We evaluate properties of the prototype of a strain gauge capable to discriminate different strain components: tension and torsion. It makes use of magnetoelastic effect in new Fe48Co32P14B6 metallic glass. As a sensing material, it surpasses characteristics of commercial Iron-Nickel Metglas® alloy: relative differential permeability of as quenched amorphous ribbon is of about 110000, the saturation induction Bs = 1.45 T, coercive field as low as 4 A/m, Curie temperature above 700 K, and significantly higher thermal stability. Different deformation components were determined through the analyses of the shape of hysteresis B-H loops. Fe-Co-P-B glass strain gauge can simultaneously detect as small tensile strains as 1.9 × 10⁻⁵ and less than 0.13 deg/cm of torsional distortions.