Preprint

Sequential Gating Ensemble Network for Noise Robust Multi-Scale Face Restoration

Authors:
To read the file of this research, you can request a copy directly from the authors.

Abstract

Face restoration from low resolution and noise is important for applications of face analysis recognition. However, most existing face restoration models omit the multiple scale issues in face restoration problem, which is still not well-solved in research area. In this paper, we propose a Sequential Gating Ensemble Network (SGEN) for multi-scale noise robust face restoration issue. To endow the network with multi-scale representation ability, we first employ the principle of ensemble learning for SGEN network architecture designing. The SGEN aggregates multi-level base-encoders and base-decoders into the network, which enables the network to contain multiple scales of receptive field. Instead of combining these base-en/decoders directly with non-sequential operations, the SGEN takes base-en/decoders from different levels as sequential data. Specifically, it is visualized that SGEN learns to sequentially extract high level information from base-encoders in bottom-up manner and restore low level information from base-decoders in top-down manner. Besides, we propose to realize bottom-up and top-down information combination and selection with Sequential Gating Unit (SGU). The SGU sequentially takes information from two different levels as inputs and decides the output based on one active input. Experiment results on benchmark dataset demonstrate that our SGEN is more effective at multi-scale human face restoration with more image details and less noise than state-of-the-art image restoration models. Further utilizing adversarial training scheme, SGEN also produces more visually preferred results than other models under subjective evaluation.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
We study the problem of transferring a sample in one domain to an analog sample in another domain. Given two related domains, S and T, we would like to learn a generative function G that maps an input sample from S to the domain T, such that the output of a given function f, which accepts inputs in either domains, would remain unchanged. Other than the function f, the training data is unsupervised and consist of a set of samples from each domain. The Domain Transfer Network (DTN) we present employs a compound loss function that includes a multiclass GAN loss, an f-constancy component, and a regularizing component that encourages G to map samples from T to themselves. We apply our method to visual domains including digits and face images and demonstrate its ability to generate convincing novel images of previously unseen entities, while preserving their identity.
Article
Full-text available
We present a variety of new architectural features and training procedures that we apply to the generative adversarial networks (GANs) framework. We focus on two applications of GANs: semi-supervised learning, and the generation of images that humans find visually realistic. Unlike most work on generative models, our primary goal is not to train a model that assigns high likelihood to test data, nor do we require the model to be able to learn well without using any labels. Using our new techniques, we achieve state-of-the-art results in semi-supervised classification on MNIST, CIFAR-10 and SVHN. The generated images are of high quality as confirmed by a visual Turing test: our model generates MNIST samples that humans cannot distinguish from real data, and CIFAR-10 samples that yield a human error rate of 21.3%. We also present ImageNet samples with unprecedented resolution and show that our methods enable the model to learn recognizable features of ImageNet classes.
Article
Full-text available
Face image super-resolution has attracted much attention in recent years. Many algorithms have been proposed. Among them, sparse representation (SR)-based face image super-resolution approaches are able to achieve competitive performance. However, these SR-based approaches only perform well under the condition that the input is noiseless or has small noise. When the input is corrupted by large noise, the reconstruction weights (or coefficients) of the input low-resolution (LR) patches using SR-based approaches will be seriously unstable, thus leading to poor reconstruction results. To this end, in this paper, we propose a novel SR-based face image super-resolution approach that incorporates smooth priors to enforce similar training patches having similar sparse coding coefficients. Specifically, we introduce the fused least absolute shrinkage and selection operator-based smooth constraint and locality-based smooth constraint to the least squares representation-based patch representation in order to obtain stable reconstruction weights, especially when the noise level of the input LR image is high. Experiments are carried out on the benchmark FEI face database and CMU+MIT face database. Visual and quantitative comparisons show that the proposed face image super-resolution method yields superior reconstruction results when the input LR face image is contaminated by strong noise.
