ChapterPDF Available

The Strategic Agility Gap: How Organizations Are Slow and Stale to Adapt in Turbulent Worlds

Authors:

Abstract and Figures

How can organizations cope with accelerating change in more complex worlds? The growth of capabilities produces expanded scales of operation, extensive interdependencies, new vulnerabilities, and puzzling failures. The result is the Strategic Agility Gap where organizations are slow and stale in recognizing changing risks and fall behind the pace of change. The chapter addresses what factors drive the gap and what adaptive capabilities allow organizations to flourish in the gap. The result is a new paradigm for continuous adaptability illustrated in web-powered enterprises.
Content may be subject to copyright.
!"#$%&'(&#)*+$,)*-*&.$/(01$$$
234$5')(6*7(8369$,'#$%-34$
(6:$%&(-#$&3$,:(0&$$
*6$!;'<;-#6&$=3'-:9$
David&D.&Woods&
Abstract& 234$ +(6$ 3')(6*7(8369$ +30#$ 4*&"$ (++#-#'(86)$ +"(6)#$ *6$ >3'#$
+3>0-#?$43'-:9@$ !"#$)'34&"$3A$+(0(<*-*8#9$0'3:;+#9$#?0(6:#:$9+(-#9$3A$
30#'(836B$#?&#69*C#$*6&#':#0#6:#6+*#9B$6#4$ C;-6#'(<*-*8#9B$(6:$ 0;77-*6)$
A(*-;'#9D$!"#$'#9;-&$*9$&"#$9&'(&#)*+$()*-*&.$)(0$4"#'#$3')(6*7(8369$('#$!"#$%
&'(%!)&"*$*6$'#+3)6*7*6)$+"(6)*6)$'*9E9$(6:$A(--$<#"*6:$&"#$0(+#$3A$+"(6)#D$
!"#$+"(0&#'$(::'#99#9$ 4"(&$A(+&3'9$:'*C#$&"#$ )(0$(6:$4"(&$ (:(08C#$+(F
0(<*-*8#9$ (--34$ 3')(6*7(8369$ &3$ G3;'*9"$ *6$ &"#$ )(0D$ !"#$ '#9;-&$ *9$ ($ 6#4$
0('(:*)>$ A3'$ +3686;3;9$ (:(0&(<*-*&.$ *--;9&'(&#:$ *6$ 4#<F034#'#:$ #6&#'F
0'*9#9D$
Keywords:&H#9*-*#6+#$#6)*6##'*6)B&%&'(&#)*+$()*-*&.$)(0B$2*)"$'#-*(<*-*&.$
3')(6*7(8369B$I3>0-#?$(:(08C#$9.9&#>9$J2;>(6KB$L-;#6+.$-(4B$=#<$30F
#'(8369B$I3686;3;9$(:(0&(<*-*&.$$
50#6$(++#99$+36&#6&$;6:#'$I'#(8C#$I3>>369$,M'*<;836$NDO$P6F
&#'6(836(-$Q*+#69#D$,00#('9$*6$$RD$S('9:#6B$ID$T(>(&#B$(6:$LD$U(6*#--3;$
JR:9DKB$+,-&'%&'(%./0&'12&3#'&"%4&5)#/!6%7/&535*!%&'(%8)/&)*01*!%9#/%&%
:;&'01'0%<#/"(D$%0'*6)#'$V'*#A9$*6$%(A#&.$S(6()#>#6&B$36$<#"(-A$3A$
L3;6:(836$A3'$P6:;9&'*(-$%(A#&.$I;-&;'#$JL36I%PKB$WOXYD$
$UD$UD$=33:9$
!"#$5"*3$%&(&#$Z6*C#'9*&.B$Z%,$
#F>(*-1$433:9DW[39;D#:;
\ $W
XD P]!H5UZI!P5]$
5')(6*7(8369$A(+#$&"#$+"(--#6)#$3A$"34$&3$(:(0&$&3$&"#$*6+'#(9*6)$0(+#$3A$
+"(6)#$ *6$ >3'#$ +3>0-#?$ 43'-:9D$ !"#$ )'34&"$ 3A$ +(0(<*-*&.$ <'*6)9$ '(0*:$
+"(6)#9$&3$93+*#&.$(9$'*$%#==#/),'13*!%&/1!*>%5#-="*?13*!%0/#$>%&'(%'*$%
);/*&)!% *-*/0*D$ !"#$ *>0(+&$ 3A$ :#0-3.*6)$ 6#4$ &#+"63-3)*+(-$ +(0(<*-*8#9$
"(9$-#:$&3$#?0(6:#:$9+(-#9$3A$30#'(836B$:'(>(8+$6#4$+(0(<*-*8#9B$#?&#6F
9*C#$(6:$"*::#6$*6&#':#0#6:#6+*#9B$*6&#69*^#:$0'#99;'#9B$6#4$C;-6#'(<*-*F
8#9B$(6:$0;77-*6)$A(*-;'#9D$$
I(6$ 3')(6*7(8369$ @**=% =&5*$ 4*&"$ &"#$ &'(_#+&3'.$ 3A$ +"(6)#@$ R?0#'*#6+#$
(+'399$*6:;9&'*#9$*6:*+(&#9$3')(6*7(8369$('#$!"#$%&'(%!)&"*$*6$(:(086)$&3$
6#4$&"'#(&9B$(9$4#--$(9$&3$9#*7#$6#4$3003'&;6*8#9D$%;'0'*9*6)$A(*-;'#9$(6:$
9#'C*+#$3;&()#9$('#$'#);-('$3++;''#6+#9$*6$&"#$ 6#49D$56#$#?(>0-#$*9$&"#$
&"'#(&$ 3A$ '(693>4('#$ 4"*+"$ 3`9#&9$ &"#$ C(-;#$ <'3;)"&$ <.$ 6#4$ -#C#-9$ 3A$
+3>0;&#'*7#:$+366#+8C*&.D$!"*9$ &"'#(&$('39#$ a;*+E-.$4*&"$(M(+E9$36$"39F
0*&(-9$ *6$ WOXbcWOXd$ JI#:('%*6(*cS#:9&('$ *6$ Z%e$ =(66(+'.$ (M(+E$ *6$ &"#$
ZTKD$I3>0;&#'$+366#+8C*&.$0'3C*:#:$C(-;#$&"(&$-#:$&3$*6+'#(9#:$'#-*(6+#B$
<;&$(-93$0'3C*:#:$ >#(69$A3'$3&"#'9$&3$"*_(+E$ &"#$+(0(<*-*&.$A3'$ &"#*'$0;'F
039#9D$,9$+(0(<*-*&.$)'349$ &3$ *>0'3C#$0#'A3'>(6+#$36$93>#$+'*&#'*(B$*6F
&#':#0#6:#6+*#9$ <#+3>#$ >3'#$ #?&#69*C#$ (6:$ 0'3:;+#$ 9;'0'*9*6)$ (63>F
(-*#9$(9$&"#$9.9&#>9$(-93$<#+3>#$>3'#$<'*M-#D$$$$
!"#$ !)/&)*015% &01"1)A% 0&=$ *9$ &"#$ :*`#'#6+#$<#&4##6$ &"#$ '(&#$ (&$ 4"*+"$ (6$
3')(6*7(836$(:(0&9$&3$+"(6)#$(6:$&"#$'*9#$3A$6#4$;6#?0#+&#:$+"(--#6)#9$
(&$($-(')#'$*6:;9&'.c93+*#&.$9+(-#D$P&$*9$ ($>*9>(&+"$*6$ C#-3+*8#9$3A$+"(6)#$
(6:$ C#-3+*8#9$ 3A$ (:(0&(836$ JL*)D$ XXDXKD$ I(6$ 3')(6*7(8369$ -#('6$ "34$ &3$
3`9#&$+"(6)*6)$'*9E9$ <#A3'#$A(*-;'#9$3++;'@$I(6$ 3')(6*7(8369$<;*-:$ +(0(F
<*-*8#9$&3$<#$=#1!*(%)#%&(&=)$&3$E##0$0(+#$4*&"$(6:$9&(.$("#(:$3A$&"#$&'(F
