites.
Toestimatethe relativeimportanceofthepredictor variables (lati‐
tude,longitude, meantemperature,temperatureseasonality,mean
precipitation,precipitationseasonality,forestcoverandsamplesize)
for beta diversity, we calculated generalized dissimilarity models
(GDMs)asimplementedinthegdmpackage(Manionetal.,2017)for
totalbetadiversity,andturnoverandnestednesscomponentssep‐
arately. GDMs allow theanalysis of spatial patternsof community
compositionacrosslargeregions under consideration of nonlinear
relationshipsbetweendissimilarityincommunitycompositionalong
environmentalgradients(Ferrier,Manion,Elith,&Richardson,2007).
AllGDMswerecalculatedusingthedefaultofthree I‐splines.The
calculatedcoefficientfor each of the threeI‐splinesrepresentsthe
rateofchangealongathirdofthegradientoftheenvironmentalpre‐
dictorwhenkeepingallotherpredictorsconstant(i.e.,highvaluesof
thefirstI‐splineindicateahigh rateofchange alongthe first third
ofthegradient).Weestimatedtherelativecontributionofeachpre‐
dictorsetasthedifferenceinexplaineddeviationbetweenamodel
containingallpredictorsetsandamodel fromwhichthispredictor
setwasremoved(Legendre&Legendre,1998;Maestri,Shenbrot,&
Krasnov,2017).Allcalculationswereagainperformedseparatelyfor
allspecies,fungispecialistsandeachtrophicguildonthe52sites.
Dataforbeetlesincludingabundances wereavailable for all61
sites;wethusconductedsimilaranalysesforthisgroupasforallar‐
thropods(seeSupportinginformationAppendicesS4andS5).These
analysesconsideredtheinfluenceofincreasingnumbersofindivid‐
ualsonalpha diversity andtheeffectof space,climate and habitat
amountonabundance‐baseddissimilaritiesofthebeetlecommuni‐
ties. He re, we used Bray–Cur tis dissimil arities and de composed it
intothetwocomponentsbasedonbalancedvariationinabundance
(i.e., individuals of some species ata site are substituted by equal
numbersof individualsat anothersite)and dissimilarityintroduced
byabundancegradients(i.e.,individualsarelostwithoutsubstitution
fromonesitetotheother;Baselga,2013).
3 | RESULTS
In total, we identified 216 arthropod species emerging from fruit‐
bodiesof F. fomentariusfrom52sites.Speciesbelongedto13or‐
ders, with highest species richness found in Diptera ( n=72) and
Coleoptera(n=71;Figure2;SupportinginformationAppendixS2).
The majority oftaxa (n=179) couldbe assigned to species bythe
taxonomist or by alignment of operationaltaxonomic units (OTUs;
see Supporting information Appendix S1)with existing databases.
Theremaining37OTUsnotassignedtoaspeciesweremostlymem‐
bers ofthe Cecidomyiidae (Diptera), for whichbarcodes were not
availableinthedatabases.Weidentified74speciesasfungispecial‐
ists.Concerningtrophicguilds,weclassified131speciesasconsum‐
ers, 68 speciesaspredatorsand17species as parasitoids.Genetic
analysisofF. fomentariussamplesrevealedtwogenotypesthatwere
previouslyidentified aspossiblesympatric crypticspecies(termed
genotype“A”and“B”;Judova,Dubikova,Gaperova,Gaper,&Pristas,
2012).However,intraspecificgeneticvariationamongsiteswasvery
lowandgenotypeBoccurredonlyatfiveofoursiteswidelyspread
overthesamplingarea(SupportinginformationAppendixS1).
Chao2 est imators indic ated an overall s pecies pool of 5 87(S E
=103) for all specie s, 249(S E =181) for fungi spe cialists, 40 2 (SE
=104) for consumer s, 163 (SE =43) fo r predators an d 42(S E =24)
for parasitoids associated with F. fomentarius in European beech
forest s. The observed effec tive number of typical species (q=1)
was87,whilethe observedeffective number of dominant species
(q=2)was 44 (Supporting informationAppendix S3, Figure S3.3).
Manyofthedominantspecieswereconsumers,such as beetles of
the family Ciidae, the Tenebrionidae Bolitophagus reticulatus, the
micro‐mothScardia boletellaandCecidomyiidaesp.3(Figure3).The
most frequent par asitoids were the hyme nopterans Astichus spp.
andascuttlefly(Phoridae).Beetlesincludedfourspeciesconsidered
tobe “primeval forest relicts” (Eckeltet al., ), namely Bolitophagus
interruptus, Bolitochara lucida, Teredus cylindricus and Philothermus
evanescens, whi ch were each found at on e site (Slovenia, France ,
southernItalyandSweden,respectively).
FIGURE 2 Piechartoftheproportionofspeciesfromdifferent
arthropodordersrearedfromfruitbodiesofFomes fomentariusfrom
52beech‐dominatedforestsitesacrossEurope.Theoverallnumber
ofdeterminedspecieswas216
|
789
FRIESS E t al.
Consideringallarthropods,themeanspeciesnumberpersite
was16(SE=6) with thelowest number (six species) foundin the
German Wetterauandthe highestnumber(36 species)locatedin
Abruzzo,Italy.Inthequasipoissonmodels,ourpredictorvariables
explained20%ofthedevianceinalphadiversityforallspeciesand
26% for the fung i specialists (F igure 4). The explain ed deviance
decreased from consumers(22%) topredators (16%)and parasit‐
oids(6%)correlatedtothenumberofspeciesofthetrophicguilds
(Table 1).According to hierarchical part itioning, habitat amount,
thatisforestcoverandsamplesize,explainedmostoft hedeviance
inourmodels(Fig ure4).Alp hadiver sit yofa llspecies,fungisp ecial‐
is t s ,cons u mersa n dpred a torsi ncrea s e dwit h incre a sing s amples ize
(Table1,Figure5a)andthatofconsumersalsoincreasedwith in‐
creasingforestcover.Moreover,alphadiversityofallspecies,fungi
specialistsandconsumersdecreasedwithincreasinglongitudeand
thatoffungispecialistsalsodecreasedwithlatitude.Alpha diver‐
sityoffungispecialistsandconsumersadditionallydecreasedwith
increasingmeantemperatureandprecipitation(Table1).Mostef‐
fects,however,wereonlymarginallysignificant(Table1).
Ordinationofthecommunitycompositionofallspeciesas well
asfungispecialistsrevealedlargedifferencesincommunitycompo‐
sition acrossour study sites(Supporting informationAppendixS3:
Figure S3 .2). Except for a si gnificant ef fect of samp le size on the
communitycompositionofallspecies(r2=0.13,p < 0.05), environ‐
mentalvariableswerenotsignificantlycorrelatedwiththeaxesofthe
NMDS(SupportinginformationAppendixS3;FigureS3.2A&D).In
addition,wefoundnodifferencesincommunitycompositionamong
managedandunmanagedsites,aswellasamongbiogeographicalre‐
gions(SupportinginformationAppendixS3:FigureS3.2).Thelargest
proportionofdissimilaritywasduetoturnover,ratherthannested‐
nessforallspecies(98%),fungispecialists(96%)andalltrophicguilds
(consumer:97%;predator:99%;parasitoids:97%).Theproportionof
devianceexplainedbyGDMswasbelow15%foroverallbetadiver‐
sity,nestednessandturnoverinallgroups(Figure4).Forallspecies,
wefoundamarginallysignificantincreaseofdissimilarityintroduced
bynestedness with increasinglongitudinal distance between sites
(Table2).Nosinglepredictorhadasignificanteffectonbetadiver‐
sityoffungispecialists andconsumerspecies (Supportinginforma‐
tionAppendixS3,TableS3.4&TableS3.5).Dissimilarityinlatitudinal
distancehadasignificantpositiveeffectontheoverallbetadiversity
aswellasontheturnovercomponentforpredatorsandparasitoids
(Suppor ting inform ation Append ix S3, Table S3.6 and Table S3 .7).
