ArticlePDF Available

Abstract and Figures

This paper presents an updated checklist of the butterflies of Europe, together with their original name combinations, and their occurrence status in each European country. According to this checklist, 496 species of the superfamily Papilionoidea occur in Europe. Changes in comparison with the last version (2.6.2) of Fauna Europaea are discussed. Compared to that version, 16 species are new additions, either due to cryptic species most of which have been discovered by molecular methods (13 cases) or due to discoveries of Asian species on the eastern border of the European territory in the Ural mountains (three cases). On the other hand, nine species had to be removed from the list, because they either do not occur in Europe or lost their species status due to new evidence. In addition, three species names had to be changed and 30 species changed their combination due to new evidence on phylogenetic relationships. Furthermore, minor corrections were applied to some authors’ names and years of publication. Finally, the name Polyommatus ottomanus Lefèbvre, 1831, which is threatened by its senior synonym Lycaena legeri Freyer, 1830, is declared a nomen protectum , thereby conserving its name in the current combination Lycaena ottomana.
Content may be subject to copyright.
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)9
An updated checklist of the European Butterflies
(Lepidoptera, Papilionoidea)
Martin Wiemers1, Emilio Balletto2, Vlad Dincă3, Zdenek FaltynekFric4,
GerardoLamas5, Vladimir Lukhtanov6, Miguel L. Munguira7,
ChrisA.M.vanSwaay8, Roger Vila9, Albert Vliegenthart8, Niklas Wahlberg10,
Rudi Verovnik11
1 UFZ – Helmholtz Centre for Environmental Research, Department of Community Ecology, eodor-Lieser-
Str. 4, 06120 Halle, Germany 2 Turin University, Department of Life Sciences and Systems Biology, via Acca-
demia Albertina 13, I-10123 Torino, Italy 3 Department of Ecology and Genetics, PO Box 3000, University of
Oulu, 90014 Oulu, Finland 4 Biology Centre CAS, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic
5 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Apartado 14-0434, Lima-14,
Peru 6 Department of Karyosystematics, Zoological Institute of Russian Academy of Sciences, Universitetskaya
nab. 1, St. Petersburg 199034, Russia 7 Departamento de Biología, Universidad Autónoma de Madrid, c/
Darwin 2, 28049 Madrid, Spain 8 Dutch Buttery Conservation, PO Box 506, 6700 AM Wageningen,
e Netherlands 9 Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la
Barceloneta 37, 08003 Barcelona, Spain 10 Lund University, Department of Biology, Sölvegatan 37, 223 62
Lund, Sweden 11University of Ljubljana, Biotechnical Faculty, Department of Biology, Jamnikarjeva 111,
1000 Ljubljana, Slovenia
Corresponding author: Martin Wiemers (martin.wiemers@ufz.de)
Academic editor: omas Simonsen|Received 30 July 2018|Accepted 19 November 2018|Published 31 December 2018
http://zoobank.org/FE8C38B5-DFAB-4A83-9FE3-6F2D7916D242
Citation: Wiemers M, Balletto E, Dincă V, Fric ZF, Lamas G, Lukhtanov V, Munguira ML, van Swaay CAM, VilaR,
Vliegenthart A, Wahlberg N, Verovnik R (2018) An updated checklist of the European Butteries (Lepidoptera,
Papilionoidea). ZooKeys 81: 9–45. https://doi.org/10.3897/zookeys.811.28712
Abstract
is paper presents an updated checklist of the butteries of Europe, together with their original name
combinations, and their occurrence status in each European country. According to this checklist, 496 spe-
cies of the superfamily Papilionoidea occur in Europe. Changes in comparison with the last version (2.6.2)
of Fauna Europaea are discussed. Compared to that version, 16 species are new additions, either due to
cryptic species most of which have been discovered by molecular methods (13 cases) or due to discoveries
of Asian species on the eastern border of the European territory in the Ural mountains (three cases). On
ZooKeys 811: 9–45 (2018)
doi: 10.3897/zookeys.811.28712
http://zookeys.pensoft.net
Copyright Martin Wiemers et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC
BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
CHECKLIST
Launched to accelerate biodiversity research
A peer-reviewed open-access journal
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
10
the other hand, nine species had to be removed from the list, because they either do not occur in Europe
or lost their species status due to new evidence. In addition, three species names had to be changed and
30 species changed their combination due to new evidence on phylogenetic relationships. Furthermore,
minor corrections were applied to some authors’ names and years of publication. Finally, the name Poly-
ommatus ottomanus Lefèbvre, 1831, which is threatened by its senior synonym Lycaena legeri Freyer, 1830,
is declared a nomen protectum, thereby conserving its name in the current combination Lycaena ottomana.