_#+&3'.$ 3A$ )'34*6)$ +3>0-#?*&.@$ !"#$ +"(0&#'$ (::'#99#9$ 4"(&$ :'*C#9$ &"#$
9&'(&#)*+$()*-*&.$ )(0$(6:$4"(&$ (:(08C#$+(0(<*-*8#9$3')(6*7(8369$6##:$&3$
G3;'*9"$*6$&"#$)(0D$
\f
\ $
Fig.&11.1$!"#$9&'(&#)*+$()*-*&.$)(0$
WD 5H/,]Pg,!P5]%$P]$!2R$/,h$i$%j]I2H5]PgP]/$
,I!PkP!PR%$!5$TRRh$h,IR$=P!2$I,%I,UP]/$
RkR]!%@$
!"#$)(0$('*9#9$(9$&"#$ 0(+#$3A$+"(6)#$ (++#-#'(&#9$'#9"(0*6)$&"#$'*9E9$ (6:$
3003'&;6*8#9$3')(6*7(8369$A(+#D$5')(6*7(8369$6##:$&"#$ (<*-*&.$ &3$(:(0&$
(9$ +"(--#6)#9$ +"(6)#D$ V;&$ #?0#'*#6+#$ 9"349$ 3')(6*7(8369$ )#6#'(--.$ ('#$
9-34$(6:$9&(-#$&3$'#9036:$&3$+"(--#6)#$#C#6&9$J=33:9$(6:$V'(6-(&B$WOXXKD$
I369*:#'$ "*)"$ A'#a;#6+.$ +3>0;&#'*7#:$ ^6(6+*(-$ &'(:*6)D$ %3>#$ 0#30-#$
'#+3)6*7#:$ &"(&$ ($ '#-(8C#$ 90##:$ (:C(6&()#$ *6$ &'(:*6)$ 4(9$ ($ 90#+*(-$ '#F
93;'+#$&"(&$+3;-:$ <#$ -#C#'()#:D$!"#.$*6C#9&#:$ &#69$3A$>*--*369$3A$ :3--('9$
A3'$ 9-*C#'9$ 3A$ '#-(8C#$ 90##:B$ 4"*-#$ 3&"#'9$ 4#'#$ 3<-*C*3;9$ &3$ &"#$ +"(6)#9$
;6:#'4(.D$ !"#$ 90##:$(:C(6&()#$>(:#$0399*<-#$ &"'3;)"$+3>0;&#'*7(836$
-#:$&3$4"3--.$6#4$A3'>9$3A$&'(:*6)B$9;+"$(9$l:('E$033-9mB$(:(0&#:$&3$>(E#$
-(')#$0'3^&9D$!"#$^6(6+*(-$(:C(6&()#$3A$90##:$('39#$A'3>$3&"#'$#`#+&9$3A$
\ $N
&"#$9"*n$ &3$+3>0;&#'*7#:$&'(:*6)1$#?0(6:*6)$C3-;>#9$ (6:$&"#$ >;-80-*+(F
836$ 3A$ 9&3+E$ #?+"(6)#9$ (C(*-(<-#D$ ]#4$ 9+(-#9$ 3A$ 30#'(836$ (6:$ 90##:$
#>#')#:D$ RC#'.&"*6)$ <#+(>#$ 93n4('#$ :#0#6:#6&1$ '#);-(&3'.$ +"(6)#9B$
#?&#'6(-$ +3>0#88C#$ +"(6)#9B$ *6&#'6(-$ +"(6)#9$ &3$ <#M#'$ +3>0#&#B$ (--$
4#'#$+"(6)#9$*6$93n4('#D$!"#$)'34&"$&'(_#+&3'.$'#9;-&#:$*6$6#4$'#-(836F
9"*09B$ 6#4$ 9+(-#$ 3A$ 30#'(8369B$ 6#4$ *6&#':#0#6:#6+*#9B$ 6#4$ &#>039$ 3A$
30#'(836B$(++3>0(6*#:$<.$6#4$'*9E9$4"*+"$4#'#$:*o+;-&$&3$9##$("#(:D$$$
!"*9$ &'(_#+&3'.$ 3A$ )'34&"$ >#(69$ :*9&;'<(6+#9c+"(--#6)#9$ +(6$ )'34$ (6:$
+(9+(:#$A(9&#'$&"(6$'#90369#9$+(6$<#$:#+*:#:$36$(6:$:#0-3.#:$&3$#`#+&D$$
!3$ 3C#'+3>#$ &"*9$ '*9E$ '#a;*'#9$ #6"(6+*6)$ &"#$ (<*-*&.$ &3$ (68+*0(&#$ (6:$
<;*-:$($'#(:*6#99F&3F'#9036:$*6$(:C(6+#$3A$+"(--#6)#$#C#6&9D$!3$A(*-$&3$(6F
8+*0(&#$>#(69$ ($6#4$ '#90369#$"(9$ &3$<#$ )#6#'(&#:$:;'*6)$&"#$+"(--#6)#$
#C#6&i)'#(&-.$ *6+'#(9*6)$ &"#$ '*9E$ 3A$ A(*-*6)$ &3$ E##0$ ;0$ 4*&"$ &"#$ &#>03D$
!"*9$ (90#+&$ 3A$ &"#$ :#>(6:$ &'(_#+&3'.$ *6$ L*)D$ XXDX$ >#(69$ 3')(6*7(8369$
6##:$&3$+33':*6(&#$(6:$!A'5;/#'12*%&53B13*!%#B*/%5;&'01'0%)*-=#!>%#);C
*/$1!*%(*51!1#'!%$1""%*'(%,=%!"#$%&'(%!)&"*D%%!"*9$3++;''#:$:'(>(8+(--.$*6$
($+(9#$3A$p';6(4(.q$(;&3>(836$*6$^6(6+*(-$&'(:*6)D $
X
WDXD T]P/2!$I,hP!,Q$I5QQ,h%R$WOXW$
,9$ 36#$ 0('&$ 3A$ &"#$ 3')(6*7(836$:#0-3.#:$ 6#4$ 93n4('#$ *6$ 3':#'$ &3$ &(E#$
(:C(6&()#$3A$+"(6)#9$*6$ &"#$*6:;9&'.B$&"#$'3--3;&$ :*:$63&$ )3$(9$#?0#+&#:B$
0'3:;+*6)$(63>(-3;9$<#"(C*3'D$!"#$&#(>$&'*#:$&3$'3--<(+E$&3$&"#$0'#C*3;9$
93n4('#$+36^);'(836$(9$*9$9&(6:(':$0'(+8+#$A3'$ '#-*(<*-*&.D$V;&$ &"#$ '3--F
<(+E$ 0'3:;+#:$ >3'#$ (63>(-3;9$ <#"(C*3'D$ !"#$ '3-#9$ '#90369*<-#$ A3'$ &"#$
:*)*&(-$ *6A'(9&';+&;'#$ 9&';))-#:$ &3$ ;6:#'9&(6:$ 4"(&$ 0'3:;+#:$ &"#$ (63>F
(-*#9$ (6:$ 4".$ 63'>(-$ (M#>0&9$ &3$ '#+3C#'$ "(:$ A(*-#:D$ S#(64"*-#B$ (;&3F
>(&#:$&'(:*6)$+3686;#:D$$
P&$&33E$8>#$ <#A3'#$&"#$&#(>$ :#+*:#:$&3$*6C3-C#$ ;00#'$>(6()#>#6&i&3$
9(.$&"#$P!$&#(>$:*:$63&$;6:#'9&(6:$&"#$0'3<-#>B$4#'#$;6(<-#$&3$<-3+E$&"#$
+(9+(:#$ 3A$ #`#+&9B$ (6:$ &"#$ 36-.$ (+836$ (C(*-(<-#$ 4(9$ &3$ 9&30$ &'(:*6)D$,9$
;00#'$ >(6()#>#6&$ <#+(>#$ *6A3'>#:$ (6:$ (;&"3'*7#:$ ($ &'(:*6)$ 9&30B$ *&$
%##$"M091cc>*+"(#-"(>*-&36Da;3'(D+3>c234F(F93n4('#F<;)F>(:#FT6*)"&F
1
I(0*&(-F-39#FrOOSF*6F(F:(.F(->39&F)3F<(6E';0&$(6:$"M091cc444DE*&+"#693(0DF
+3>cWOXfcXOcWYc+3;6&#'A(+&;(-9FE6*)"&F+(0*&(-c
\r
4(9$&33$ -(&#i(;&3>(&#:$&'(:*6)$"(:$ )36#$36$ 93$-36)$ &"#$+3>0(6.$4(9B$
A3'$(--$0'(+8+(-$0;'039#9B$<(6E';0&$A'3>$(6$;6&#6(<-#$>('E#&$039*836D$$
!"#$+(9#$*--;9&'(&#9$'*9E9$A3'$3')(6*7(8369$*6$&"#$9&'(&#)*+$()*-*&.$)(0D$L*'9&B$
9>(--$0'3<-#>9$+(6$*6&#'(+&$(6:$+(9+(:#$a;*+E-.$(6:$9;'0'*9*6)-.$)*C#6$&"#$
