ArticlePDF AvailableLiterature Review

Abstract and Figures

Between 1953 and 1979, the USSR irradiated the United States embassy in Moscow with microwaves. This episode, a classic Cold War affair, has acquired enormous importance in the discussions on the effect of non-ionizing radiation on people’s health. In 2011, the International Agency for Research on Cancer (IARC) classified radiofrequency electromagnetic fields as being a possible human carcinogen (Group 2B), but the results of recent laboratory and epidemiological studies have led some researchers to conclude that radiofrequency electromagnetic fields should be reclassified as a human carcinogen instead of merely a possible human carcinogen. In 1978, the “Moscow signal” case was officially closed after the publication of the epidemiological study of (Lilienfeld AM, Tonascia J, Tonascia S, Libauer CA, Cauthen GM. Foreign Service health status study. Evaluation of health status of foreign service and other employees from selected Eastern European posts. Report on Foreign Service Health Status Study, U.S. Department of State 6025-619073, 1978.), showing no apparent evidence of increased mortality rates and limited evidence regarding general health status. However, several loose ends still remain with respect to this epidemiological study, as well as the affair as a whole. In this paper, we summarize the available evidence concerning this case, paying special attention to the epidemiological study of Lilienfeld et al. After reviewing the available literature (including declassified documents), and after some additional statistical analyses, we provide new insights which do not complete the puzzle, but which may help to better understand it.
Content may be subject to copyright.
A preview of the PDF is not available
Article
The impact of electromagnetic waves on health has been clearly established by many studies in recent decades. No State, with the exception of Russia, takes any real precautions in terms of standards for the population. Conflicts of interest and political lies are used to hide the truth about the dangers of electromagnetic pollution. In addition, it would seem that other sources of radiation than the most well-known ones (mobile phones, digital enhanced cordless telecommunication (DECT) phones, bluetooth, base stations, Wi-Fi, 4G, 5G) come into play. A system such as HAARP (High-frequency Active Auroral Research Program), as well as directed wave beams (related to past and recent scandals) must be analyzed and considered in a comprehensive way to understand why the wave level is only increasing despite the considerable amount of scientific work demonstrating that the standards are not adequate to maintain public health. Thus, official documents show that the impact of electromagnetic waves is not only physical and biological. Indeed, the climate and the behavior of the population are also targeted.
Article
Full-text available
Exposure to radiofrequency (RF) radiation was classified in 2011 as a possible human carcinogen, Group 2B, by the International Agency for Research on Cancer of the World Health Organisation. Evidence of the risk of cancer risk has since strengthened. Exposure is changing due to the rapid development of technology resulting in increased ambient radiation. RF radiation of sufficient intensity heats tissues, but the energy is insufficient to cause ionization, hence it is called non-ionizing radiation. These non-thermal exposure levels have resulted in biological effects in humans, animals and cells, including an increased cancer risk. In the present study, the levels of RF radiation were measured in an apartment close to two groups of mobile phone base stations on the roof. A total of 74,531 measurements were made corresponding to ~83 h of recording. The total mean RF radiation level was 3,811 µW/m² (range 15.2-112,318 µW/m²) for the measurement of the whole apartment, including balconies. Particularly high levels were measured on three balconies and 3 of 4 bedrooms. The total mean RF radiation level decreased by 98% when the measured down-links from the base stations for 2, 3 and 4 G were disregarded. The results are discussed in relation to the detrimental health effects of non-thermal RF radiation. Due to the current high RF radiation, the apartment is not suitable for long-term living, particularly for children who may be more sensitive than adults. For a definitive conclusion regarding the effect of RF radiation from nearby base stations, one option would be to turn them off and repeat the measurements. However, the simplest and safest solution would be to turn them off and dismantle them.
Article
Full-text available
Introduction Wireless access to the Internet is now commonly used in schools. Many schools give each student their own laptop and utilize the laptops and wireless fidelity (Wi-Fi) connection for educational purposes. Most children also bring their own mobile phones to school. Since children are obliged by law to attend school, a safe environment is important. Lately, it has been discussed if radiofrequency (RF) radiation can have long-term adverse effects on children’s health. Method This study conducted exposimetric measurements in schools to assess RF emissions in the classroom by measuring the teachers’ RF exposure in order to approximate the children’s exposure. Teachers in grades 7–12 carried a body-borne exposimeter, EME-Spy 200, in school during 1–4 days of work. The exposimeter can measure 20 different frequency bands from 87 to 5,850 MHz. Results Eighteen teachers from seven schools participated. The mean exposure to RF radiation ranged from 1.1 to 66.1 µW/m². The highest mean level, 396.6 µW/m², occurred during 5 min of a lesson when the teacher let the students stream and watch YouTube videos. Maximum peaks went up to 82,857 µW/m² from mobile phone uplink. Discussion Our measurements are in line with recent exposure studies in schools in other countries. The exposure levels varied between the different Wi-Fi systems, and if the students were allowed to use their own smartphones on the school’s Wi-Fi network or if they were connected to GSM/3G/4G base stations outside the school. An access point over the teacher’s head gave higher exposure compared with a school with a wired Internet connection for the teacher in the classroom. All values were far below International Commission on Non-Ionizing Radiation Protection’s reference values, but most mean levels measured were above the precautionary target level of 3–6 µW/m² as proposed by the Bioinitiative Report. The length of time wireless devices are used is an essential determinant in overall exposure. Measures to minimize children’s exposure to RF radiation in school would include preferring wired connections, allowing laptops, tablets and mobile phones only in flight mode and deactivating Wi-Fi access points, when not used for learning purposes.