Article
Full-text available
In this work, we introduce a novel interpretation of residual networks showing they are exponential ensembles. This observation is supported by a large-scale lesion study that demonstrates they behave just like ensembles at test time. Subsequently, we perform an analysis showing these ensembles mostly consist of networks that are each relatively shallow. For example, contrary to our expectations, most of the gradient in a residual network with 110 layers comes from an ensemble of very short networks, i.e., only 10-34 layers deep. This suggests that in addition to describing neural networks in terms of width and depth, there is a third dimension: multiplicity, the size of the implicit ensemble. Ultimately, residual networks do not resolve the vanishing gradient problem by preserving gradient flow throughout the entire depth of the network - rather, they avoid the problem simply by ensembling many short networks together. This insight reveals that depth is still an open research question and invites the exploration of the related notion of multiplicity.
Article
Full-text available
Recently, position-patch based approaches have been proposed to replace the probabilistic graph-based or manifold learning-based models for face hallucination. In order to obtain the optimal weights of face hallucination, these approaches represent one image patch through other patches at the same position of training faces by employing least square estimation or sparse coding. However, they cannot provide unbiased approximations or satisfy rational priors, thus the obtained representation is not satisfactory. In this paper, we propose a simpler yet more effective scheme called Locality-constrained Representation (LcR). Compared with Least Square Representation (LSR) and Sparse Representation (SR), our scheme incorporates a locality constraint into the least square inversion problem to maintain locality and sparsity simultaneously. Our scheme is capable of capturing the non-linear manifold structure of image patch samples while exploiting the sparse property of the redundant data representation. Moreover, when the locality constraint is satisfied, face hallucination is robust to noise, a property that is desirable for video surveillance applications. A statistical analysis of the properties of LcR is given together with experimental results on some public face databases and surveillance images to show the superiority of our proposed scheme over state-of-the-art face hallucination approaches.
Article
Full-text available
This paper presents a new approach to single-image superresolution, based upon sparse signal representation. Research on image statistics suggests that image patches can be well-represented as a sparse linear combination of elements from an appropriately chosen over-complete dictionary. Inspired by this observation, we seek a sparse representation for each patch of the low-resolution input, and then use the coefficients of this representation to generate the high-resolution output. Theoretical results from compressed sensing suggest that under mild conditions, the sparse representation can be correctly recovered from the downsampled signals. By jointly training two dictionaries for the low- and high-resolution image patches, we can enforce the similarity of sparse representations between the low-resolution and high-resolution image patch pair with respect to their own dictionaries. Therefore, the sparse representation of a low-resolution image patch can be applied with the high-resolution image patch dictionary to generate a high-resolution image patch. The learned dictionary pair is a more compact representation of the patch pairs, compared to previous approaches, which simply sample a large amount of image patch pairs , reducing the computational cost substantially. The effectiveness of such a sparsity prior is demonstrated for both general image super-resolution (SR) and the special case of face hallucination. In both cases, our algorithm generates high-resolution images that are competitive or even superior in quality to images produced by other similar SR methods. In addition, the local sparse modeling of our approach is naturally robust to noise, and therefore the proposed algorithm can handle SR with noisy inputs in a more unified framework.
Article
Full-text available
The ability of learning networks to generalize can be greatly enhanced by providing constraints from the task domain. This paper demonstrates how such constraints can be integrated into a backpropagation network through the architecture of the network. This approach has been successfully applied to the recognition of handwritten zip code digits provided by the U.S. Postal Service. A single network learns the entire recognition operation, going from the normalized image of the character to the final classification.
Article
Full-text available
Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.