Additionally,wefoundasignificantincreaseinoverallbetadiversity
aswellasindissimilarityduetoturnoverwithincreasingdissimilarity
ofsamplesizeforpredators.
Our a n a l ysesfo r b e e t l esfroma l l61 sitesi n c l u d e dabundan c e data
for123 species (Supporting information AppendixS5).Here,alpha
diversitywasstronglyaffectedbysamplesize(Figure5;Supporting
informationAppendixS4,TableS4.1).Thenumberofbeetlespecies
increased with fungal sample size as the range in samplesize was
consider ably higher acr oss all 61 sites (Figure 5b) th an across the
subset of 52 sites (F igure 5a). Beetl e community co mposition was
FIGURE 3 Rank‐incidenceplotofall216arthropodspecies
rearedfromfruitbodiesofFomes fomentariusfrom52beech‐
dominatedforestsitesacrossEurope
FIGURE 4 Relativecontributionofpredictorsetsinexplaineddevianceofalphaandbetadiversityanditscomponentsturnoverand
nestedness.Alphadiversitywasmodelledusinggeneralizedlinearmodelsandtherelativecontributionisbasedonhierarchicalpartitioning.
Betadiversityisbasedonpresence–absencedataanditscomponentsweremodelledusinggeneralizeddissimilaritymodelsandtherelative
contributionwascalculatedasthe“pure”effectofthepredictorsetontheoverallexplaineddevianceofthemodel.Allanalyseswere
conductedforallspeciesandfungispecialistsseparatelyandforthetrophiclevelsconsumer,predatorandparasitoids.Barcoloursrepresent
thepredictorsetswithspaceinblack,climateinlightgrey,habitatamountinwhiteandthedeviancesharedbythepredictorsindarkgrey
Parasitoids
Predator
Consumer
Fungi specialists
All species
01020
Alpha diversity
0510 15
Beta diversity
0510 15
Turnover
0510 15
Nestedness
Space
Climate
Shared
Habitat
amount
Explained deviance
in alpha-diversity (%)
Deviance explained exclusively
by sets of variables (%)
790
|
FRIESS Et al.
affec ted by dissimilarit y in sample size and longitude. Here, bee‐
tle commu nities showed i ncreased rat es of turnover and balanc ed
changes of abundances withlongitudeand increased ratesofnest‐
ednessandabundancegradientswithsamplesize.Ourmodelsforall
beetle species explainedupto59%of the deviance in alpha diver‐
sity,34% inSørensen dissimilarity and 19%inBray–Curtisdissimi‐
larity(SupportinginformationAppendixS4,TableS4.1;FigureS4.1).
Var iable slinkedtoha bit atamountconsis tentl yexplainedmos toft he
devianceinmodelsofspeciesrichness,overallcommunitycomposi‐
tionandcommunitydissimilarityduetonestedness,whilevariables
linkedtospatialdistanceexplainedmostofthedevianceduetospe‐
ciesturnover(SupportinginformationAppendixS4).
4 | DISCUSSION
Overall,our results indicatethatfruitbodiesof F. fomentariusform
an important micro‐habitat in European beech forests, host inga
rich fauna (estimat ed ~600 art hropod species). Howe ver, t he ar‐
thropod communities included about 30 dominantspecies which
occurredatmost sitesacrossEurope andcan beconsideredtypi‐
cal for fr uitbodies of F. fomentarius. Moreover, there was a lar ge
number of species thatuse F. fomentarius fruitbodiesoccasionally.
The latter groupincludes fungicolousspecies usingawiderrange
offungal hosts (e.g.,Bolitophagus interruptus,Coleoptera,which is
more common on Ischnoderma spp.),speciesthatfeedonwhite‐rot‐
ten wood (e.g ., Corymbia scutellata, Coleoptera) or fu ngal mycelia
and spec ies that use cavi ties inside fru itbodies sim ply for shelter
(e.g. , Amaurobius fenestralis, Aranaea)or that benefit from arthro‐
podprey(e.g.,Plegaderus dissectus, Coleoptera).Alpha diversity in‐
creasedwithsamplesizeanddecreasedwithlongitude,latitudeand
temperature.Despitethelargeextentcoveredinourstudy(approx.
1,80 0km in latitude an d 3,000km in lo ngitude), beta dive rsity—
which wascharacterized by high turnover—wasnot structured by
drivers associated withspace, the biogeographyofF. sylvatica and
habitat amount. Moreover, increasing nestedness and decreasing
TABLE 1 Z‐valuesandexplaineddevianceofgeneralizedlinearmodels(quasipoissonfamily)withthenumberofspeciesofallspeciesor
withinguildsasresponsevariables.Significanteffectsareindicatedbyboldtypesetting.PC1andPC2refertothefirsttwoaxesofthe
respectiveprincipalcomponentanalysesoftemperatureorprecipitationvariables(seeMethodssection)
Predictor set Predictor All species Fungi specialists Consumer Predator Parasitoids
Space Latitude −1.36 −1. 98 ** −1 .70 ** −0.08 −0.93
Longitude −1. 77** −2 .1 2* −1. 8 2** −1 . 0 8 −0.34
Climate Temperature(PC1) −1 .7 2** −1. 90** −1. 92 ** −0.48 −1. 0 0
Temperature(PC2) −0.82 −0.79 −0.43 −1.24 0.31
Precipitation(PC1) −1.41 −1. 3 0 −1. 5 7 −0.68 −0.01
Precipitation(PC2) −0.31 0 .13 −0.45 0.74 −1. 49
Habitatamount Forestcover 1. 26 0.94 1.45 0.13 −0.13
Samplesize 1.75** 2.20*1.55 2.20*0.17
Explaineddeviance 0.20 0.26 0.22 0.16 0.06
Note. aSignificancelevels:*p<0.05,**p < 0.1
FIGURE 5 Relationshipbetween(a)thenumberofarthropodspeciesperfruitbodysampleandsamplesize,thatisthetotalweightof
the10sporocarpssampled,of52sitesand(b)thenumberofbeetlespeciesperfruitbodysampleandsamplesizeincludingall61sites.
Circlesindicatethe52studysitesforwhichdataonallarthropodswereavailable;squaresindicateninesitesforwhichonlybeetledata
wereavailableandwhicharepartoftheanalysesinSupportinginformationAppendixS4.Blackfillingindicatessiteswithactiveforest
management,whitefillingindicatesunmanagedsites.Asimpleregressionlineandconfidenceintervalareshown.Axesarelog‐transformed
(a) (b)
|
791
FRIESS E t al.
alpha diversity towards theeast follow not the continental gradi‐
entofincreasinglanduseintensityfromtheCarpathianstowestern
Europe.