Keywords
checklist, butteries, Europe
Introduction
Butteries constitute one of the best-known groups of insects and have become impor-
tant models to study speciation, community ecology, biogeography, climate change, and
insect-plant interactions. With close to 19,000 described species [18,768 presumably
valid species recorded by 2011; that gure is higher today, i.e., ca. 19,000 species], they
represent about 12% of currently known species of Lepidoptera (Van Nieukerken et al.
2011). According to current molecular systematics (Mutanen et al. 2010; Heikkilä et al.
2012; Espeland et al. 2018), the single buttery superfamily Papilionoidea comprises 7
families (Table 1, Fig. 1) and includes the Hesperiidae (skippers) and Hedylidae (moth
butteries). e skippers have previously been thought to represent the sister group to
the butteries and were often placed in a separate superfamily Hesperioidea, but the
molecular results indicate that the family Papilionidae is the sister to the remaining but-
teries, which also include the small Neotropical family Hedylidae with only 36 spe-
cies. Apart from the latter family, all buttery families are represented on all continents
except Antarctica, although most species of Riodinidae are conned to the Neotropical
Region. Buttery diversity is particularly high in the tropics, especially the Neotropics,
and only 496 species are found in Europe according to the present checklist.
e taxonomy of butteries started in 1758 with the Swedish naturalist Carl von
Linné (Latinised to Carolus Linnaeus), who introduced binominal nomenclature and
described the highest number of European buttery species, all of them in a single ge-
nus Papilio. Seventy-one of them currently still hold the names given by Linné, albeit
mostly in dierent genera. Other authors who described many new species during the
18th century were the German entomologists Eugen Johann Christoph Esper and Jacob
Hübner, the Danish entomologist Johann Christian Fabricius, as well as the Austrian
lepidopterist Johann Ignaz Schiermüller (the latter in an anonymous publication
usually referred to as [Denis & Schiermüller], but see Kudrna and Belicek (2005),
Sattler and Tremewan (2009) and Kudrna (2015) for a controversial debate on this
topic). By 1820, half of the European buttery fauna had been validly described, and
species were placed in a growing number of genera (starting with Hesperia Fabricius,
1793 as the second-named genus for the skippers). During the 19th century, more
than 60 European lepidopterists continued the inventory of Europe’s buttery fauna,
and the rst overview of Palearctic butteries (and other Lepidoptera) was published
by Seitz (1907–1909). At that time, already 90% of Europe’s buttery species had
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)11
Table 1. Family systematics of butteries.
Superfamily Papilionoidea Latreille, [1802] Genera* Species*
Family Papilionidae Latreille, [1802] 32 570
Family Hedylidae Guenée, [1858] 1 36
Family Hesperiidae Latreille, 1809 570 4113
Family Pieridae Swainson, 1820 91 1164
Family Riodinidae Grote, 1895 146 1532
Family Lycaenidae [Leach], [1815] 416 5201
Family Nymphalidae Ranesque, 1815 559 6152
* global number of genera and species according to van Nieukerken et al. (2011)
Figure 1. Global species richness of buttery families.
been described and the rate of newly discovered species slowed down (Fig. 2). Another
milestone for buttery research in Europe was the eld guide of Higgins and Riley
(1970), which included distribution maps of Western Palearctic butteries, and led to
a growing interest in butteries across Europe. is eld guide was also translated into
other languages (e.g., German, French, and Spanish) and updated several times (most
recently by Tolman and Lewington 2008). However, despite their somehow mislead-
ing titles, these guides excluded large parts of eastern Europe (i.e., Belarus, Ukraine,
Moldova and most of Russia (apart from Kaliningrad enclave) and therefore all the
species from the Ural mountains). e proliferation of buttery eld guides by various
authors across Europe also led to an increasing confusion of buttery nomenclature
due to dierent taxonomic concepts. e rst step to standardize European buttery
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
12
Figure 2. Cumulative number of described European buttery species per year according to current
taxonomy.