Article
Full-text available
In matters of great importance that have financial, medical, social, or other implications, we often seek a second opinion before making a decision, sometimes a third, and sometimes many more. In doing so, we weigh the individual opinions, and combine them through some thought process to reach a final decision that is presumably the most informed one. The process of consulting "several experts" before making a final decision is perhaps second nature to us; yet, the extensive benefits of such a process in automated decision making applications have only recently been discovered by computational intelligence community. Also known under various other names, such as multiple classifier systems, committee of classifiers, or mixture of experts, ensemble based systems have shown to produce favorable results compared to those of single-expert systems for a broad range of applications and under a variety of scenarios. Design, implementation and application of such systems are the main topics of this article. Specifically, this paper reviews conditions under which ensemble based systems may be more beneficial than their single classifier counterparts, algorithms for generating individual components of the ensemble systems, and various procedures through which the individual classifiers can be combined. We discuss popular ensemble based algorithms, such as bagging, boosting, AdaBoost, stacked generalization, and hierarchical mixture of experts; as well as commonly used combination rules, including algebraic combination of outputs, voting based techniques, behavior knowledge space, and decision templates. Finally, we look at current and future research directions for novel applications of ensemble systems. Such applications include incremental learning, data fusion, feature selection, learning with missing features, confidence estimation, and error correcting output codes; all areas in which ensemble systems have shown great promise
Article
Full-text available
We present a learning-based method to super-resolve face images using a kernel principal component analysis-based prior model. A prior probability is formulated based on the energy lying outside the span of principal components identified in a higher-dimensional feature space. This is used to regularize the reconstruction of the high-resolution image. We demonstrate with experiments that including higher-order correlations results in significant improvements
Article
Full-text available
In video surveillance, the faces of interest are often of small size. Image resolution is an important factor affecting face recognition by human and computer. In this paper, we propose a new face hallucination method using eigentransformation. Different from most of the proposed methods based on probabilistic models, this method views hallucination as a transformation between different image styles. We use Principal Component Analysis (PCA) to fit the input face image as a linear combination of the low-resolution face images in the training set. The high-resolution image is rendered by replacing the low-resolution training images with high-resolution ones, while retaining the same combination coefficients. Experiments show that the hallucinated face images are not only very helpful for recognition by humans, but also make the automatic recognition procedure easier, since they emphasize the face difference by adding more high-frequency details.
Article
We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.
Conference Paper
We propose a deep learning method for single image super-resolution (SR). Our method directly learns an end-to-end mapping between the low/high-resolution images. The mapping is represented as a deep convolutional neural network (CNN) that takes the low-resolution image as the input and outputs the high-resolution one. We further show that traditional sparse-coding-based SR methods can also be viewed as a deep convolutional network. But unlike traditional methods that handle each component separately, our method jointly optimizes all layers.
Article
The quality of training data is very important for learning-based facial image super-resolution (SR). The more similarity between training data and testing input is, the better SR results we can have. To generate a better training set of low/high resolution training facial images for a particular testing input, this paper is the first work that proposes expanding the training data for improving facial image SR. To this end, observing that facial images are highly structured, we propose three constraints, i.e., the local structure constraint, the correspondence constraint and the similarity constraint, to generate new training data, where local patches are expanded with different expansion parameters. The expanded training data can be used for both patch-based facial SR methods and global facial SR methods. Extensive testings on benchmark databases and real world images validate the effectiveness of training data expansion on improving the SR quality.
Conference Paper
We consider image transformation problems, where an input image is transformed into an output image. Recent methods for such problems typically train feed-forward convolutional neural networks using a per-pixel loss between the output and ground-truth images. Parallel work has shown that high-quality images can be generated by defining and optimizing perceptual loss functions based on high-level features extracted from pretrained networks. We combine the benefits of both approaches, and propose the use of perceptual loss functions for training feed-forward networks for image transformation tasks. We show results on image style transfer, where a feed-forward network is trained to solve the optimization problem proposed by Gatys et al. in real-time. Compared to the optimization-based method, our network gives similar qualitative results but is three orders of magnitude faster. We also experiment with single-image super-resolution, where replacing a per-pixel loss with a perceptual loss gives visually pleasing results.
Conference Paper
We present an image-conditional image generation model. The model transfers an input domain to a target domain in semantic level, and generates the target image in pixel level. To generate realistic target images, we employ the real/fake-discriminator as in Generative Adversarial Nets [6], but also introduce a novel domain-discriminator to make the generated image relevant to the input image. We verify our model through a challenging task of generating a piece of clothing from an input image of a dressed person. We present a high quality clothing dataset containing the two domains, and succeed in demonstrating decent results.