Post‐glacial dispersal lags have been identified as one of the
driving mechanisms causing patterns of alpha and beta diversity
acrossEuropeinplants,insectsandvertebrates(Pinkertetal.,2018;
Svenning, Fløjgaard,&Baselga,2011;Svenning,Normand,&Skov,
2008).Incontrast,betadiversityofsaproxylicbeetleswasshownto
behigherbetweensitesthanbetweenelevationalzonesandbiore‐
gions(Mülleretal.,2012).Wefoundonlyaweakdecreaseinalpha
diversityoffungispecialistswithlatitudeandnosignificanteffectof
latitudinaldistanceonbetadiversityofallarthropodsandthetrophic
guildsinF. fomentarius fruitbodies.Onlypredatoryspeciesshowed
an increased rate in turnover with increasing latitudinal distance:
the rateof change in species composition was highest atlow lati‐
tudes (Supportinginformation Appendix S3,TableS3.6).There are
several potentialexplanations as to why post‐glacialrecolonization
ofthemainhost treespecies appears to be ofminor relevance for
communitiesofarthropods occurring inF. fomentariusfruitbodies.
For instance, species associated with fungal fruitbodies ingeneral
displayhighdispersalabilities(Komonen&Müller,2018).Flightmill
experiments showedadispersal ability of Neomida haemorrhoidalis
and Bolitophagus reticulatus(bothColeoptera;bodylength:6–8mm
and 6 – 7.5mm, respectively; Wagner & Gosik, 2016) of>30km
and>100km, respectively (Jonsson, 2003). Additionally, there is
evidence thatthegenetic distance offungivores doesnotincrease
with geographic distance, indicating the absence of dispersal lim‐
itation ( Kobayashi & S ota, 2016). Another poss ible explanatio n is
thatalthough European beechis the mainhost of F. fomentarius in
temperateEuropetoday,otherhoststhatrecolonizedEuropemuch
earlier—suchasbirch—arealsofrequentlyused(Judovaetal.,2012).
IfF. fomentarius recolonizedEuropewiththelattertreespecies,its
arthropods may have had more time for recolonization and thus
post‐glacialdispersallagsarelesslikelytobeimportant.Last,ifmi‐
crorefugiaofEuropeanbeechalsooccurredincentralEurope(Robin
etal.,2016),recolonizationpathwaysmay becomplexandnotwell
describedbylatitudeusedasaproxyfordistancetomajorrefugiain
southernEurope.
TABLE 2 CoefficientsofthreeI‐splines(i.e.,1,2and3)fromtheGDMofoverallbetadiversity,turnoverandnestednessofallarthropod
species.Significant(p < 0.05)ormarginallysignificant(p<0.1)P‐valuesfortheI‐splinesofthepredictorvariablesafter999permutations
areindicatedbyboldtypesettingPC1andPC2refertothefirsttwoaxesoftherespectiveprincipalcomponentanalysesoftemperatureor
precipitationvariables(seeMethodssection)
Response matrix Predictor set Predictor
I‐spline
Sum of
coefficients P1 2 3
Overallbeta Space Latitude 0.155 0.007 0.003 0.165 0 .11
Longitude 00.067 00.067 0.42
Climate Temperature(PC1) 0 0 0 0 0.99
Temperature(PC2) 0.017 0 0 0.017 0.68
Precipitation(PC1) 0 0 0 0 0.99
Precipitation(PC2) 0.061 0 0 0.061 0.35
Habitatamount Forestcover 00.016 00.016 0.73
Samplesize 0.12 0 0 0.1 2 0. 24
Turnover Space Latitude 0.116 00.054 0.170 0 .24
Longitude 0 0 0.082 0.082 0.46
Climate Temperature(PC1) 0 0 0 0 0.99
Temperature(PC2) 0.004 00.030 0.034 0.65
Precipitation(PC1) 0 0 0 0 0.99
Precipitation(PC2) 0 0 0 0 0.99
Habitatamount Forestcover 00.018 0.001 0.019 0.73
Samplesize 0.121 0 0 0.121 0.25
Nestedness Space Latitude 0.001 0 0 0.001 0.70
Longitude 0.132 0 0 0.132 0.07
Climate Temperature(PC1) 0.013 0 0 0.013 0. 51
Temperature(PC2) 0 0 0 0 0.98
Precipitation(PC1) 0.010 0 0 0.010 0.57
Precipitation(PC2) 0.018 0 0 0.018 0.47
Habitatamount Forestcover 0.05 0 0 0.05 0.27
Samplesize 0 0 0 0 0.97
792
|
FRIESS Et al.
Agradientofdecreasinganthropogenicpressurefromwesternto
easternEuropeexplainswhymanyspecialistspeciesofold‐growth
forest s have become rar e or extinct i n western Europ e (Eckelt et
al.,;Ódoretal.,2006;Speight,1989).Wethusexpectedtofindan
increase of fungicolous arthropod alpha diversity with increasing
longitu de, but in fac t we observed a we ak decrease . Additionall y,
wefoundamarginallysignificant increaseincompositionaldissim‐
ilarity due to nes tedness with incre asing longitudinal distance of
the overal l arthropo d community. Howeve r,the r ate of change in
compositionduetonestednesswashighestatlowlongitudes,while
explanatory power was low and nestedness did not account for
more than4%of compositionaldissimilarity(Table 2). Forbeetles,
we found an in creased rate in tu rnover and balance d changes of
abundanceatthelowerendofthelongitudinalgradient(Supporting
informationAppendixS4, TableS4.4). In parallel to thegradient of
historicanthropogenicpressure,thereisaneast–westclimaticgradi‐
entfromoceanictowardsmorecontinentalclimates,whichisshown
byamoderatecorrelationbetweenclimatevariablesandlongitude
(Supporting information Appendix S3, TableS3.3). Bothdecreasing
alphadiversityandincreasingnestednesswithincreasinglongitude
aswellasincreasedbeetleturnoveratlowlongitudesare inconsis‐
tent with t he expected ef fect of histor ic anthropogen ic pressure,
butmayalsobeexplainedbyamilderclimateinthewest.However,
wehavetopointoutthatwewerenotabletocollectF. fomentarius
samplesinthewesternmostregions(e.g.,England)duetotherarity
offruitbodiesofF. fomentarius.Moreover,manyofoursites,alsoin
western Europe,werelocatedinunmanagedforests(Figure1)and
althoug h forest manage ment had no eff ect on overall co mmunity
composition(SupportinginformationAppendixS3,FigureS3.2),the
gradientofanthropogenicpressuremaybelesspronouncedacross
oursitesthanatalandscapescale.
Environme ntal filtering by climatic dr ivers is often an imp ort‐
ant mecha nism struc turing commun ities (Cadot te & Tucker, 2017;
Kraftetal.,2015),includingdeadwood‐associatedinsectsandfungi
(Bässleretal.,2010;Mülleretal.,2012;Seiboldetal., 2016).Being
poikilothermic,arthropodsgenerally benefit fromhighertempera‐
tures (Sc howalter, 2006). However, we foun d a marginally sig nifi‐
cantnegativeeffectoftemperatureonalphadiversity.Onepossible
explana tion is that frui tbodies are dr ier and thus les s suitable for
somespeciesinwarmerclimates.However,ingeneralbetadiversity
wasnotaffectedbydissimilarityinclimaticconditions.Thissuggests
thatclimate is ofminorimportance for arthropodsassociatedwith
F. fomentarius despiteconsiderablevariabilityin climaticconditions
withinoursamplingrange(Figure1).