taxonomy and the precursor of our list was the book (and accompanying CD) by
Karsholt and Razowski (1996). It constituted a country-level checklist of all European
Lepidoptera, but excluding the Mid-Atlantic islands (i.e., Canary Islands, Madeira,
and Azores) and contained 440 buttery species. is book was also the basis for the
list of Lepidoptera in the online database Fauna Europaea, a project under the auspices
of the European Commission, which started in 2000 (De Jong et al. 2014) and aimed
to provide checklists for all European animal species. is database, which went online
on 16 December 2004, also included Cyprus and the Mid-Atlantic islands, which are
hotspots of narrow endemics. At about the same time, the rst distribution atlas of
all European butteries was published by Kudrna (2002), and nally a buttery eld
guide appeared which covered most of the West Palearctic region including all of Eu-
rope (Tshikolovets 2011).
e last comprehensive update of the buttery checklist in Fauna Europaea hap-
pened 7 years ago (Karsholt and Nieukerken 2011), and the checklist presented here
was rst developed as an update to the online database. Unfortunately, funding for
Fauna Europaea was discontinued after the initial 4-years funding period and the out-
dated Fauna Europaea website was only saved due to the commitment of the Natural
History Museum in Berlin that set up a new one. However, its functionality is still very
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)13
limited and the update process severely hampered due to shortage of funding. For this
reason, we decided to publish this updated distributional checklist in order to address
the need of the lepidopterological community and the public at large. It intends to cov-
er the signicant progress in buttery systematics and faunistics, which was brought
about in particular by the advancement of molecular methods.
Materials and methods
is updated checklist is based on the last version of Fauna Europaea (2.6.2). is ver-
sion is almost identical to the most recent Lepidoptera update in version 2.4 (online on
28 January 2011) but includes some emendations by the sta of the Fauna Europaea
oce in Berlin that had not been approved by the Lepidoptera group coordinators
(Erik van Nieukerken and Ole Karsholt). e geographic area covered remains the
same: It includes the European mainland to the eastern slopes of the Ural mountains,
plus the Macaronesian islands (excluding the Cape Verde Islands) and Cyprus, with
the Caucasus and western Kazakhstan excluded (Fig. 3). Included are the British Isles
and all Mediterranean islands under European administration, as well as the Greek o-
shore islands along the Turkish coastline. Iceland has no native buttery species. Distri-
butional information is based on political units at country level as in Fauna Europaea,
following the ISO-3166 code. However, with the exception of the Macaronesian Is-
lands, the additional regional splits of several countries in Fauna Europaea (mainly for
Russia and some island territories) were not adopted.
e following categories are used to explain the distribution:
A Absent (never recorded in the respective country or island group or only
doubtful records)
P Present (native or well-established populations, including alien species such as
the South African Cacyreus marshalli)
P? Possibly present (recorded but continued presence doubtful; usually these are
species with range limits near the border of the respective country)
M Regular migrant (species which has no permanent populations, e.g., because
it cannot overwinter, but is observed almost every year; included are extinct
species if they are still observed as regular migrants)
I Irregular vagrant (irregular vagrants or introductions which do not reproduce
or only irregularly, including temporary or recently established populations)
Ex Regionally extinct (native species which have become extinct, even though
vagrants might be seen occasionally)
It should be noted that the “Extinct” category is used in a rather strict sense, in line
with the IUCN Guidelines which demand that exhaustive surveys have been undertaken
to prove that ‘there is no reasonable doubt that the last individual has died’. In some cases,
this has led to species being recorded as “Present”, even though they are most probably
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
14
Figure 3. Boundaries of Europe according to Fauna Europaea (from de Jong et al. 2014).
extinct, e.g., Colias myrmidone in Austria (no proof for more than 25 years; H. Höttinger,
pers. comm.). In addition, some of the national Red List Assessments are already out-
dated, even though attempts have been made to update those. An example for an update
is the status of the Madeiran endemic Pieris wollastoni, whose last reliable record is from
1986. It was classied as “Critically Endangered (Possibly Extinct)” in its last Red List
assessment (Van Swaay et al. 2010), but is now classied as “Extinct”, because extensive
surveys in recent years have failed to prove its continued presence. is is the only Euro-
pean buttery species which is known to have become globally extinct in historical times.