&(6)-#$3A$ :#0#6:#6+*#9$(+'399$ -(.#'9$*69*:#$(6:$3;&9*:#$&"#$3')(6*7(836D$
%#+36:B$(9$#`#+&9$+(9+(:#$(6:$;6+#'&(*68#9$)'34B$>;-80-#$'3-#9$9&';))-#$
&3$ ;6:#'9&(6:$ (63>(-*#9B$ :*()639#$ ;6:#'-.*6)$ :'*C#'9B$ *:#68A.$ +3>0#6F
9(&3'.$(+8369D$ $!"*':B$:*o+;-8#9$('*9#$)#s6)$ (;&"3'*7(836$A'3>$(00'3F
0'*(&#$'3-#9$&3$>(E#$636F'3;86#B$'*9E.B$(6:$'#93;'+#$+39&-.$(+8369B$4"*-#$
;6+#'&(*6&.$'#>(*69D$L3;'&"B$(--$3A$&"#$(<3C#$&(E#$#`3'&B$8>#B$(6:$'#a;*'#$
+33':*6(836$ (+'399$ '3-#9D$S#(64"*-#B$ 8>#$ 0'#99;'#9$ )'34$ (9$ 9*&;(8369$
:#&#'*3'(&#D$ L*n"B$ 4"#6$ +'*8+(-$ '#0-(66*6)$ :#+*9*369$ '#a;*'#$ 9#'*(-$ +3>F
>;6*+(836$C#'8+(--.$&"'3;)"$&"#$-#C#-9$3A$&"#$3')(6*7(836B$'#90369#9$('#$
;6(<-#$&3$E##0$0(+#$4*&"$#C#6&9D$!"#$+(9#$*--;9&'(&#9$&"#$6##:$&3$9.6+"'3F
6*7#$(+8C*8#9$(+'399$'3-#9$(6:$-(.#'9$3A$&"#$3')(6*7(836$(9$&#>03$C('*#9D$
WDWD I5hP]/$=P!2$2ZHHPI,]R$%,]Uj$WOXW$
5&"#'$+(9#9$"*)"-*)"&$"34$&3$ <#$03*9#:$&3$(:(0&D$U#('.$ #?(>*6#:$"34$ ($
-(')#$&'(6903'&(836$^'>$ -#('6#:$&3$'#+36^);'#$+33':*6(836$(+'399$'3-#9$
(6:$ -(.#'9$ 4"#6$ #C#6&9$ 4*&"$ ;60'#:*+&(<-#$ '*9E.$ :#>(6:9$ 3++;''#:D$ 2#$
3<9#'C#:$ "34$ &"#$ 3')(6*7(836$ ;9#:$ &"#9#$ &#+"6*a;#9$ :;'*6)$ ";''*+(6#$
%(6:.$JU#('.$#&$(-DB$WOXfKD$!3$(:(0&$#`#+8C#-.B$&"#$3')(6*7(8361$
'#F0'*3'*87#:$3C#'$>;-80-#$+36G*+86)$)3(-9B$$
9(+'*^+#:$+39&$+36&'3-$0'3+#99#9$*6$&"#$A(+#$3A$9(A#&.$'*9E9B$$
C(-;#:$8>#-.$'#90369*C#$:#+*9*369$(6:$(+8369B$$
+33':*6(&#:$ "3'*736&(--.$ (+'399$ A;6+8369$ &3$ '#:;+#$ &"#$ '*9E$ 3A$
>*99*6)$+'*8+(-$*6A3'>(836$3'$9*:#$#`#+&9$4"#6$'#0-(66*6)$;6:#'$
8>#$0'#99;'#B$$
+36&'3--#:$ &"#$ +39&$ 3A$ +33':*6(836$ &3$ (C3*:$ 3C#'-3(:*6)$ (-'#(:.$
<;9.$0#30-#$(6:$+3>>;6*+(836$+"(66#-9B$$
0;9"#:$*6*8(8C#$(6:$ (;&"3'*&.$:346$&3$&"#$-34#9&$;6*&$ 3A$(+836$
*6$&"#$ 9*&;(836$&3$ *6+'#(9#$&"#$ '#(:*6#99$&3$'#9036:$4"#6$;6(6F
8+*0(&#:$+"(--#6)#9$('39#D$$
\ $b
Z00#'$>(6()#>#6&$:#C#-30#:$>#+"(6*9>9$A3'$&"*9$ 9"*n$0'*3'$&3$0('8+;F
-('$+"(--#6)#$#C#6&9D$ $ ,9$";''*+(6#$ %(6:.$(00'3(+"#:$]#4$ j3'EB$ &#>03F
'('.$&#(>9$4#'#$ +'#(&#:$a;*+E-.$&3$ 0'3C*:#$ 8>#-.$;0:(&#9$J4#(&"#'$ *>F
0(+&$(6(-.9*9$&#(>9KD$$P6$&#>03'('.$-3+(-$+3>>(6:$+#6&#'9$E#.$0#'9366#-$
A'3>$ :*`#'#6&$ A;6+8369$ 43'E#:$ &3)#&"#'$ &3$ E##0$ &'(+E$ 3A$ &"#$ #C3-C*6)$
9*&;(836$ (6:$ '#F0-(6D$ !"#$ "3'*736&(-$ (6:$ C#'8+(-$ +33':*6(836$ 0399*<-#$
&"'3;)"$ &"#9#$ +#6&#'9$ 43'E#:$ &3$ <(-(6+#$ &"#$ #o+*#6+.F&"3'3;)"6#99$
&'(:#3`$*6$($6#4$4(.$A3'$($9*&;(836$&"(&$0'#9#6&#:$9;'0'*9*6)$+"(--#6)#9$
(6:$ :#>(6:#:$ "*)"$ '#90369*C#6#99$ J23--6()#-B$ WOOYKD$ !"#$ ^'>$ ;9#:$
>#+"(6*9>9$&3$#?0(6:c90##:$+33':*6(836$(+'399$'3-#9$*6$3':#'$&3$>(&+"$
&"#$ &#>03$ 3A$ #C#6&9B$ #C#6$ &"3;)"$ &"#9#$ >#+"(6*9>9$ 9(+'*^+#:$ #+3F
63>*+9$ (6:$ 9&(6:(':$ 0'3+#99#9D$! "#9#$>#+"(6 *9>9$ #?*9&#:$ <#+(;9#$ &"*9$
^'>m9$<;9*6#99$ >3:#-B$ #6C*'36>#6&B$ +-*#6&#-#B$ (6:$ #?&#'6(-$ #C#6&9$'#);F
-('-.$'#a;*'#:$(:(0&(836$(9$9;'0'*9#9$4#'#$($63'>(-$#?0#'*#6+#D$
WDfD I5]!H,%!P]/$!2R$I,%R%$
!"#$+(9#9$'#C#(-$"34$&3$<#$03*9#:$&3$(:(0&D$%*>0-.$43'E*6)$&3$0-(6$*9$63&$
9;o+*#6&$ &3$ "(6:-#$ #?+#08369B$ (63>(-*#9B$ (6:$ 9;'0'*9#9B$ '#)(':-#99$ 3A$
&"#$+3686)#6+*#9$<;*-&$*6$&"#$9&(6:(':$0'(+8+#9$J=33:9B$WOXrKD$,68+*0(F
836$ (6:$ *6*8(8C#$ ('#$ 6#+#99('.$ *6$ 3':#'$ A3'$9.9&#>9$ &3$ (:(0&$ )*C#6$ &"#$
03&#68(-$A3'$ :*o+;-8#9$&3$+(9+(:#$ JL*6E#-B$WOXXKD$ $ ="#6$($ ;6*&$+36A'36&9$
9*&;(8369$&"(&$ +"(--#6)#$0-(69B$ :#-(.9$('#$ *6#C*&(<-#$*A$ &"#$;6*&$ >;9&$^'9&$
*6A3'>$ 3&"#'9$ (6:$ &"#6$ 4(*&$ A3'$ 6#4$ *69&';+8369$ <#A3'#$ *6*8(86)$ ($ '#F
90369#D$$P6$&"*9$'#(+8C#$>3:#$A3'$'#C*9*6)$0-(69$*6$0'3)'#99B$0#'A3'>(6+#$
*9$);('(6&##:$&3$<#$ 9-34$(6:$9&(-#$4*&"$-*>*&#:$ (<*-*&.$&3$E##0$0(+#$4*&"$
+"(6)#B$(9$*6$ &"#$T6*)"&$I(0*&(-$+(9#D$P6$ +36&'(9&B$&"#$ 3')(6*7(836$A(+*6)$
";''*+(6#$%(6:.$9"*n#:$&3$ C(-;#$'#90369*C#6#99B$0;9"$ *6*8(8C#$:346$&3$
;6*&9$ 3A$ (+836B$ (6:$ *6C3E#$ >#+"(6*9>9$ A3'$ 8>#-.$ +33':*6(836$ (+'399$
'3-#9$(9$#C#6&9$;6A3-:#:D$$
P6$<3&"$+(9#9$>;-80-#$&#>039$3A$30#'(836$4#6&$36$*6$ 0('(--#-i4"*+"$*9$