Theamountofavailablehabitatisoneofthefundamentaldriv‐
ers of biodiversit y (Fahrig, 2013; MacAr thur & Wilson, 1967). In
Europe, hu man activiti es over millennia have re duced the fores ts
and features of old‐growth stands (overmature and dead trees),
whichhasledtoadeclineofmanysaproxylicinsects(Seiboldetal.,
2015).Forestcover is only a coarse proxy for theamountofhab‐
itat available tospecies associated with dead wood or fruitbodies
ofF. fomentarius,astheamountof theiractualhabitat—dead wood
orfruitbodiesofF. fomentarius,respectively—canvaryconsiderably
within beech forests depending, for example, on current forest
management(Abregoetal.,2015;Bässler,Ernst,Cadotte,Heibl,&
Müller, 2014). This was als o reflected by t he time need ed to find
tenfruitbodiesofF. fomentarius inthepresentstudy,whichranged
fromminutestodays.Nevertheless,wefound thenumber of con‐
sumersamongfungicolousarthropodsandfungispecialistsamong
beetle s to increase with f orest cover (70 0m radius aroun d sites).
Consistentwithresultsofearlierstudiesthatfoundapositiveeffect
offruitbody availability on fungicolousbeetlediversity atregional
scales(Araujo,Komonen,&Lopes‐Andrade,2015;Rukke,2000),we
foundthenumberofarthropodspeciestoincrease withincreasing
fruitbodybiomass.Althoughourmeasureoffruitbodybiomassdid
notreflecttheabundanceofF. fomentarius atthesites,basedonour
resultscoveringarangeoffruitbodybiomassfrom0.4to21.7kgand
earlierfindingsatregionalscales(Araujoetal.,2015;Rukke,2000),
weexpectmorefungicolousarthropodspeciesinforestswithmore
fruitbodiesofF. fomentarius.
Forbeetles,samplesizestronglyaffectedthenumberofspecies
evenwhenaccountingforabundance,whichsuggeststhathabitat
heterogeneityincreaseswithfruitbodybiomass(Supportinginfor‐
mationAppendixS4,TableS4.1).Here,largersamplesseemtopro‐
videmoredifferenthabitatniches, forexample through different
stages of d ecomposition wi thin and among fr uitbodies (Dajoz et
al., 1966) similarl y as shown for coar se woody debri s (Seibold et
al.,2016).Concerningcommunitycomposition, only the totalbeta
diversity and turnovercomponent of predatory arthropods were
affected by sample size.However, abundance‐baseddissimilarity
in community composition ofb eetleswas affec ted by longitude
and sample size. Here, dissimilarity due to abundance gradients
(analogous to nestedness) increased with sample size. Overall,
this indic ates that loc al habitat amo unt is an impor tant driver of
alphadiversityoffungicolousarthropodcommunitiesand,atleast
for fungicolous beetle communities,an impor tant driver of beta
diversity.
BasedontheITSregion,Judovaetal.(2012)havesuggestedthat
populationsofF. fomentarius arecomprisedoftwosympatriccryptic
species;this hasbeen confirmedbyPristas, Gaperova,Gaper,and
Judova(2013)usingtheefagene.Onegenotype,termedgenotype
A, has b een suggested to b e prevalent on Europ ean beech whil e
the other,termed genotype B, isadditionally found on other host
species (Judova et al.,2012).Our geneticanalysisofF. fomentarius
supports this, as all but 5 of 36 of our samples—all sampledfrom
Europeanbeech—belongedtogenotypeA.Nevertheless,theoccur‐
renceofgenotype BonEuropeanbeechinthePyrenees,southern
Italy, Belgium andDenmark is a noteworthyresult(Supportingin‐
formationAppendixS1).Thelowintraspecificvariationamongsites
renderedananalysisoftheinhabitingarthropodcommunitybased
ongenetic differencesfruitless.Furtherstudiesareneeded to test
the hypothesis that F. fomentarius of genotype B hos ts arthro pod
communitiesdifferentfromgenotypeA.
Inour analyses, we incorporated variables whichare knownto
bestrongdriversoflarge‐scale differencesin communitycomposi‐
tion(Dobrovolski,Melo,Cassemiro,&Diniz‐Filho,2012;Soininen,
|
793
FRIESS E t al.
Lennon,&Hillebrand,2007;Zellweger,Roth,Bugmann,&Bollmann,
2017).Fur thermore,weaccountedfordifferencesinhabitatspe cial‐
ization andtrophic level,forestmanagementintensityand biogeo‐
graphicalregionsandevenconsideredthegeneticpropertiesofthe
fruitbodies.Nevertheless,whileourmodelsexplainedconsiderable
proportions ofvariationin alpha diversity most of the variation in
thecommunity compositionofarthropods occurringinfruitbodies
of F. fomentarius remained unexplained. Although explaining the
full variation in community composition was beyond the scope of
this study, these results appear surprising. We suggest three di‐
rections for future studies. First, future studies investigating the
community composition ofar thropods occurringin fruitbodies of
bracket fungishouldfocus on factors driving communitycomposi‐
tion at local scales.This mayincludethe amount of fruitbodies at
thesiteandlandscapescalewhichrepresenthabitatavailabilityand
mayaffectpopulationdynamicsviaincreaseddispersalsuccessand
rescueeffects givensufficientpatchconnectivity(Gonzalez,2005;
Snäll&Jonsson,2001;Venier&Fahrig,1996).Furthermore,studies
could inves tigate the ef fects of mic roclimate as me diated by can‐
opyopennessand forestsuccessional stage, whichwereshown to
generate largedifferencesincommunitycomposition in saproxylic
organisms (Hilmers etal., 2018;Seibold et al., 2016).Second, fur‐
therstudiesneedtoincludearthropodcommunitiesinfruitbodies
ofF. fomentariusonotherhost treespecies, suchas Betula spp. or
Populus spp.,andinvestigatepotentialalternativepost‐glacialrecol‐
onizationroutes.Third,to betterunderstand scale‐dependency of
communityturnover,futurestudiescouldcoverthewholerangeof
F. fomentariusincluding NorthAmericaandEast Asia.Forinstance,
theTenebrionidaeBolitophagus reticulatus isaubiquitousspeciesin
F. fomentarius fromEurope to Korea(Jung,Kim,&Kim, 2007), but
iscompletelyreplacedby itsrelative Bolitotherus cornutus inNorth
America(Matthewman &Pielou,1971),indicating thatthere might
beastrongerbiogeographicalstructuringofthecommunityatsuch
largerscales.
OurresultsshowedthatfruitbodiesofasinglefungusF. fomen‐
tarius pro vide habi t attoahi ghn u mberofar t h ropo d s,th e rebycon ‐
tributingconsiderablytobiodiversityinEuropeanbeechforests.