According to the concept of Fauna Europaea, changes were only carried out if sup-
ported by newly published research. is restriction helps to stabilize nomenclature,
but can also lead to inconsistent results, e.g., due to the retention of some weakly dif-
ferentiated taxa, whose species status is questionable, but for which no new published
evidence is available. Potential examples in our list are Lysandra caelestissima (Verity,
1921), Polyommatus nephohiptamenos (Brown & Coutsis, 1978), Hipparchia neapol-
itana (Stauder, 1921), Hipparchia sbordonii Kudrna, 1984, Satyrus virbius Herrich-
Schäer, 1844, and Pieris balcana Lorković, 1969.
e main criterion whether to include or exclude a species taxon based on new
(and possibly contradictory) publications was evidence for species status from at least
two character sets, e.g., mitochondrial as well as nuclear DNA, or dierences in mor-
phology and karyology.
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)15
Nomenclatural changes are annotated with reference to the sources and strictly
follow the last (fourth) edition of the International Code of Zoological Nomenclature
(ICZN 1999). is includes the controversial article 34.2, which mandates that »the
ending of a Latin or Latinised adjectival or participial species-group name must agree
in gender with the generic name with which it is at any time combined«. Due to its lin-
guistic complexity, this rule has led to many wrong or ambiguous decisions and causes
additional instability of nomenclature each time a species name is transferred to anoth-
er genus. erefore a majority of lepidopterists, including the group editors of Fauna
Europaea, have decided to ignore this rule and use the original spelling instead (de Jong
et al. 2014). Diculties with the gender agreement rule in Lepidoptera are as old as
binominal nomenclature, because there is not even an agreement about the gender of
the genus Papilio. erefore Carl von Linné used nouns as species names and avoided
the use of adjectives (Welter-Schultes 2013). However, for easy reference to Fauna Eu-
ropaea and other databases, we also list the original ending and compiled a comprehen-
sive list of original combinations, using various sources such as the LepIndex (Beccaloni
et al. 2003), PESI (2018), FUNET (Savela 2018) and Tshikolovets (2011). In case of
doubts or discrepancies, the original publications were checked as well.
In a few cases, necessary changes due to new nomenclatural ndings have not
been carried out yet, because they would result in the replacement of a well-established
name by an (almost) unknown synonym. Such cases should be referred to the Interna-
tional Commission on Zoological Nomenclature for ruling, and changes implemented
only after a decision has been made by the Commission. One such case is the well-
established name Parnassius phoebus, which has turned out to represent another Asian
Parnassius species which is currently known as Parnassius ariadne (Lederer, 1853) (see
Hanus and èye 2010) and would thus need to be replaced. After the rst attempt to
preserve this name (Balletto and Bonelli 2014) failed (ICZN 2017), a second proposal
has recently been submitted to the Commission (Lukhtanov et al. in press). According
to article 82.1 of the code, prevailing usage has to be maintained until the case has been
decided by the Commission.
An exceptional case which would cause a large number of changes in the names
of Lepidoptera are many of the names published by [Denis & Schiermüller] (1775)
which are lacking a sucient description, but have already been used for a very long
time. In accordance with the opinion of the Fauna Europaea editorial team, we have
not replaced these names. e eect on buttery taxonomy would be rather marginal,
however, because only one buttery species would have to change its name (Nymphalis
vaualbum to Nymphalis l-album (Esper, 1781)) and ve others only their authorship,
see Kudrna and Belicek (2005). We are looking forward to a decision of the ICZN to
solve this matter (see Kudrna 2015).
Another case concerns the genus name Muschampia Tutt, 1906 (type species:
Papilio proto Ochsenheimer, 1808; currently known as Muschampia proto (Ochsen-
heimer, 1808)), which appears to be a subjective synonym of the genus name Sloperia
Tutt, 1906 (type species: Hesperia poggei Lederer, 1858; currently known as Muscham-
pia poggei (Lederer, 1858)). Both genus names were published in the same paper and
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
16
Hemming (1967) was the rst to note that Sloperia should have precedence over Mus-
champia, because Warren (1926) as the rst reviser chose Sloperia. However, the name
Muschampia has remained in prevailing use during the last 90 years and, in addition,
there is evidence from molecular data (Wiemers et al. unpublished) that the current
classication of the species presently placed in the genera Carcharodus and Muschampia
needs to be substantially revised. However, molecular data are still missing for most of
the (mainly Asian) species currently placed in Muschampia, and therefore we suggest
to postpone a rearrangement until better data become available.