Article
Epidemiology studies (case-control, cohort, time trend and case studies) published since the International Agency for Research on Cancer (IARC) 2011 categorization of radiofrequency radiation (RFR) from mobile phones and other wireless devices as a possible human carcinogen (Group 2B) are reviewed and summarized. Glioma is an important human cancer found to be associated with RFR in 9 case-control studies conducted in Sweden and France, as well as in some other countries. Increasing glioma incidence trends have been reported in the UK and other countries. Non-malignant endpoints linked include acoustic neuroma (vestibular Schwannoma) and meningioma. Because they allow more detailed consideration of exposure, case-control studies can be superior to cohort studies or other methods in evaluating potential risks for brain cancer. When considered with recent animal experimental evidence, the recent epidemiological studies strengthen and support the conclusion that RFR should be categorized as carcinogenic to humans (IARC Group 1). Opportunistic epidemiological studies are proposed that can be carried out through cross-sectional analyses of high, medium, and low mobile phone users with respect to hearing, vision, memory, reaction time, and other indicators that can easily be assessed through standardized computer-based tests. As exposure data are not uniformly available, billing records should be used whenever available to corroborate reported exposures.
Article
To the Editor Dr Swanson and colleagues reported a case series of US government personnel in Cuba with neurological symptoms associated with audible and sensory phenomena.¹ The authors argued against the possibility of mass psychogenic illness as the etiology. Mass psychogenic illness is a nervous system disturbance characterized by excitation, alteration, or loss of function, with the physical symptoms exhibited unconsciously and lacking an organic etiology.
Article
In Reply Our study¹ was a retrospective evaluation of data generated solely as part of clinical care. Research with this patient cohort was not originally anticipated due to secrecy and privacy concerns. However, owing to the extraordinary nature of patient reports and clinical findings, the US Department of State cleared the study as a public health matter. Although we must continue to withhold certain sensitive information and despite the preliminary nature of the data, we believe that we can address concerns raised by the letters.
Article
To the Editor In a report on 21 US diplomatic staff who became unwell in Cuba,¹ the authors rejected the possibility of a functional neurological disorder as the etiology. We disagree. The accompanying Editorial pointed out that functional neurological disorders are genuine and not malingering.² Patients with functional disorders typically pass cognitive tests of effort,³ and there is no epidemiological evidence to suggest that they seek time away from the workplace. Functional disorders are typically persistent and commonly coexist with, or are triggered by, minor pathophysiological or psychophysiological processes. In many functional neurological disorders, initial sensory discomfort together with anxiety and heightened attention trigger maladaptive processes that lead to persistent symptoms. For example, persistent postural perceptual dizziness usually has a vestibular trigger. Acoustic shock,⁴ described in professional telephone operators, is triggered by an unexpected loud noise and includes persistent ear pain, headache, tinnitus, dizziness, imbalance, noise sensitivity, and anxiety at similar frequencies to the Cuban cohort. Long duration suggests nothing about etiology.
Article
Exposure to low frequency and radiofrequency electromagnetic fields at low intensities poses a significant health hazard that has not been adequately addressed by national and international organizations such as the World Health Organization. There is strong evidence that excessive exposure to mobile phone-frequencies over long periods of time increases the risk of brain cancer both in humans and animals. The mechanism(s) responsible include induction of reactive oxygen species, gene expression alteration and DNA damage through both epigenetic and genetic processes. In vivo and in vitro studies demonstrate adverse effects on male and female reproduction, almost certainly due to generation of reactive oxygen species. There is increasing evidence the exposures can result in neurobehavioral decrements and that some individuals develop a syndrome of "electro-hypersensitivity" or "microwave illness", which is one of several syndromes commonly categorized as "idiopathic environmental intolerance". While the symptoms are non-specific, new biochemical indicators and imaging techniques allow diagnosis that excludes the symptoms as being only psychosomatic. Unfortunately standards set by most national and international bodies are not protective of human health. This is a particular concern in children, given the rapid expansion of use of wireless technologies, the greater susceptibility of the developing nervous system, the hyperconductivity of their brain tissue, the greater penetration of radiofrequency radiation relative to head size and their potential for a longer lifetime exposure.