Conside ring the respon sibility of Europ ean countries t o protect
biodiversityinthisecosystem,werecommendmakingthepromo‐
tion of bra cket fungi as F. fomentarius an inte grated goal of for‐
estconservationstrategiesinEuropeanbeechforests.Theweak
biogeographicalstructuringandhighturnoverofcommunitiesbe‐
tweensites suggestthataprioritizationofcertainregionswithin
Europeisofminorimportancewithregardtoarthropodcommu‐
nitiesinF. fomentarius. Instead,werecommendthatconservation
should rangefromtheprotectionofforestswhere F. fomentarius
ishighlyabundantand inhabitedbyEurope‐widerarearthropod
species(e.g.,intheCarpathianMountains),totheretentionofin‐
dividualhabitattreesanddeadwoodwithfruitbodiesofthespe‐
ciesfromharvestingandsalvagelogging(includingunintentional
destructionbyloggingmachinery)throughoutEurope,andtothe
reintroductionof thespecies to regions(e.g., in westernEurope)
whereithasbecomeextinctandrelictpopulationsarelacking(for
methodssee Abrego etal., 2016).The example of the region of
Flanders,Belgium,showsthat F. fomentarius isabletorecolonize
areaswhereitwasformerlyextinctfromafewrelictpopulations
ifbee chd eadwoo dan dha bita ttr eesare ret aine d(Vande ke r khove
etal.,2011).Furthermore,manyfungicolousarthropodsareable
totrack F. fomentarius populationsrecolonizingsuitablehabitats
due to their high dispe rsal ability ( Vandekerk hove et al., 2011;
Zytynska et al.,2018). In addition topositiveeffects onspecies
associated with its fruitbodies, promoting F. fomentarius will po‐
tentially help to restore fundamental ecosys tem processes and
natural forest dynamicsinbeechforests as itisthe primaryde‐
composerofbeech woodand an importantagent of treesenes‐
cence and de ath. Species a ssociated with b roadleaf dead wo od
andsunnycondi tio nsi nfores t smaya lso benefitfro mga pscreated
when beech trees are killed byF. fomentarius. As F. fomentarius
provideshabitat,shapesfurtherhabitatcharacteristicsanddrives
ecosys tem processes, it c an be considered a key stone modifie r
orecosystemengineerinEuropeanbeechforests(Mills,Soule,&
Doak,1993).
ACKNOWLEDGEMENTS
Wearegratefultoallthosewhohelpe dinthef iel da ndinthelabo‐
rator y to conduct the s tudy, Svitlana Los for p roviding sampl es
fromCrimea,BorisBücheforidentificationofbeetlesandJérôme
Morinière for laboratory support in DNA barcoding. We thank
Emily Kilham for linguistic revision of the manuscript. Nicolas
Friessreceivedascholarship fromthe RudolfandHeleneGlaser
Foundation organized in the “Stifter verband für die deutsche
Wissenschaf t.”M.MikolášandM.Svobodaweresupportedbythe
Czech Universityof LifeSciences, Prague (CIGANo. 20184304)
andbythe institutional project MSMT CZ.02.1.01/0.0/0.0/16_0
19/0000803.
ORCID
Nicolas Friess https://orcid.org/0000‐0003‐0517‐3798
Jörg C. Müller https://orcid.org/0000‐0002‐1409‐1586
Simon Thorn https://orcid.org/0000‐0002‐3062‐3060
Sebastian Seibold https://orcid.org/0000‐0002‐7968‐4489
REFERENCES
Abrego, N., Bässler,C.,Christensen,M.,&Heilmann‐Clausen,J.(2015).
Implicationsofreservesizeandforestconnectivityfortheconserva‐
tionofwood‐inhabitingfungiinEurope.Biological Conservation,191,
469–477.https://doi.org/10.1016/j.biocon.2015.07.005
Abrego, N., Christensen, M., Bässler, C., & Ainsworth, A. M. (2017).
Understanding the distribution of wood‐inhabiting fungi in
European beech reserves from species‐specific habitat mod‐
els. Fungal Ecology, 27, 168–174. https://doi.org/10.1016/j.
funeco.2016.07.006
Abrego, N., Oivanen, P.,Viner,I.,Nordén, J., Penttilä, R.,Dahlberg, A.,
… Schigel , D. (2016). Reintroduct ion of threatene d fungal specie s
794
|
FRIESS Et al.
via inoculation. Biological Conservation, 203, 120–124. https://doi.
org/10.1016/j.biocon.2016.09.014
Ammer,C.,Fichtner,A.,Fischer,A.,Fischer,A.,Gossner,M.M.,Meyer,P.,
Seidl,R.,Thomas,F.M.,…Wagner,S.(2018)Keyecologicalresearch
questionsforCentralEuropeanforests.Bas ic and Applied Ecolo gy. 32:
3‐25.
Araujo , L. S., Komo nen, A., & L opes‐Andr ade, C. (201 5). Influence s of
landscapestructureon diversityof beetles associated withbracket
fungi in BrazilianAtlanticForest.Biological Conservation,191, 659–
666.https://doi.org/10.1016/j.biocon.2015.08.026
Baselg a, A., Orm e, D., Villege r,S. , De Bortol i, J., & Leprieu r,F. (2017)
betapart: PartitioningBeta Diversityinto TurnoverandNestedness
Components.Rpackageversion1.4‐1.
Baselga,A.(2013).Separatingthetwocomponentsofabundance‐based
dissimilarity: Balanced changes in abundance vs. abundance gra‐
dients. Methods in Ecology and Evolution, 4, 552–557. https://doi.
org /10.1111/2041‐210X .12029
Bässler,C.,Ernst,R.,Cadotte,M.,Heibl,C.,&Müller,J.(2014).Near‐to‐
naturelogginginfluencesfungalcommunityassemblyprocessesina
temperateforest.Journal of Applied Ecology,51,93 9–948 .https://do i.
org /10.1111/1365‐2664.12267
Bässler, C., Müller, J., Dziock, F., & Brandl, R. (2010). Effects of re‐
source availability and climate on the diversity of wood‐de‐
caying fungi. Journal of Ecology, 98, 822–832. https://doi.
org/10.1111/j.1365‐2745.2010.01669.x
Bouget,C.,Parmain,G.,&Gilg,O.(2014)Doesaset‐asideconservation
strategyhelptherestorationofold‐growthforestattributesandre‐
colonizationbysaproxylicbeetles?Animal Conservation 17,342–353.
Brändle,M., & Brandl, R.(2001).Speciesrichnessofinsects andmites
ontrees: ExpandingSouthwood.The Journal of A nimal Ecology, 70,
491–504.https://doi.org/10.1046/j.1365‐2656.2001.00506.x
Brunet,J.,Fritz,Ö.,&Richnau,G.(2010).BiodiversityinEuropeanbeech
forests–areviewwi threcom menda tionsforsus tai nablefo re stman ‐
agement.Ecological Bulletins,53,77–94.
Brus,D.J.,Hengeveld,G.M.,Walvoort,D.J.J.,Goedhart,P.W.,Heidema,
A.H.,Nabuurs,G.J.,&Gunia,K.(2011).Statisticalmappingoftree
speciesover Europe.European Journal of Forest Research,131, 145–
157.https://doi.org/10.1007/s10342‐011‐0513‐5
Butin,H.(1989).Krankheiten der Wald‐ und Parkbäume.St uttga r t:T hie me.