Conference Paper
Conventional face super-resolution methods, also known as face hallucination, are limited up to 2 ⁣ ⁣4×2 \! \sim \! 4\times scaling factors where 4164 \sim 16 additional pixels are estimated for each given pixel. Besides, they become very fragile when the input low-resolution image size is too small that only little information is available in the input image. To address these shortcomings, we present a discriminative generative network that can ultra-resolve a very low resolution face image of size 16×1616 \times 16 pixels to its 8×8\times larger version by reconstructing 64 pixels from a single pixel. We introduce a pixel-wise 2\ell _2 regularization term to the generative model and exploit the feedback of the discriminative network to make the upsampled face images more similar to real ones. In our framework, the discriminative network learns the essential constituent parts of the faces and the generative network blends these parts in the most accurate fashion to the input image. Since only frontal and ordinary aligned images are used in training, our method can ultra-resolve a wide range of very low-resolution images directly regardless of pose and facial expression variations. Our extensive experimental evaluations demonstrate that the presented ultra-resolution by discriminative generative networks (UR-DGN) achieves more appealing results than the state-of-the-art.
Article
Image denoising is a long-standing problem in computer vision and image processing, as well as a test bed for low-level image modeling algorithms. In this paper, we propose a very deep encoding-decoding framework for image denoising. Instead of using image priors, the proposed framework learns end-to-end fully convolutional mappings from noisy images to the clean ones. The network is composed of multiple layers of convolution and de-convolution operators. With the observation that deeper networks improve denoising performance, we propose to use significantly deeper networks than those employed previously for low-level image processing tasks such as denoising. We propose to symmetrically link convolutional and de-convolutional layers with skip-layer connections, with which the training converges much faster and attains a higher-quality local optimum. From the image processing point of view, those symmetric connections help preserve image details.
Article
In recent years, supervised learning with convolutional networks (CNNs) has seen huge adoption in computer vision applications. Comparatively, unsupervised learning with CNNs has received less attention. In this work we hope to help bridge the gap between the success of CNNs for supervised learning and unsupervised learning. We introduce a class of CNNs called deep convolutional generative adversarial networks (DCGANs), that have certain architectural constraints, and demonstrate that they are a strong candidate for unsupervised learning. Training on various image datasets, we show convincing evidence that our deep convolutional adversarial pair learns a hierarchy of representations from object parts to scenes in both the generator and discriminator. Additionally, we use the learned features for novel tasks - demonstrating their applicability as general image representations.
Article
In this paper we introduce a generative parametric model capable of producing high quality samples of natural images. Our approach uses a cascade of convolutional networks within a Laplacian pyramid framework to generate images in a coarse-to-fine fashion. At each level of the pyramid, a separate generative convnet model is trained using the Generative Adversarial Nets (GAN) approach (Goodfellow et al.). Samples drawn from our model are of significantly higher quality than alternate approaches. In a quantitative assessment by human evaluators, our CIFAR10 samples were mistaken for real images around 40% of the time, compared to 10% for samples drawn from a GAN baseline model. We also show samples from models trained on the higher resolution images of the LSUN scene dataset.
Article
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions. The method is straightforward to implement and is based an adaptive estimates of lower-order moments of the gradients. The method is computationally efficient, has little memory requirements and is well suited for problems that are large in terms of data and/or parameters. The method is also ap- propriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The method exhibits invariance to diagonal rescaling of the gradients by adapting to the geometry of the objective function. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. We demonstrate that Adam works well in practice when experimentally compared to other stochastic optimization methods.