<(9*+$ A3'$ (:(08C#$ 9.9&#>9$ *6$ +3>0-#?$ 43'-:9D$ ="#6$ &"#$ +366#+8369$
(+'399$ &"#$ >*?#:$ &#>039$ 4#'#$ 9#'*(-B$ '#90369#9$ -())#:$ #C#6&9D$ $ L(+*6)$
";''*+(6#$%(6:.B$&"#$3&"#'$3')(6*7(836$+"(6)#:$"34$*&$A;6+836#:$&3$+3F
3':*6(&#$(+8C*8#9$(+'399$&"#$>*?$3A$&#>039i4"*+"$+"(6)#:$;6#?0#+&#:F
-.D$ $L'3>$A(+*6)$9;'0'*9#9$ *6$&"#$ 0(9&B$&"#$C('.*6)$ '3-#9c-#C#-9$"(:$ 3003'F
&;6*8#9$&3$#?#'+*9#$&"#*'$+33':*6(8C#$l>;9+-#9Bm$#C#6$ &"3;)"$&"*9$ 90#+*^+$
\d
#C#6&$ 0'#9#6&#:$;6*a;#$ :*o+;-8#9D$ P6$ &"#$ 9&'(&#)*+$ ()*-*&.$ )(0B$ &"#$ +"(-F
-#6)#$ A3'$ 3')(6*7(8369$ *9$ &3$ :#C#-30$ 6#4$ A3'>9$ 3A$ +33':*6(836$ (+'399$
A;6+836(-B$ 90(8(-B$ (6:$ &#>03'(-$ 9+(-#9i3&"#'4*9#$ 3')(6*7(8369$ 4*--$ <#$
9-34B$ 9&(-#$ (6:$ A'()>#6&#:$ (9$ &"#.$ *6#C*&(<-.$ +36A'36&$ 9;'0'*9*6)$ +"(-F
-#6)#9D$
fD %j%!RS%$,HR$SR%%j$
!"#$ +(9#9$ :#9+'*<#:$ &3$ *--;9&'(&#$ &"#$ 9&'(&#)*+$ ()*-*&.$ )(0B$ "*)"-*)"&$ "34$
9.9&#>9$ ('#$ >#99.B$ A;6:(>#6&(--.$ J,-:#'936$ (6:$ U3.-#B$ WOXOe$ =33:9B$
WOXrKD$,--$9.9&#>9$('#$:#C#-30#:$ (6:$ 30#'(&#$)*C#6$ ^6*&#$ '#93;'+#9$(6:$
-*C#$ *6$ ($ +"(6)*6)$ #6C*'36>#6&$ JI33EB$ WOXWKD$ $,9$ ($ '#9;-&B$ 0-(69B$ 0'3+#F
:;'#9B$(;&3>(836B$(--$()#6&9$(6:$'3-#9$('#$*6"#'#6&-.$-*>*&#:$(6:$;6(<-#$
&3$ +3>0-#&#-.$ +3C#'$ &"#$ +3>0-#?*&.$ 3A$ (+8C*8#9B$ #C#6&9B$ :#>(6:9B$ (6:$
+"(6)#D$ ,--$ 9.9&#>9$ 30#'(&#$ ;6:#'$ 0'#99;'#9$ (6:$ *6$ :#)'(:#:$ >3:#9D$
h#30-#$(6:$30#'(8369$(:(0&$&3$>##&$&"#$*6#C*&(<-#$+"(--#6)#9B$0'#99;'#9B$
&'(:#F3`9B$'#93;'+#$9+('+*&.B$(6:$9;'0'*9#9D$ $!3$9;>>('*7#$&"#$03*6&$C*C*:F
-.B$ I33E$ (6:$ =33:9$ JWOXbK$ ;9#$ ($ +3*6()#$ A'3>$ &"#$ ,>#'*+(6$ 93-:*#'$ *6$
==PP1$ $%],LZ$*9$ &"#$6(&;'(-$ 9&(&#$3A$ 9.9&#>9i4"#'#$%],LZB$9&(6:9$A3'$
%*&;(836$]3'>(-$,--$Lt$t$t$#:$Z0D$$=*&"$%],LZ$63'>(-B$%],LZ$+(&+"*6)$*9$
#99#68(-i'#9*-*#6&$0#'A3'>(6+#$ :#0#6:9$36$&"#$ (<*-*&.$ &3$(:(0&$3;&9*:#$
3A$9&(6:(':$0-(69$(9$&"#9#$ *6#C*&(<-.$<'#(E$:346D$ %],LZ$+(&+"*6)B$"34F
#C#'$ &#+"63-3)*+(--.$ A(+*-*&(&#:B$ *9$ ($ A;6:(>#6&(--.$ ";>(6$ +(0(<*-*&.$ #9F
9#68(-$ A3'$ 3')(6*7(836(-$ C*(<*-*&.$ J=33:9B$ WOXde$ WOXuKD$ %3>#$ 0#30-#$ *6$
93>#$ '3-#9$ 0'3C*:#$ &"#$ #99#68(-$ (:(08C#$ +(0(+*&.$ A3'$ %],LZ$ +(&+"*6)B$
&"3;)"$&"*9$>(.$<#$ -3+(-B$ ;6:#')'3;6:B$(6:$*6C*9*<-#$&3$ :*9&(6&$0#'90#+F
8C#9$Jh#''.$(6:$=#('9B$WOXWKD$
!"#$9.6&"#9*9$0'#9#6&#:$"#'#$<#)*69$4*&"$&"#$ '#+3)6*836$&"(&$(--$3')(6*F
7(8369$ ('#$ (:(08C#$ 9.9&#>9B$ +369*9&$ 3A$ ($ 6#&43'E$ 3A$ (:(08C#$ 9.9&#>9B$
(6:$ #?*9&$ *6$ ($ 4#<$ 3A$ (:(08C#$ 9.9&#>9i*D#DB$ &"#$ '#9*-*#6+#$ #6)*6##'*6)$
0('(:*)>D$,--$";>(6$(:(08C#$9.9&#>9$>(E#$&'(:#F3`9$&3$+30#$4*&"$^6*&#$
'#93;'+#$(6:$(--$-*C#$*6$($+"(6)*6)$43'-:D$!"#$0(+#$3A$+"(6)#$*9$(++#-#'(&F
#:$ <.$ 0(9&$ 9;++#99#9B$ (9$ )'34&"$ 98>;-(&#9$ >3'#$ (:(0&(836$ <.$ >3'#$
0-(.#'9$ *6$ ($ >3'#$*6&#'+366#+&#:$ 9.9&#>D$ !"#$ 9+(-#$ (6:$ 0(+#$ 3A$ +"(6)#$
)'34$93$&"(&$9.6+"'36*7*6)$3C#'$>3'#$'3-#9$(&$>;-80-#$&#>039$)#&9$"(':F
#'D$$$
\ $u
\Y
\ $XO
ND I5]!P]Z5Z%$$,U,h!,VPQP!j$$
PA$ 3')(6*7(8369$ &3:(.$ >;9&$ -*C#$ *6$ &"#$ 9&'(&#)*+$ ()*-*&.$ )(0B$ )*C#6$ &"#$
)'34&"$ :'*C#6$ <.$ &#+"63-3).B$ "34$ +(6$ &"#.$ G3;'*9"$ :#90*&#$ +3>0-#?*&.$
0#6(-8#9@$$
,694#'9$ &3$ &"*9$ a;#9836$ "(C#$ #>#')#:$ A'3>$ '#9#('+"$ 36$ '#9*-*#6&$ 0#'F
A3'>(6+#$3A$";>(6$(:(08C#$9.9&#>9D$$L3'$3')(6*7(8369$&3$G3;'*9"$*6$&"#$
)(0$&"#.$6##:$&3$<;*-:$(6:$9;9&(*6$&"#$(<*-*&.$&3$5#'3',#,!"A%&(&=)D$!3:(.$
&"*9$ 0('(:*)>$ #?*9&9$ *6$ 4#<$ #6)*6##'*6)$ (6:$ 30#'(8369$ <#+(;9#$ *&$ 4(9$
6#+#99('.$&3$E##0$0(+#$ 4*&"$&"#$ (++#-#'(86)$+369#a;#6+#9$ 3A$+"(6)#$ (9$
6#4$ E*6:9$ 3A$ 9#'C*+#9$ ('39#$ A'3>$ *6&#'6#&$ A;#-#:$ +(0(<*-*8#9$ J,--90(4B$
WOXdKD$ =#<F<(9#:$ +3>0(6*#9$ -*C#$ 3'$ :*#$ <.$ &"#$ (<*-*&.$ &3$ 9+(-#$ &"#*'$ *6F
A'(9&';+&;'#$&3$(++3>>3:(&#$*6+'#(9*6)$:#>(6:$(9$&"#*'$9#'C*+#9$0'3C*:#$
C(-;#D$ h-(66*6)$ A3'$ 9;+"$ )'34&"$ '#a;*'#9$ 3')(6*7(8369$ &3$ <#$ G;#6&$ (&$
+"(6)#$(6:$ 03*9#:$&3$ (:(0&D$ $V#+(;9#$ &"#9#$3')(6*7(8369$'#+3)6*7#$ &"(&$
&"#.$30#'(&#$(&$93>#$C#-3+*&.B$ &"#.$E634$ &"#.$4*--$ #?0#'*#6+#$(63>(-*#9$