Cadotte,M.W.,&Tucker,C.M.(2017).ShouldEnvironmental Filtering
beAbandoned?Trends in Ecology and Evolution,32,429–437.https://
doi.org/10.1016/j.tree.2017.03.004
Chao, A.(1987).Estimating thePopulation Size for Capture‐Recapture
DatawithUnequalCatchability.Biometrics,43,783–791.https://doi.
org/10.2307/2531532
Chao, A ., Gotelli, N . J., Hsieh, T., Sande r,E . L., Ma, K. , Colwell, R. K .,
& Ellison, A. M. (2014). Rarefaction and extrapolation with Hill
number s: A framework f or sampling an d estimatio n in species di‐
versity studies. Ecological Monographs, 84, 45–67. https://doi.
org /10.1890/13‐0133.1
CoreTeam,R.(2016).R: A language a nd environment for s tatistical compu t‐
ing.Vienna,Austria:RFoundationforStatisticalComputing.https://
www.R‐project.org/.
Council,,.oftheEuropeanUnion(1992)Council,,.Directive92/43/EEC
of21May1992ontheconservationofnaturalhabitatsandofwild
faunaandflora.206.
Dajoz, R.(1966).Ecologieet biologie des coléoptères xylophagesde la
hêtraie.Vie Et Milieu,17,637–763.
Dirkx, G. H. P. (1998). Wood‐pasture in Dutch Common Woodlands
andthe Deforestation of theDutch Landscape. In K.J.Kirby, & C.
Watkins(Eds.),The Ecological History of European Forests(pp.53–62).
Wallingford:CABInternational.
Dobrovolski, R ., Melo, A. S.,Cassemiro, F.A. S., &Diniz‐Filho, J. A. F.
(2012). Climatic history and dispersal ability explain the rela‐
tive importance of turnover and nestedness components of beta
diversity.Global Ecology and Biogeography,21, 191–197. https://doi.
org /10.1111/j.1466‐823 8. 2011.00671. x
Dörfler,I.,Gossner,M.,Müller,J., &Weisser, W.W.(2017).Success of
adeadwoodenrichmentstrategyinproductionforestsdependson
standtypeandmanagementintensity.Forest Ecology and Management,
400,607–620.https://doi.org/10.1016/j.foreco.2017.06.013
Dörnte,B.,&Kües,D.(2013).FastMicrowave‐basedDNAExtractionfrom
Vegetative Mycelium andFruitingBody Tissues of Agaricomycetes
forPCRAmplification.Current Trends in Biotechnology and Pharmacy,
7,825–836.
Eckelt, A .., Müller, J.., Bense, U..,Brustel, H.., Bußler, H.., Seibold, S..
(2018). Prim eval forest rel ict beetle s of Central Europ e ‐ a set of
168umbrellaspeciesfortheprotec tionofprimevalforestremnants.
Journal of Insect Conservation, 22, 15–28. https://doi.org/10.1007/
s10841‐017‐0028‐6
Fahrig,L.(2013).Rethinkingpatchsizeandisolationeffects:Thehabitat
amounthypothesis.Journal of Biogeography,40,1649–1663.https://
doi.org/10.1111/jbi.12130
Ferrier,S.,Manion,G.,Elith,J.,&Richardson,K.(2007).Usinggeneralized
dissimilaritymodellingtoanalyseandpredictpatternsofbetadiver‐
sityinregionalbiodiversity assessment.Diversity and Distributions,
13,252–264.https://doi.org/10.1111/j.1472‐4642.2007.00341.x
Filipiak, M., Sobczyk, L ., & Weiner,J.(2016). Fungal transformation of
tree stumps into a suitable resource for xy lophagous beetles via
changesinelementalratios.Insects, 7,13.https://doi.org/10.3390/
insects7020013
Gonzal ez, A. (20 05). Local and re gional communi ty dynamic s in frag‐
mented landscapes. In M. Holyoak, M. Leibold, & R. Holt (Eds.),
Metacommunities: Spatial dynamics and ecological communities (pp.
146–169).Chicago,IL:UniversityofChicagoPress.
Graves,R.C.(1960).Ecological Observations on the Insects andOther
InhabitantsofWoodyShelfFungi(Basidiomycetes:Polyporaceae)in
theChicagoArea.Ann als of the Entomological Societ y of America,53,
61–7 8 .
Hansen,M.C.,Potapov,P.V.,Moore,R.,Hancher,M.,Turubanova,S.A.,
Tyukavina,A.,…Townshend,J.R.G.(2013).High‐ResolutionGlobal
Mapsof21st‐CenturyForestCoverChange.Science,342,850–853.
https://doi.org/10.1126/science.1244693
Heilmann‐Clausen, J.,Aude, E.,van Dort,K., Christensen, M., Piltaver,
A.,Veerkamp,M.,… Òdor,P.(2014).Communitiesofwood‐inhabit‐
ingbryophytes and fungiondeadbeech logsinEurope‐reflecting
substratequalityorshapedbyclimateandforestconditions?Journal
of Biogeography,2269–2282.
Hijmans,R.J.,Cameron,S.E.,Parra,J.L.,Jones,P.G.,&Jarvis,A.(2005).
Very high re solution inter polated climate s urfaces for gl obal land
areas. International Journal of Climatology, 25, 1965–1978. https://
doi.org/10.1002/joc.1276
Hilmers, T., Friess, N., Bässler, C., Heurich, M., Brandl, R., Pretzsch,
H., … Müller, J. (2018). Biodiversity along temperate forest
succession. Journal of Applied Ecology, Early View. htt p s://d o i .
org /10.1111/1365‐2664.13238
Hsieh, T. C., M a, K. H., & Chao, A . (2016). iNEXT: An R pack age for
rarefaction and extrapolation of species diversity (Hill num‐
bers). Methods in Ecolog y and Evolution, 7, 1451–1456. https://doi.
org /10.1111/2041‐210X .12613
Jiméne z‐Alfaro, B., G irardello , M., Chytr ý,M ., Svenning, J.‐ C., Willne r,
W., Gégout , J.‐C., … Wohlgemu th, T. (2018). History a nd environ‐
ment shape species pools and community diversity in European
beechforests. Nature Ecology & Evolution, 2,483–490.https://doi.
org/10.1038/s41559‐ 017‐0 462‐6
Jonsell,M.,&Nordlander,G.(2004).Hostselection patterns in insects
breedinginbracketfungi.Ecological Entomology,29,697–70 5.h t tps: //
doi.org/10.1111/j.0307‐6946.2004.00654.x
Jonsson, M. (2003). Colonisation ability of the threatened tenebri‐
onid beetle Oplocephala haemorrhoidalis and its common relative
|
795
FRIESS E t al.
Bolitophagus reticulatus. Ecological Entomology,28,159–167. https://
doi.org/10.1046/j.1365‐2311.2003.00499.x
Judova, J ., Dubikova, K., G aperova, S., G aper, J., & Pristas , P. (201 2).