Conference Paper
Neural networks have become increasingly popular for the task of language modeling. Whereas feed-forward networks only exploit a fixed context length to predict the next word of a sequence, conceptually, standard recurrent neural networks can take into account all of the predecessor words. On the other hand, it is well known that recurrent networks are difficult to train and therefore are unlikely to show the full potential of recurrent models. These problems are addressed by a the Long Short-Term Memory neural network architecture. In this work, we analyze this type of network on an English and a large French language modeling task. Experiments show improvements of about 8 % relative in perplexity over standard recurrent neural network LMs. In addition, we gain considerable improvements in WER on top of a state-of-the-art speech recognition system. Index Terms: language modeling, recurrent neural networks, LSTM neural networks
Article
Deep Neural Networks (DNNs) are powerful models that have achieved excellent performance on difficult learning tasks. Although DNNs work well whenever large labeled training sets are available, they cannot be used to map sequences to sequences. In this paper, we present a general end-to-end approach to sequence learning that makes minimal assumptions on the sequence structure. Our method uses a multilayered Long Short-Term Memory (LSTM) to map the input sequence to a vector of a fixed dimensionality, and then another deep LSTM to decode the target sequence from the vector. Our main result is that on an English to French translation task from the WMT-14 dataset, the translations produced by the LSTM achieve a BLEU score of 34.7 on the entire test set, where the LSTM's BLEU score was penalized on out-of-vocabulary words. Additionally, the LSTM did not have difficulty on long sentences. For comparison, a strong phrase-based SMT system achieves a BLEU score of 33.3 on the same dataset. When we used the LSTM to rerank the 1000 hypotheses produced by the aforementioned SMT system, its BLEU score increases to 36.5, which beats the previous state of the art. The LSTM also learned sensible phrase and sentence representations that are sensitive to word order and are relatively invariant to the active and the passive voice. Finally, we found that reversing the order of the words in all source sentences (but not target sentences) improved the LSTM's performance markedly, because doing so introduced many short term dependencies between the source and the target sentence which made the optimization problem easier.
Article
Sparse representation-based face hallucination approaches proposed so far use fixed ell1ell_{1} norm penalty to capture the sparse nature of face images, and thus hardly adapt readily to the statistical variability of underlying images. Additionally, they ignore the influence of spatial distances between the test image and training basis images on optimal reconstruction coefficients. Consequently, they cannot offer a satisfactory performance in practical face hallucination applications. In this paper, we propose a weighted adaptive sparse regularization (WASR) method to promote accuracy, stability and robustness for face hallucination reconstruction, in which a distance-inducing weighted ellqell_{q} norm penalty is imposed on the solution. With the adjustment to shrinkage parameter q , the weighted ellqell_{q} penalty function enables elastic description ability in the sparse domain, leading to more conservative sparsity in an ascending order of q . In particular, WASR with an optimal q>1q>1 can reasonably represent the less sparse nature of noisy images and thus remarkably boosts noise robust performance in face hallucination. Various experimental results on standard face database as well as real-world images show that our proposed method outperforms state-of-the-art methods in terms of both objective metrics and visual quality.
Article
Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a Structural Similarity Index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000.
Article
A two-phase face hallucination approach is proposed in this paper to infer high-resolution face image from the low-resolution observation based on a set of training image pairs. The proposed locality preserving hallucination (LPH) algorithm combines locality preserving projection (LPP) and radial basis function (RBF) regression together to hallucinate the global high-resolution face. Furthermore, in order to compensate the inferred global face with detailed inartificial facial features, the neighbor reconstruction based face residue hallucination is used. Compared with existing approaches, the proposed LPH algorithm can generate global face more similar to the ground truth face efficiently, moreover, the patch structure and search strategy carefully designed for the neighbor reconstruction algorithm greatly reduce the computational complexity without diminishing the quality of high-resolution face detail. The details of synthetic high-resolution face are further improved by a global linear smoother. Experiments indicate that our approach can synthesize distinct high-resolution faces with various facial appearances such as facial expressions, eyeglasses efficiently.
Conference Paper
Restricted Boltzmann machines were developed using binary stochastic hidden units. These can be generalized by replacing each binary unit by an infinite number of copies that all have the same weights but have progressively more negative biases. The learning and inference rules for these “Stepped Sigmoid Units ” are unchanged. They can be approximated efficiently by noisy, rectified linear units. Compared with binary units, these units learn features that are better for object recognition on the NORB dataset and face verification on the Labeled Faces in the Wild dataset. Unlike binary units, rectified linear units preserve information about relative intensities as information travels through multiple layers of feature detectors. 1.
Article
A novel face hallucination method is proposed in this paper for the reconstruction of a high-resolution face image from a low-resolution observation based on a set of high- and low-resolution training image pairs. Different from most of the established methods based on probabilistic or manifold learning models, the proposed method hallucinates the high-resolution image patch using the same position image patches of each training image. The optimal weights of the training image position-patches are estimated and the hallucinated patches are reconstructed using the same weights. The final high-resolution facial image is formed by integrating the hallucinated patches. The necessity of two-step framework or residue compensation and the differences between hallucination based on patch and global image are discussed. Experiments show that the proposed method without residue compensation generates higher-quality images and costs less computational time than some recent face image super-resolution (hallucination) techniques.