&"(&$&"'#(&#6$ &"39#$9#'C*+#9D$ $ V#+(;9#$4#<F<(9#:$ 9#'C*+#9$0'3C*:#$ )'34F
*6)$C(-;#B$&"#$C(-;#$>3C#9$A'3>$30836(-$&3$9&(6:(':$&3$+'*8+(-$(6:$36$&3$
#?*9&#68(-$JI33EB$WOXWKD$
NDXD QR%%5]%$LH5S$=RV$5hRH,!P5]%$
=#<$#6)*6##'*6)$(6:$30#'(8369$9#'C#$(9$($6(&;'(-$-(<3'(&3'.$A3'$9&;:.*6)$
'#90369#9$ &3$ &"#$ 9&'(&#)*+$ ()*-*&.$ )(0D$ 5;&()#9$ (6:$ 6#('$ 3;&()#9$ ('#$
+3>>36$#C#6$(&$&"#$<#9&F*6F+-(99$0'3C*:#'9D$h(9&$9;++#99$A;#-9$&"#$0(+#$3A$
+"(6)#D$ %.9&#>9$ 43'E$ (&$ *6+'#(9*6)$ 9+(-#$ *6$ ($ +369&(6&-.$ +"(6)*6)$ #6C*F
'36>#6&$3A$ 3003'&;6*&.$ (6:$'*9ED$=#<$#6)*6##'*6)$(6:$30#'(8369$*9$*>F
03'&(6&$(-93$ <#+(;9#$(--$ 3')(6*7(8369$('#$3'$ ('#$<#+3>*6)$ :*)*&(-$9#'C*+#$
3')(6*7(8369D$L3'$#?(>0-#B$'#+#6&-.$>;-80-#$(*'-*6#9$"(C#$9;`#'#:$>(_3'$
#+363>*+$-399#9$4"#6$P!$9#'C*+#$3;&()#9$-#:$&3$&"#$+3--(09#$3A$&"#$(*'-*6#9$
(<*-*&.$&3$>(6()#$ G*)"&9D$H#9;-&9$ A'3>$&"*9$6(&;'(-$-(<3'(&3'.$"#-0$'#C#(-$
A;6:(>#6&(-$ +369&'(*6&9$ 36$ "34$ ";>(6$ (:(08C#$ 9.9&#>9$ A;6+836$ (6:$
"34$3')(6*7(8369$+(6$G3;'*9"$*6$&"#$9&'(&#)*+$()*-*&.$)(0D$
5')(6*7(836(-$9.9&#>9$9;++##:$:#90*&#$&"#$<(9*+$-*>*&9$3A$0-(69$*6$($+3>F
0-#?B$ *6&#':#0#6:#6&$ (6:$ +"(6)*6)$ #6C*'36>#6&$ <#+(;9#$ '#90369*<-#$
\XX
0#30-#$(:(0&$&3$>(E#$&"#$ 9.9&#>$43'E$:#90*&#$*&9$:#9*)6i%],LZ$+(&+"F
*6)D$!"#$*6)'#:*#6&9$('#1$
&'351=&3#'$i$ 9##*6)$:#C#-30*6)$9*)69$3A$ &'3;<-#$("#(:$&3$<#)*6$
&3$(:(0&$<#A3'#$&"#$ #C*:#6+#$*9$:#^6*8C#$J4(*86)$8--$#C*:#6+#$*9$
:#^6*8C#$(->39&$);('(6&##9$<#*6)$9-34$(6:$9&(-#Ke$$
5#'3'0*')%!A'5;/#'12&3#'$i$(:_;986)$"34$:*`#'#6&$'3-#9$(&$:*AF
A#'#6&$-#C#-9$+33':*6(&#$&"#*'$(+8C*8#9$&3$E##0$0(+#$4*&"$&#>03$3A$
#C#6&9e$
/*&(1'*!!% )#% /*!=#'($ i$ :#C#-30*6)$ :#0-3.(<-#$ (6:$ >3<*-*7(<-#$
'#90369#$+(0(<*-*8#9$*6$(:C(6+#$3A$9;'0'*9#9e$$
=/#&53B*% "*&/'1'0$ i$ -#('6*6)$ (<3;&$ <'*M-#6#99$ (6:$ 93;'+#9$ 3A$
'#9*-*#6&$ 0#'A3'>(6+#$ <#A3'#$ >(_3'$ +3--(09#9$ 3'$ (++*:#6&9$ 3++;'$
<.$9&;:.*6)$"34$9;'0'*9#9$('#$+(;)"&$(6:$'#93-C#:D$
NDWD L5ZH$I,h,VPQP!PR%$L5H$I5]!P]Z5Z%$,U,h!,!P5]$
H#9;-&9$36$ '#9*-*#6&$0#'A3'>(6+#$*6$4#<$30#'(8369$'#C#(-9$90#+*^+$+(0(F
<*-*8#9$A3'$#`#+8C#$3')(6*7(8369$-*C*6)$*6$&"#$)(0D$E'13&3B*$*9$#99#68(-$A3'$
(:(0&(836$ &3$ +36G*+86)$ 0'#99;'#9B$ +369&(6&$ '*9E$ 3A$ 3C#'-3(:B$ (6:$ *6F
#C*&(<-#$9;'0'*9#9$J=33:9B$WOXuKD$5')(6*7(8369$6##:$&3$);*:#$&"#$*?=/*!C
!1#'%#9% 1'13&3B*$&3$ #69;'#$9.6+"'36*7(836$(+'399$'3-#9$&(*-3'#:$&3$+"(6)F
*6)$ 9*&;(8369D$ !"*9$ '#a;*'#9$ 0;9"*6)$ *6*8(8C#$ :346$ &3$ ;6*&9$ 3A$ (+836$
JL*6E#-B$ WOXXKD$ $ P6*8(8C#$ +(6$ ';6$ &33$ 4*:#$ 4"#6$ ;6:*'#+&#:$ -#(:*6)$ &3$
A'()>#6&(836B$43'E*6)$(&$+'399F0;'039#9B$(6:$>*9F9.6+"'36*7(836$(+'399$
'3-#9D$$234#C#'B$*6*8(8C#$*9$'#:;+#:$3'$#-*>*6(&#:$<.$0'#99;'#$&3$43'EF&3F
';-#c43'EF&3F0-(6B$ #90#+*(--.$ <.$ &"'#(&9$ 3A$ 9(6+8369$ 9"3;-:$ (:(0&(8369$
0'3C#$ *6#`#+8C#$ 3'$ #''36#3;9$ *6$ "*6:9*)"&D$ R>0"(9*9$ 36$ 43'EF&3F';-#c
43'EF&3F0-(6$+3>0-*(6+#$-*>*&9$(:(08C#$+(0(+*&.$4"#6$#C#6&9$3++;'$ &"(&$
:3$63&$>##&$(99;>08369$ *6$ &"#$0-(6B$*>0(99#9$<-3+E$ 0'3)'#99B$3'$4"#6$
3003'&;6*8#9$('*9#D$$$
H#9*-*#6+#$#6)*6##'*6)$*9$&"#6$-#n$4*&"$&"#$&(9E$3A$90#+*A.*6)$4"(&$9.9&#>$
('+"*&#+&;'#$<(-(6+#9$&"#$#?0'#99*36$3A$*6*8(8C#$(9$&"#$ 03&#68(-$A3'$9;'F
0'*9#$4(?#9$(6:$4(6#9D$!"#$0'#99;'#9$)#6#'(&#:$<.$3&"#'$*6&#':#0#6:#6&$
;6*&9$ #*&"#'$ #6#')*7#9$ 3'$ '#:;+#9$*6*8(8C#$ (6:$ &"#'#A3'#$ &"#$ +(0(+*&.$ &3$
(:(0&D$ $!"#9#$ 0'#99;'#9$(-93$ +"(6)#$"34$ *6*8(8C#$*9$9.6+"'36*7#:$ (+'399$
\ $XW
\Xf
:*o+;-8#9B$-*>*&#:$'#93;'+#9B$&'(:#F3`9B$(6:$ 9;'0'*9#9i%],LZ$ +(&+"*6)D$$
P6$ (::*836B$ #`#+8C#$ -#('6*6)$ '#a;*'#9$ 3')(6*7(8369$ &3$ :#C#-30$ -*)"&F
4#*)"&$>#+"(6*9>9$&3$A39&#'$&"#$90'#(:$3A$-#('6*6)$(<3;&$%],LZ$+(&+"*6)$
(+'399$'3-#9$(6:$-#C#-9D$
%&'(&#)*+$ ()*-*&.$ )(0$ ('*9#9$ (9$ 3')(6*7(8369m$ &'(_#+&3'.$ 3A$ *>0'3C#>#6&$
+(663&$>(&+"$ &"#$#>#')#6+#$3A$6#4$+"(--#6)#9B$'*9E9B$(6:$3003'&;6*8#9$
(9$ +3>0-#?*&.$ 0#6(-8#9$ )'34$ JL*)D$ XXDXKD$ !3$ G3;'*9"$ *6$ &"#$ )(0$ '#a;*'#9$
3')(6*7(8369$&3$<;*-:$(6:$9;9&(*6$+(0(<*-*8#9$A3'$%],LZ$+(&+"*6)D$$