TheoccurrenceandrapiddiscriminationofFomes fomentariusgeno‐
typesbyITS‐RFLPanalysis.Fungal Biology,116,155–160.https://doi.
org/10.1016/j.funbio.2011.10.010
Jung, B. H., Kim, S. Y., & Kim, J. I. (2007). Taxonomic review of
the tribe Bolitophagini in Korea (Coleoptera: Tenebrionidae:
Tenebrioninae). Entomological Research, 37, 190–196. https://doi.
org /10.1111/j.1748‐5967.2007.00111.x
Kaplan , J. O., Krumhard t, K. M., & Zimm ermann, N. (2 009). The pre‐
historic and preindustrial deforestation of Europe. Quaternary
Science Reviews, 28, 3016–3034. https://doi.org/10.1016/j.
quascirev.2009.09.028
Komonen, A. (2001). Structure ofinsec t communities inhabiting old‐
growth forest specialist bracket fungi. Ecological Entomology, 26,
63–75.https://doi.org/10.1046/j.1365‐2311.2001.00295.x
Komonen, A., & Müller, J. (2018). Dispersal ecology of dead wood or‐
ganisms: Implications for connectivity conservation. Conservation
Biology,32,535–545.
Kobayashi,T.,&Sota,T.(2016).Distancedecay ofsimilarityinfungivo‐
rousinsectcommunities:assessingdispersallimitationusinggenetic
data.Ecosphere,7,e01358.
Kouki, J., H yvärine n, E., Lapp alainen, H ., Martika inen, P., & Similä, M.
(2012).Landscapecontextaffectsthesuccessofhabitatrestoration:
Large‐ scale colon ization pat terns of sapr oxylic and f ire‐associa ted
specie s in boreal fore sts. Diversity and Distributions, 18, 348–355.
https://doi.or g/10.1111/j.1472‐4642.2011.0 0839.x
Kraft,N.J.B.,Adler,P.B.,Godoy,O.,James,E.C.,Fuller,S.,&Levine,J.
M.(2015).Communityassembly,coexistenceandtheenvironmen‐
tal fil tering meta phor. Functional Ecology, 29, 592–599. htt ps://doi.
org /10.1111/1365‐2435.12345
Larrieu, L., Paillet, Y., Winter, S., Bütler, R., Kraus, D., Krumm, F., …
Vandekerkhove, K.(2018).Treerelatedmicrohabitatsintemperate
andMediterraneanEuropeanforests:Ahierarchicaltypologyforin‐
ventorystandardization.Ecological Indicators,84,194–207. https://
doi.org/10.1016/j.ecolind.2017.08.051
Larsson,T.‐B.(2001).Biodiversit yEvaluationToolsforEuropeanforests.
Ecological Bulletins,50,1–237.
Legendre, P., & Legendre, L. (1998). Numerical Ecology. Amsterdam:
Elsevier.
MacArthur,R.H., &Wilson,E.O. (1967).The theory of island biogeogra‐
phy.Princeton:PrincetonUniversityPress.
Maest ri, R., She nbrot, G. I ., & Krasnov, B. R . (2017). Parasite b eta di‐
versity, host beta diversity and environment: Application of two
approachestorevealpatternsoffleaspeciesturnoverin Mongolia.
Journal of Biogeography, 44, 1880–1890. https://doi.org/10.1111/
jbi.13025
Magri,D.(2008).Patternsofpost‐glacialspreadandtheextentofglacial
refugia ofEuropeanbeech (Fagus sylvatica).Journal of Biogeography,
35,450–463.https://doi.org/10.1111/j.1365‐2699.2007.01803.x
Manion et al., 2017Manion, G., Lisk, M., Ferrier, S., Nieto‐Lugilde,
D., Mokany, K., & Fitzpatrick, M. C. (2017). gdm: Generalized
DissimilarityModeling.RPackageVersion,1(3),2.
Margules, C. R.,&Pressey,R.L. (2000). Systematic conservation plan‐
ning.Nature,405,243–253.https://doi.org/10.1038/35012251
Matthewman, W.G., & Pielou, D.P.(1971). Arthropods inhabiting the
sporophoresofFomes fomentarius(Polyporaceae) in Gatineau Park,
Quebec. The Canadian Entomologist, 103, 775–847. https://doi.
org/10.4039/Ent103775‐6
Merrill,W.,&Cowling,E.B.(1966).Roleofnitrogeninwooddeteriora‐
tion‐amountanddistributionofnitrogeninfungi.Phytopatholog y,56,
1083–1090.
Mikoláš, M., Tejkal, M., Kuemmerle, T., Griffiths, P., Svoboda, M.,
Hlásny, T., … Morriss ey,R . C. (2017). Fore st manageme nt impact s
oncapercaillie(Tetrao urogallus)habitatdistributionandconnectiv‐
ity in theCarpathians. Landscape Ecology,32, 163–179.https://doi.
org/10.1007/s10980‐016‐0 433‐3
Mills,L.S.,Soule,M.E.,&Doak,D.F.(1993).Thekeystone‐speciescon‐
ceptinecologyand conservation. BioScience,43,219–224.https://
doi.org/10 .2307/1312122
Müller, J. (2005). Waldstrukturen als Steuergröße für
Artengemeinschafteninkollinenbissubmontanen Buchenwäldern.
Freising:TechnischeUniversitätMünchen.
Müller, J., Brunet, J., Brin, A ., Bouget, C., Brustel, H., Bussler, H., …
Gossne r,M. M . (2012). Implic ations fro m large‐scal e spatial dive r‐
sitypatternsofsaproxylicbeetlesfortheconservationofEuropean
Beechforests.Insect Conservation and Diversity,2,162–169.
Nordén, J., Åström, J., Josefsson, T., Blumentrath, S., Ovaskainen,
O., Sverdrup‐Thygeson, A., & Nordén, B. (2018). At which spa‐
tial and temporal scales can fungi indicate habitat connectiv‐
it y? Ecological Indicators, 91, 138–148. https://doi.org/10.1016/j.
ecolind.2018.03.062
Ódor,P.,Heilmann‐Clausen, J., Christensen, M., Aude,E., vanDort, K.
W.,Piltaver,A.,…Grebenc,T.(2006).Diversityofdeadwoodinhab‐
itingfungiandbryophytes insemi‐natural beechforestsinEurope.
Biological Conservation, 131, 58–71. https://doi.org/10.1016/j.
biocon.2006.02.004
Oksanen,J.,Blanchet,F.G.,Friendly,M.,Kindt,R.,Legendre,P.,McGlinn,
D.,…Wagner,H.(2018)vegan:CommunityEcologyPackage.Rpack‐
ageversion2.4‐6.http://CRAN.R‐project.org/package=vegan.
Pinker t, S., Dijk stra, K .‐D.‐B., Zeuss, D., Reu denbach , C., Bran dl, R., &
Hof,C. (2018).Evolutionary processes, dispersallimitation andcli‐
matichistoryshapecurrent diversity patterns of Europeandragon‐
flies.Ecography,41,795–804.https://doi.org/10.1111/ecog.03137
Pristas,P.,Gaperova,S.,Gaper,J.,&Judova,J. (2013).Geneticvariabil‐
ity in Fomes fomentariusreconfirmedbytranslationelongationfac‐
tor 1‐ αDNAsequencesand25SL SUrRNAsequences. Biologia,68,
816–820.https://doi.org/10.2478/s11756‐013‐0228‐9
Ratnasingham, S., & Hebert, P.D. N.(2007).bold: TheBarcodeof Life
Data System (http://www.barcodinglife.org). Molecular Ecology
Notes,7,355–364.
Reibnitz, J. (1999). Verbreitung und Lebensräume der
Baumschwammfresser Südwestdeutschlands (Coleoptera: Cisidae).