Article
Background: In 2011, IARC classified radiofrequency radiation (RFR) as possible human carcinogen (Group 2B). According to IARC, animals studies, as well as epidemiological ones, showed limited evidence of carcinogenicity. In 2016, the NTP published the first results of its long-term bioassays on near field RFR, reporting increased incidence of malignant glial tumors of the brain and heart Schwannoma in rats exposed to GSM - and CDMA - modulated cell phone RFR. The tumors observed in the NTP study are of the type similar to the ones observed in some epidemiological studies of cell phone users. Objectives: The Ramazzini Institute (RI) performed a life-span carcinogenic study on Sprague-Dawley rats to evaluate the carcinogenic effects of RFR in the situation of far field, reproducing the environmental exposure to RFR generated by 1.8 GHz GSM antenna of the radio base stations of mobile phone. This is the largest long-term study ever performed in rats on the health effects of RFR, including 2448 animals. In this article, we reported the final results regarding brain and heart tumors. Methods: Male and female Sprague-Dawley rats were exposed from prenatal life until natural death to a 1.8 GHz GSM far field of 0, 5, 25, 50 V/m with a whole-body exposure for 19 h/day. Results: A statistically significant increase in the incidence of heart Schwannomas was observed in treated male rats at the highest dose (50 V/m). Furthermore, an increase in the incidence of heart Schwann cells hyperplasia was observed in treated male and female rats at the highest dose (50 V/m), although this was not statistically significant. An increase in the incidence of malignant glial tumors was observed in treated female rats at the highest dose (50 V/m), although not statistically significant. Conclusions: The RI findings on far field exposure to RFR are consistent with and reinforce the results of the NTP study on near field exposure, as both reported an increase in the incidence of tumors of the brain and heart in RFR-exposed Sprague-Dawley rats. These tumors are of the same histotype of those observed in some epidemiological studies on cell phone users. These experimental studies provide sufficient evidence to call for the re-evaluation of IARC conclusions regarding the carcinogenic potential of RFR in humans.
Article
Importance From late 2016 through August 2017, US government personnel serving on diplomatic assignment in Havana, Cuba, reported neurological symptoms associated with exposure to auditory and sensory phenomena. Objective To describe the neurological manifestations that followed exposure to an unknown energy source associated with auditory and sensory phenomena. Design, Setting, and Participants Preliminary results from a retrospective case series of US government personnel in Havana, Cuba. Following reported exposure to auditory and sensory phenomena in their homes or hotel rooms, the individuals reported a similar constellation of neurological symptoms resembling brain injury. These individuals were referred to an academic brain injury center for multidisciplinary evaluation and treatment. Exposures Report of experiencing audible and sensory phenomena emanating from a distinct direction (directional phenomena) associated with an undetermined source, while serving on US government assignments in Havana, Cuba, since 2016. Main Outcomes and Measures Descriptions of the exposures and symptoms were obtained from medical record review of multidisciplinary clinical interviews and examinations. Additional objective assessments included clinical tests of vestibular (dynamic and static balance, vestibulo-ocular reflex testing, caloric testing), oculomotor (measurement of convergence, saccadic, and smooth pursuit eye movements), cognitive (comprehensive neuropsychological battery), and audiometric (pure tone and speech audiometry) functioning. Neuroimaging was also obtained. Results Of 24 individuals with suspected exposure identified by the US Department of State, 21 completed multidisciplinary evaluation an average of 203 days after exposure. Persistent symptoms (>3 months after exposure) were reported by these individuals including cognitive (n = 17, 81%), balance (n = 15, 71%), visual (n = 18, 86%), and auditory (n = 15, 68%) dysfunction, sleep impairment (n = 18, 86%), and headaches (n = 16, 76%). Objective findings included cognitive (n = 16, 76%), vestibular (n = 17, 81%), and oculomotor (n = 15, 71%) abnormalities. Moderate to severe sensorineural hearing loss was identified in 3 individuals. Pharmacologic intervention was required for persistent sleep dysfunction (n = 15, 71%) and headache (n = 12, 57%). Fourteen individuals (67%) were held from work at the time of multidisciplinary evaluation. Of those, 7 began graduated return to work with restrictions in place, home exercise programs, and higher-level work-focused cognitive rehabilitation. Conclusions and Relevance In this preliminary report of a retrospective case series, persistent cognitive, vestibular, and oculomotor dysfunction, as well as sleep impairment and headaches, were observed among US government personnel in Havana, Cuba, associated with reports of directional audible and/or sensory phenomena of unclear origin. These individuals appeared to have sustained injury to widespread brain networks without an associated history of head trauma.
Book
Krishnan describes military applications of neuroscience research and emerging neurotechnology with relevance to the conduct of armed conflict and law enforcement. This work builds upon literature by scholars such as Moreno and Giordano and fills an existing gap, not only in terms of reviewing available and future neurotechnologies and relevant applications, but by discussing how the military pursuit of these technologies fits into the overall strategic context. The first to sketch future neurowarfare by looking at its potentials as well as its inherent limitations, this book’s main theme is how military neuroscience will enhance and possibly transform both classical psychological operations and cyber warfare. Its core argument is that nonlethal strategies and tactics could become central to warfare in the first half of the twenty-first century. This creates both humanitarian opportunities in making war less bloody and burdensome as well as some unprecedented threats and dangers in terms of preserving freedom of thought and will in a coming age where minds can be manipulated with great precision.