HRLRHR]IR%$
,-:#'936B$UD$QD$w$U3.-#B$vD$ID$JWOXOKD$I36&'(986)$C*#49$3A$+3>0-#?*&.$(6:$
&"#*'$*>0-*+(8369$A3'$6#&43'EF+#6&'*+$*6A'(9&';+&;'#9D$EGGG%8H:I7&/)%J>%
NO1ufYxrWD$
,--90(4B$vD$JWOXrKD$!'(:#F5`9$Z6:#'$h'#99;'#1$2#;'*98+9$(6:$5<9#'C(8369$
5A$!#(>9$H#93-C*6)$P6&#'6#&$%#'C*+#$5;&()#9D$$Q;6:$Z6*C#'9*&.B$S%$!"#9*9D$
"M091cc-;0D-;<D-;D9#c9&;:#6&F0(0#'9c9#('+"c0;<-*+(836cuOuNrWO$D$
,--90(4B$vD$JWOXdKD$2;>(6$L(+&3'9$(6:$R')363>*+9$h'(+8+#$*6$=#<$R6)*F
6##'*6)$(6:$50#'(83691$](C*)(86)$($I'*8+(-$.#&$50(a;#$%#($3A$,;F
&3>(836D$$P6$%D$%"3''3+E$w$ID$=*--*(>9$JR:9KDB$+,-&'%4&5)#/!%&'(%G/C
0#'#-15!%1'%7/&535*D$$IHI$h'#99B$$0DfXfFfWWD$
I('-936$vD$SD$w$U3.-#B$vD$ID$JWOOOKD$2*)"-.$308>*7#:$&3-#'(6+#1$'3<;9&6#99$
(6:$:#9*)6$*6$+3>0-#?$9.9&#>9D$h".9*+9$H#C*#4$Q#M#'9B$KLJXXK1WrWYFfWD$$
I33EB$HD$PD$JWOXWKD$$234$I3>0-#?$%.9&#>9$L(*-D$$k#-3+*&.1$=#<$h#'A3'>(6+#$
(6:$50#'(8369$I36A#'#6+#B$]#4$j3'EB$"M091cc444D.3;&;<#D+3>c4(&+"@
CyW%OEXW;gHXND$
I33EB$HD$PD$w$=33:9B$UD$UD$JWOXbKD$$%*&;(836$63'>(-1$,--$A3;-#:$;0D$$k#-3+*F
&.1$=#<$h#'A3'>(6+#$(6:$50#'(8369$I36A#'#6+#B$]#4$j3'EB$"M091cc
444D3'#*--.D+3>c*:#(9c9*&;(836F63'>(-F(--FA3;-#:F;0$D$
U#('.B$UD$%DB$=(-E#'B$TD$RD$w$=33:9B$UD$UD$JWOXfKD$H#9*-*#6+#$*6$&"#$L(+#$3A$
($%;0#'9&3'>1$$,$!'(6903'&(836$L*'>$I36A'36&9$2;''*+(6#$%(6:.D$$P6$7/#C
5**(1'0!%#9%);*%+,-&'%4&5)#/!%&'(%G/0#'#-15!%8#51*)A>$rd&"$,66;(-$
\ $XN
... L'activité des équipes de première ligne est donc essentielle pour gérer le travail quotidien et les perturbations potentielles qui peuvent affecter l'organisation. Dans des contextes perturbés, ces équipes peuvent même être contraintes d'agir rapidement et de s'organiser pour faire face à l'émergence de perturbations existantes (Hollnagel, 2006 ;Macrae, 2019 ;Woods, 2020 ...
... rupture du stock de masques et de matériel clinique) ou pour obtenir du personnel de renfort pendant les périodes critiques de la crise (ex. demandes excessives auprès des agences d'intérim, concurrence généralisée, etc.).La crise sanitaire actuelle a donc réaffirmé l'idée que les organisations devront s'habituer à fonctionner dans un monde de plus en plus incertain et complexe, dans lequel, en plus de gérer les pressions quotidiennes, elles devront être capables de faire face à des crises de diverses natures (financières, informatiques, naturelles, sanitaires, etc.)(Beck, 2001 ;Woods, 2020 ; Paries, 2011). Des phénomènes tels que la mondialisation, le financement du marché, la révolution numérique, le changement climatique, entre autres, amènent les organisations à fonctionner dans des environnements turbulents et instables avec des ressources de plus en plus limitées(Woods, 2020 ;. ...
... demandes excessives auprès des agences d'intérim, concurrence généralisée, etc.).La crise sanitaire actuelle a donc réaffirmé l'idée que les organisations devront s'habituer à fonctionner dans un monde de plus en plus incertain et complexe, dans lequel, en plus de gérer les pressions quotidiennes, elles devront être capables de faire face à des crises de diverses natures (financières, informatiques, naturelles, sanitaires, etc.)(Beck, 2001 ;Woods, 2020 ; Paries, 2011). Des phénomènes tels que la mondialisation, le financement du marché, la révolution numérique, le changement climatique, entre autres, amènent les organisations à fonctionner dans des environnements turbulents et instables avec des ressources de plus en plus limitées(Woods, 2020 ;. L'augmentation de la capacité de performance des organisations apporte de nouvelles opportunités, mais accroît également la complexité, et avec elle apparaissent de nouvelles menaces(Carlson & Doyle, 2000 ; Decker, 2018).Ces dernières années, de nombreux efforts déployés dans les domaines des sciences sociales et de l'ingénierie pour comprendre la gestion des risques dans les organisations complexes se sont 87 concentrés sur les idées et les idéaux de résilience. ...