Mitteilungen Entomologischer Verein Stuttgart,34,1–14.
Robin, V.,Nadeau, M.J.,Grootes,P.M.,Bork, H. R.,&Nelle,O.(2016).
Tooearlyandtoonortherly:Evidenceoftemperatetreesinnorthern
CentralEuropeduringtheYoungerDryas.The New Phytologist,212,
259–268 .htt ps://doi.org/10.1111/nph.1384 4
Rukke,B.A.(20 00).Effectsofhabitatfragmentation:Increasedisolation
andreducedhabitatsizereducestheincidenceof deadwoodfungi
beetles in a fragmented forest landscape. Ecography, 23, 492–502.
https://doi.org/10.1111/j.1600‐0587.2000.tb00305.x
Schelhaas, M.‐J., Nabuurs, G.‐J., & Schuck, A. (2003). Natural dis‐
turbances in the European forests in the 19th and 20th cen‐
turies. Global Change Biology, 9, 1620–1633. https://doi.
org/10.1046/j.1365‐2486.2003.00684.x
Schigel, D. S. (2012). Fungivory and host associations of Coleopter a:
A bibliography and review of research approaches. Mycology, 3,
258–272.
Schowalter,T.(2006).Insect ecology: A n ecosystem approach.SanDiego,
CA:Elsevier.
Seibol d, S., Bässle r, C., Bra ndl, R., Bü che, B., Szalli es, A., Tho rn, S., …
Müller, J. (2016). Microclimate and habitat heterogeneity as the
major dri vers of beetle d iversity in de ad wood. Journal of Applied
Ecology,53,934–943.https://doi.org/10.1111/1365‐2664.12607
Seibold,S.,Bässler,C.,Brandl,R., Fahrig,L., Förster,B.,Heurich,M., …
Müller,J.(2017).Anexperi menta lt estoftheh abita t‐a mounthypoth‐
esis forsaproxylic beetles in a forested region. Ecology, 98, 1613 –
1622.https://doi.org/10.1002/ecy.1819
796
|
FRIESS Et al.
Seibol d, S., Brandl, R ., Buse, J., Hothorn, T., Schmidl, J., Th orn, S., &
Müller, J. (2015). A ssociation of e xtinctio n risk of saprox ylic bee‐
tles with ecological degradation of forestsin Europe. Conser vation
Biology,29,382–390.https://doi.org/10.1111/cobi.12427
Snäll, T.,& Jonsson,B.G.(2001). Edge Effects onSixPolyporousFungi
UsedasOld‐GrowthIndicatorsinSwedishBorealForest. Ecological
Bulletins,49,255–262.
Soininen,J.,Lennon,J.J.,&Hillebrand,H.(2007).AMultivariateAnalysis
ofBetaDiversity AcrossOrganismsandEnvironments.Ecology,88,
2830–2838.https://doi.org/10.1890/06‐1730.1
Speight,M.C.D.(1989).Saproxylicinvertebratesandtheirconservation.
Nature and Environment Series,42,1–79.
Stoklan d, J., Siitonen, J. , & Jonsson, B. G. (2 012). Biodiversity in dead
wood.Cambridge,UK:CambridgeUniversityPress.
Svenning,J.‐C.,Fløjgaard,C., &Baselga,A.(2011).Climate, history and
neutr ality as drive rs of mammal bet a diversit y in Europe: Insig hts
frommultiscaledeconstruction.Journal of Animal Ecology,80,393–
402.https://doi.org/10.1111/j.1365‐2656.2010.01771.x
Svenning, J.‐C., Normand, S., & Skov, F. (2008). Postglacial dis‐
persal limitation of widespread forest plant species in
nemoral Europe. Ecography, 31, 316–326. https://doi.
org/10.1111/j.0906‐7590.2008.05206.x
Thunes , K. H., & Will assen, E. (1997). Spe cies composit ion of beetles
(Coleoptera)inthebracketfungi Piptoporus betulinus and Fomes fo‐
mentarius(Aphyllophorales:Polyporaceae):Anexplorativeapproach
withcanonical correspondence analysis. Journal of Natural Histor y,
31,471–486.
Vandekerkhove, K., de Keersmaeker, L., Walleyn, R., Köhler, F.,
Crevecoeur,L.,Govaere,L .,…Verheyen,K.(2011).Reappearanceof
old‐growthelementsinlowlandwoodlandsinnorthernBelgium:Do
theassociatedspeciesfollow?Silva Fennica,45,909–935.ht tps://doi.
org /10.14214/sf.78
Vanonckelen, S., & Van Rompaey, A .(2015). Spatiotemporal Analysis
oftheControllingFactors ofForest CoverChangeintheRomanian
Carpathian Mountains. Mountain Research and Development, 35,
338–350.https://doi.org/10.1659/MRD‐JOURNAL‐D‐15‐00014
Venier,L.A.,&Fahrig,L.(1996).HabitatAvailabilityCausestheSpecies
Abundance‐Distribution Relationship. Oikos, 76 , 564–570. ht tps://
doi.org/10.2307/3546349
Wagner,G.K.,&Gosik,R.(2016).Comparativemorphologyofimmature
stagesoftwo sympatricTenebrionidaespecies, withcomments on
theirbiology.Zootaxa,4111,201–222.
Walsh, C.,&MacNally, R. (2013)hier.part:HierarchicalPartitioning.R
packageversion1.0‐4.
Willner, W., Di Pietro, R., & Bergmeier, E. (2009). Phytogeographical
evidence for post‐glacial dispersal limitation of European
beech forest species. Ecography, 32, 1011–1018. https://doi.
org /10.1111/j.1600 ‐0587.2009.05957.x
Zellweger,F.,Roth,T.,Bugmann,H., &Bollmann, K. (2017).Betadiver‐
sityofplants,birdsandbutterfliesiscloselyassociatedwithclimate
andhabitatstructure.Global Ecolog y and Biogeography,26,898–906.
https://doi.or g/10.1111/geb.12598
Zytynska,S.,Doerfler,I.,Gossner,M.,Sturm,S.,Weisser,W.,&Müller,J.
(2018).Minimal effectsongenetic structuring of afungus‐dwelling
saproxylicbeetleafterrecolonizationofarestoredforest.Journal of
Applied Ecology,55,2933–2943.
BIOSKETCHES
Nicolas Friessresearchfocusesonlocal‐tolarge‐scalepat‐
ternsofbiodiversityinterrestrialecosystemsandtheassociated
processes.
Jörg C. Müller's re search focuses on forest biodiversity, from
ecological mechanisms toconservation strategies intemperate
forests,withaspecialfocusondeadwood‐relatedorganisms.
Sebastian Seibold's research focuses on the conservation of
biodiversity in forest ecosystems, particularly associated with
dead wood , and the impor tance of biodi versity for eco system
functioning.
SUPPORTING INFORMATION
Additional supporting information may be found online in the
SupportingInformationsectionattheendofthearticle.
How to cite this article:FriessN,MüllerJC,AramendiP,etal.
Arthropodcommunitiesinfungalfruitbodiesareweakly
structuredbyclimateandbiogeographyacrossEuropean
beechforests.Divers Distrib. 2019;25:783–796. ht tps://d o i .
org /10.1111/ddi.12882
Available via license: CC BY 4.0
Content may be subject to copyright.