Article
Super-resolution reconstruction of face image is the problem of reconstructing a high resolution face image from one or more low resolution face images. Assuming that high and low resolution images share similar intrinsic geometries, various recent super-resolution methods reconstruct high resolution images based on a weights determined from nearest neighbors in the local embedding of low resolution images. These methods suffer disadvantages from the finite number of samples and the nature of manifold learning techniques, and hence yield unrealistic reconstructed images.To address the problem, we apply canonical correlation analysis (CCA), which maximizes the correlation between the local neighbor relationships of high and low resolution images. We use it separately for reconstruction of global face appearance, and facial details. Experiments using a collection of frontal human faces show that the proposed algorithm improves reconstruction quality over existing state-of-the-art super-resolution algorithms, both visually, and using a quantitative peak signal-to-noise ratio assessment.
Article
Most popular learning-based super-resolution (SR) approaches suffer from complicated learning structures and highly intensive computation, especially in resource-limited ap- plications. We propose a novel frontal facial image SR approach by using multiple local linear transformations to approximate the nonlinear mapping between low-resolution (LR) and high- resolution (HR) images in the pixel domain. We adopt Procrustes analysis to obtain orthogonal matrices representing the learned linear transformations, which cannot only well capture appear- ance variations in facial patches but also greatly simplify the transformation computation to matrices manipulation. An HR image can be directly reconstructed from a single LR image without need of the large training data, thus avoiding the use of a large redundant LR and HR patch database. Experimental results show that our approach is computationally fast as well the SR quality compares favorably with the state-of-the-art ap- proaches from both subjective and objective evaluations. Besides, our approach is insensitive to the size of training data and robust to a wide range of facial variations like occlusions. More importantly, the proposed method is also much more effective than other comparative methods to reconstruct real-world images captured from the Internet and webcams. Index Terms—Facial image super-resolution, local linear trans- formation, resource-limited application.
Article
High-dimensional data can be converted to low-dimensional codes by training a multilayer neural network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent can be used for fine-tuning the weights in such "autoencoder" networks, but this works well only if the initial weights are close to a good solution. We describe an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data.
Article
This book, which is wholly devoted to the subject of model combination, is divided into ten chapters. In addition to the first two introductory chapters, the book covers some of the following topics: multiple classifier systems; combination methods when the base classifier outputs are 0/1; methods when the outputs are continuous, e.g., posterior probabilities; methods for classifier selection; bagging and boosting; the theory of fixed combination rules; and the concept of diversity. Overall, it is a very well-written monograph. It explains and analyzes different approaches comparatively so that the reader can see how they are similar and how they differ. The literature survey is extensive. The MATLAB code for many methods is given in chapter appendices allowing readers to play with the explained methods or apply them quickly to their own data. The book is a must-read for researchers and practitioners alike.
Faster r-cnn: Towards real-time object detection with region proposal networks
  • Kaiming Shaoqing Ren
  • Ross He
  • Jian Girshick
  • Sun
Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems, pages 91-99, 2015.
Photo-realistic single image superresolution using a generative adversarial network
  • Christian Ledig
  • Lucas Theis
  • Ferenc Huszár
  • Jose Caballero
  • Andrew Cunningham
  • Alejandro Acosta
  • Alykhan Andrew P Aitken
  • Johannes Tejani
  • Zehan Totz
  • Wang
Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew P Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image superresolution using a generative adversarial network. In CVPR, volume 2, page 4, 2017.
Rectifier nonlinearities improve neural network acoustic models
  • L Andrew
  • Maas
  • Y Awni
  • Andrew Y Hannun
  • Ng
Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network acoustic models. In Proc. ICML, volume 30, 2013.
Deep learning face attributes in the wild
  • Ziwei Liu
  • Ping Luo
  • Xiaogang Wang
  • Xiaoou Tang
Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In Proceedings of International Conference on Computer Vision (ICCV), 2015.
  • Min Lin
  • Qiang Chen
  • Shuicheng Yan
Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint arXiv:1312.4400, 2013.