Thesis
Full-text available
Cette thèse s'intéresse à l'étude des mécanismes et des conditions qui permettent aux systèmes de soins de s'adapter aux perturbations en termes de personnel pour maintenir une performance acceptable. La performance de toute organisation dépend de sa capacité à disposer d'un nombre suffisant de travailleurs qualifiés et à les déployer judicieusement dans un environnement de travail propice. Cette étude ethnographique a été menée dans sept secteur d'hospitalisation du département de neurologie d'un grand hôpital parisien qui subit un déficit constant de personnel soignant. La recherche se concentre sur l'analyse des solutions adoptées par l'organisation pour configurer les équipes de soins face à la réalité des ressources humaines effectivement disponibles et sur la manière dont les équipes de soins, dans ce contexte, s'efforcent de fournir des soins de qualité et sûrs. Trois études empiriques ont été menées du côté du personnel soignant (AS et IDE) et des cadres de santé. Les résultats donnent matière à réflexion sur les types de pratiques et de conditions nécessaires pour assurer une gestion durable des ressources humaines à court et à long terme.
... Unforeseen events, on the other hand, require an organization to have the ability to adapt its activities and responses to situations it has not yet imagined [2]. Working according to pre-established plans is simply insufficient to handle surprises and anomalies [3]. Therefore, in addition to possessing an ability to anticipate and plan for predictable stresses and disturbances, an organization must also cultivate an ability to adapt in order to advance resilient performance [1,4]. ...
... In complex systems, no event recurs in exactly the same way, as systems are continually evolving due to fluctuations and unexpected events [2]. While plans and procedures can provide guidance and support, they can normally not be followed to the letter as they never cover all aspects of an unfolding disturbance or crisis [3,6]. Some scholars even argue that relying too much on planning for predictable disruptions can undermine efforts to foster organizational resilience [5,7,8]. ...
Article
Full-text available
While organizations providing critical services to society must have the ability to anticipate and prepare for foreseeable threats, they also need to develop a capacity to adapt in the face of unforeseen challenges and crises. While adaptive capacity becomes manifested in a specific situation through the concrete adaptations carried out by an organization, the preconditions to adapt exist already before a crisis occurs. However, previous research indicates significant knowledge gaps regarding how these preconditions are established and maintained within an organization. Against this backdrop, this paper aims to enhance our understanding of the preconditions necessary to adapt to an unfolding crisis. This is achieved by exploring how adaptations were manifested during the COVID-19 pandemic in a Swedish public sector organization and the factors that contributed to this adaptive capacity. A range of enabling factors for such adaptive capacity are identified, including a high level of trust between roles and organizational levels, a polycentric organizational structure where departments work autonomously while still allowing some degree of central coordination, clear overall objectives, capitalization on previous experience from both minor and major crises, and asset literacy among employees. The paper concludes by discussing some idiosyncrasies of the COVID-19 pandemic that facilitated adaptations. This includes the fact that virtually everyone was both impacted by and actively contributing to responding to the crisis. Finally, the discussion elaborates on the parallels and distinctions when compared to a creeping crisis.
... The situation is exacerbated by the historically fragmented governance of critical infrastructures spanning several government departments (Oughton et al., 2018). Future strategies to strengthen the capability of critical infrastructures to cope with disruptions should therefore build on the principles of resilience and adaptation (Hollnagel, Woods, and Leveson, 2006;Schulman, 2022;Woods, 2020). ...
... This is important because it is not feasible to prescribe, describe and risk assess all possibilities for action that are available in complex sociotechnical systems such as critical infrastructures, especially when dealing with unforeseen events. Efforts to strengthen the capability of critical infrastructures to cope with disruptions should therefore build on the principles of resilience and adaptation (Hollnagel et al., 2006;Schulman, 2022;Woods, 2020). ...
Article
Full-text available
The objective of this work has been to propose a framework that will aid governments with the development of more coherent and effective infrastructure planning and resilience policies through a system-of-systems approach that is grounded in theory for complex sociotechnical systems. The framework has been developed by using a work domain analysis (WDA). The WDA consists of an abstraction hierarchy analysis and a part-whole decomposition. Together, the abstraction hierarchy and the part-whole description form the abstraction-decomposition space (ADS) for which the system constraints apply. By imposing constraints, the WDA promotes design for adaptation where actors within the system are allowed to adapt their behaviour as they find appropriate without violating the system’s constraints. The proposed ADS consists of five levels of abstraction and four levels of decomposition. By applying the ADS, it will aid decision making related to the overall purposes of the critical infrastructure system, the values and priority measures that are used to assess the system’s progress towards the functional purposes, as well as formulation of infrastructure needs that are necessary to achieve the functional purposes. The framework is formative in the sense that it reveals how work can be done in the critical infrastructure system. This is important because it is not feasible to prescribe, describe and risk assess all possibilities for action that are available in complex sociotechnical systems, especially when dealing with unforeseen events. Future research should focus on finding science-based yet useful in practice ways for establishing values and priority measures that encompass sustainability issues and resilience standards.
... Challenges can arise during anomaly response when distributed work requires synchronizing multiple interdependent threads of activity with limited time (Chow et al., 2000;Woods & Hollnagel, 2006;Sarter and Woods, 1997). For example, distributed work can break down when agents act upon stale information (Woods, 2020;Woods & Alderson, 2021). To stay synchronized in coordinated work, a common cadence that is fast enough to keep up with other agents and system dynamics needs to be reached. ...
Article
Full-text available
Envisioning new kinds of operations requires systematically developing architectures, work procedures, and artifacts to support human and machine agents in coordinating within dynamic environments. Accurately predicting how envisioned operations will unfold is challenging as (1) early design-phase descriptions of architectures, work procedures, and artifacts are often underspecified, and (2) key outcomes of interest emerge from interactions between cognitive work and environmental dynamics. This paper discusses how computational simulation of work can serve as a discovery tool for envisioning future operations. We introduce a three-phase approach using the Work Models that Compute (WMC) framework, which involves converting paper-based representations of work into computational models, developing scenarios and test conditions, and simulating work dynamics to analyze emergent behaviors. We illustrate this approach through a case study on developing contingency management procedures for envisioned air transport operations, specifically Urban Air Mobility (UAM). The case study demonstrates how computational simulation can (1) reveal the need for clearer design specifications, (2) uncover interactions and emergent behavior that may lead to undesirable outcomes, such as coordination surprises, and (3) identify trade-offs between multiple design options. Insight from simulation can complement other cognitive systems engineering methods to refine and enhance the feasibility and robustness of envisioned operations.
... First, following the innovation literature, Research and Development (R&D) intensity and its change is a proxy for sensing and exploiting capabilities, while innovation-transforming capabilities are reflected by the part of R&D that goes beyond mere incremental innovation [76]. Regarding agility, we follow Mohammad [77] who emphasises a culture of agility that is able to sense the need/opportunities for adaptation; while we measure the exploitation of agility through three technical elements: speed, flexibility and risk taking in resource reallocation [78]. Transformative capability is measured by the degree of change in those technical elements at the time of the pandemic. ...
Chapter
Full-text available
Econometrics has traditionally focused on statistical regression-type methods for analysing economic data, but is increasingly integrating techniques from data science, using sophisticated machine learning (ML) models, both to improve predictive accuracy and to develop non-parametric inference, for example with new feature importance techniques such as Shapley values. While development has been rapid and exciting, significant efforts are still required to achieve full convergence between traditional and new data methods. This research examines a decade of progress in ML, focusing on its application to predicting and explaining the drivers of business resilience during crises, such as the COVID-19 pandemic. It is shown that ML uncovers significant non-linearities in the way capabilities, such as innovation, ecosystem play or agility, have been able to stimulate resilience. Empirical results show that gradient boosting and random forests outperform traditional econometric models in predictive accuracy by margins of over 10%, while maintaining interpretability through feature importance metrics. This study highlights the strengths and trade-offs of ML methods and provides practical insights into their computational underpinnings. By comparing traditional econometric methods with ML techniques, we illustrate the promise and challenges of convergence between these fields.
... One world instantiates the dramatic scale shift that has occurred through processes of growth and complexification stimulated by the widespread deployment of automata-critical digital services (Woods, 2024). University-industry partnerships have enabled studies of the flow of incidents/ outages and how incidents are usually handled well in this sector-processes which underpin every sector today (Woods, 2017). ...
Article
Full-text available
Two trajectories underway transform human systems. Processes of growth/complexification have accelerated as stakeholders seek advantage from advances in connectivity/autonomy/sensing. Surprising empirical patterns also arise—puzzling collapses of critical valued services occur against a background of growth. In parallel, new scientific foundations have arisen from diverse directions explaining the observed anomalies and breakdowns, highlighting basic weaknesses of automata regardless of technology. Conceptual growth provides laws, theorems, and comprehensive theories that encompass the interplay of autonomy/people and complexity/adaptation across scales. One danger for synchronizing the trajectories is conceptual lag as researchers remain stuck in stale frames unable to keep pace with transformative change. Any approach that does not either build on the new conceptual advances—or provide alternative foundations—is no longer credible to match the scale and stakes of modern distributed layered systems and overcome the limits of automata. The paper examines longstanding challenges by contrasting progress then as the trajectories gathered steam, to situation now as change has accelerated.
... Defining reliability in non-HROs is important as more organizations navigate reliability in uncertain waters caused by climate change (Woods, 2020) and the ongoing COVID-19 pandemic. This need has been clearly illustrated by the COVID-19 pandemic because "certainly thousands of deaths are an inevitable consequence of the disease itself, irrespective of any managerial process" (Schulman, 2021, p. 6). ...
Article
Full-text available
High reliability organizations (HROs) are rare organizations that manage established technologies to avoid catastrophic errors. The concept of reliability, however, has become attractive to other organization types. This expansion creates scholarly questions about what reliability is outside of HROs. The COVID‐19 pandemic challenged new organizations to create reliability by also creating alternative meanings and practices of reliability that could adequately address an unknown, evolving health threat. This study draws on semistructured interviews and virtual ethnography during the first year of the COVID‐19 pandemic to examine how organizations communicatively defined reliability. The study finds that organizations engage in datafication of hazards to demonstrate they are performing reliably and proposes the practice of “evidencing reliability” as an important step in constituting reliability. However, datafication of hazards can also lead to skewed understandings of organizational performance and potential success biases.
... That is, our findings show that organizations can (and did) rapidly adjust their communication patterns in anticipation of formal policy requirements or response to local environmental conditions (e.g., the increasing spread of the virus in workplaces.) This degree of responsiveness is surprising when juxtaposed with the literature showing that many organizations can be slow to adapt and change, especially as they become large or are required to respond to rapid political and regulatory change (Woods, 2020;Wright et al., 2004). ...
Article
Full-text available
We explore the impact of COVID-19 on employees’ digital communication patterns through an event study of lockdowns in 16 large metropolitan areas in North America, Europe, and the Middle East. Using de-identified, aggregated meeting and email meta-data from 3,143,270 users, we find, compared to pre-pandemic levels, increases in the number of meetings per person (+12.9 percent) and the number of attendees per meeting (+13.5 percent), but decreases in the average length of meetings (−20.1 percent). Collectively, the net effect is that people spent less time in meetings per day (−11.5 percent) in the post-lockdown period. We also find significant and durable increases in length of the average workday (+8.2 percent, or +48.5 min), along with short-term increases in email activity. These findings provide insight into how formal communication patterns have changed for a large sample of knowledge workers in major cities. We discuss these changes in light of the ongoing challenges faced by organizations and workers struggling to adapt and perform in the face of a global pandemic.
Article
From their common roots in Human Factors Engineering, Human-Centered Design and Cognitive Systems Engineering have drifted into distinct fields over the past three decades, each developing beneficial heuristics, design patterns, and evaluation methods for designing for individuals and teams, respectively. GeoHAI, a clinical decision support application for preventing hospital-acquired infection, has yielded positive results in early usability testing and is expected to test positively in supporting joint activity, which will be measured through the novel implementation of Joint Activity Monitoring . The design and implementation of this application provide a demonstration of the possibilities and necessities to unify the work of Human-Centered Design and Cognitive Systems Engineering when designing technologies that are usable and useful to individuals engaged in joint activity with machine counterparts and other people. We are calling this unified process Joint Activity Design, which supports designing for machines to be good team players.
Article
Full-text available
We use the Covid‐19 crisis to assess how four capability domains that traditionally support corporate performance (agility, innovation, ecosystem play and digitization) can also predict corporate resilience, among global firms. Our results are based on a blend of advanced machine learning techniques that capture the complementarities among capabilities. We confirm that dynamic capabilities boost recovery, but especially when linked with aggressive leadership posture, e.g. rebound is more likely when firms are the main player/orchestrator of their business ecosystems as well as when they invest in disruptive, as opposed to incremental innovations.
Article
Full-text available
The paper introduces the theory of graceful extensibility which expresses fundamental characteristics of the adaptive universe that constrain the search for sustained adaptability. The theory explains the contrast between successful and unsuccessful cases of sustained adaptability for systems that serve human purposes. Sustained adaptability refers to the ability to continue to adapt to changing environments, stakeholders, demands, contexts, and constraints (in effect, to adapt how the system in question adapts). The key new concept at the heart of the theory is graceful extensibility. Graceful extensibility is the opposite of brittleness, where brittleness is a sudden collapse or failure when events push the system up to and beyond its boundaries for handling changing disturbances and variations. As the opposite of brittleness, graceful extensibility is the ability of a system to extend its capacity to adapt when surprise events challenge its boundaries. The theory is presented in the form of a set of 10 proto-theorems derived from just two assumptions-in the adaptive universe, resources are always finite and change continues. The theory contains three subsets of fundamentals: managing the risk of saturation, networks of adaptive units, and outmaneuvering constraints. The theory attempts to provide a formal base and common language that characterizes how complex systems sustain and fail to sustain adaptability as demands change.
Thesis
Full-text available
The increasing complexity of software applications and architectures in Internet services challenge the reasoning of operators tasked with diagnosing and resolving outages and degradations as they arise. Although a growing body of literature focuses on how failures can be prevented through more robust and fault-tolerant design of these systems, a dearth of research explores the cognitive challenges engineers face when those preventative designs fail and they are left to think and react to scenarios that hadn’t been imagined. This study explores what heuristics or rules-of-thumb engineers employ when faced with an outage or degradation scenario in a business-critical Internet service. A case study approach was used, focusing on an actual outage of functionality during a high period of buying activity on a popular online marketplace. Heuristics and other tacit knowledge were identified, and provide a promising avenue for both training and future interface design opportunities. Three diagnostic heuristics were identified as being in use: a) initially look for correlation between the behaviour and any recent changes made in the software, b) upon finding no correlation with a software change, widen the search to any potential contributors imagined, and c) when choosing a diagnostic direction, reduce it by focusing on the one that most easily comes to mind, either because symptoms match those of a difficult-to-diagnose event in the past, or those of any recent events. A fourth heuristic is coordinative in nature: when making changes to software in an effort to mitigate the untoward effects or to resolve the issue completely, rely on peer review of the changes more than automated testing (if at all.)
Article
Full-text available
This chapter provides one input to resilience management strategies in the form of three basic patterns in how adaptive systems fail. The three basic patterns are (1) decompensation – when the system exhausts its capacity to adapt as disturbances / challenges cascade; (2) working at cross-purposes – when roles exhibit behaviour that is locally adaptive but globally mal-adaptive; and (3) getting stuck in outdated behaviours – when the system over-relies on past successes. Illustrations are drawn from urban fire-fighting and crisis management. A working organisation needs to be able to see and avoid or recognise and escape when the system is moving toward one of the three basic adaptive traps. Understanding how adaptive systems can fail requires contrasting diverse perspectives.
Chapter
Full-text available
This chapter provides one input to resilience management strategies in the form of three basic patterns in how adaptive systems fail. The three basic patterns are (1) decompensation – when the system exhausts its capacity to adapt as disturbances / challenges cascade; (2) working at cross-purposes – when roles exhibit behaviour that is locally adaptive but globally mal-adaptive; and (3) getting stuck in outdated behaviours – when the system over-relies on past successes. Illustrations are drawn from urban fire-fighting and crisis management. A working organisation needs to be able to see and avoid or recognise and escape when the system is moving toward one of the three basic adaptive traps. Understanding how adaptive systems can fail requires contrasting diverse perspectives.
Article
Accident investigation and risk assessment have for decades focused on the human factor, particularly 'human error'. Countless books and papers have been written about how to identify, classify, eliminate, prevent and compensate for it. This bias towards the study of performance failures, leads to a neglect of normal or 'error-free' performance and the assumption that as failures and successes have different origins there is little to be gained from studying them together. Erik Hollnagel believes this assumption is false and that safety cannot be attained only by eliminating risks and failures. The ETTO Principle looks at the common trait of people at work to adjust what they do to match the conditions – to what has happened, to what happens, and to what may happen. It proposes that this efficiency-thoroughness trade-off (ETTO) – usually sacrificing thoroughness for efficiency – is normal. While in some cases the adjustments may lead to adverse outcomes, these are due to the very same processes that produce successes, rather than to errors and malfunctions. The ETTO Principle removes the need for specialised theories and models of failure and 'human error' and offers a viable basis for effective and just approaches to both reactive and proactive safety management.