Finally, one of us (GL) discovered that Polyommatus ottomanus Lefèbvre was pub-
lished in 1831 (and not in 1830) and therefore has to be regarded as a subjective junior
synonym of Lycaena legeri Freyer, 1830. is would mean that the well-established name
of the species currently known as Lycaena ottomana (Lefèbvre, [1831]) would need to
be changed to a name which has not been used for this species during the past century.
However, according to article 23.9.1 of the Code, the prevailing usage must be main-
tained when the senior synonym (i.e., legeri Freyer) has not been used as a valid name af-
ter 1899 (article 23.9.1.1), and the junior synonym has been used, as its presumed valid
name, in at least 25 works, published by at least ten authors during the last 50 years and
encompassing a span of not less than ten years (article 23.9.1.2). In our opinion, the con-
dition of article 23.9.1.1 applies in this case, and evidence that the conditions of article
23.9.1.2 are met, are given in Appendix 1 herein. erefore, we regard the name Lycaena
legeri Freyer as invalid and qualied as a nomen oblitum and declare the name Lycaena
ottomana Lefèbvre as valid and qualied as a nomen protectum, which has precedence over
the former as long as both names are thought to represent subjective synonyms.
Results and discussion
e updated species list of European butteries includes 496 species, which belong to
110 genera in 21 subfamilies and six families (Tables 2 and 4; Fig. 4). A list of main
authors with some additional data is given in Table 5. An electronic version of the
checklist that includes a country-based distributional checklist is found in Suppl. ma-
terial 1, Suppl. material 2.
Compared to the last version 2.6.2 of Fauna Europaea, nine species have been
excluded from the list (Table 6). On the other hand, 15 species were added to the
list. Another recently discovered species, Spialia rosae Hernández-Roldán, Dapporto,
Dincă, Vicente & Vila, 2016, has already been added to the Fauna Europaea database.
Apart from the changes due to the gender agreement provision (Table 7), only
three species names had to be changed due to new nomenclatural evidence: Pyrgus
bellieri (Oberthür, 1910) to Pyrgus foulquieri (a name which had already been used in
previous eld guides), Proterebia afra (Fabricius, 1787) to Proterebia phegea (hopefully
solving a longstanding controversy, see e.g., Jutzeler and Lafranchis 2011), and the
mandatory change of Pseudochazara hippolyte (Esper, 1783) to Pseudochazara mercurius
due to primary homonomy.
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)17
Table 2. Updated checklist of the butteries of Europe.
Taxon Original combination Notes
Papilionidae
Papilioninae
Iphiclides podalirius (Linnaeus, 1758) Papilio podalirius
Iphiclides feisthamelii (Duponchel, 1832) Papilio feisthamelii 1
Papilio alexanor Esper, 1800 Papilio alexanor
Papilio machaon Linnaeus, 1758 Papilio machaon
Papilio hospiton Gené, 1839 Papilio hospiton 2
Parnassiinae
Parnassius mnemosyne (Linnaeus, 1758) Papilio mnemosyne
Parnassius phoebus (Fabricius, 1793) Papilio phoebus
Parnassius apollo (Linnaeus, 1758) Papilio apollo
Archon apollinus (Herbst, 1798) Papilio apollinus
Zerynthia cerisy (Godart, [1824]) ais cerisy
Zerynthia cretica (Rebel, 1904) ais cerisyi cretica
Zerynthia caucasica (Lederer, 1864) ais cerisyi caucasica
Zerynthia rumina (Linnaeus, 1758) Papilio rumina
Zerynthia polyxena ([Denis & Schiermüller], 1775) Papilio polyxena
Zerynthia cassandra (Geyer, [1828]) Papilio cassandra 3
Hesperiidae
Heteropterinae
Heteropterus morpheus (Pallas, 1771) Papilio morpheus
Carterocephalus silvicola (Meigen, 1829) Hesperia silvicola
Carterocephalus palaemon (Pallas, 1771) Papilio palaemon
Hesperiinae
Pelopidas thrax (Hübner, [1821]) Gegenes thrax
Borbo borbonica (Boisduval, 1833) Hesperia borbonica
Gegenes pumilio (Homansegg, 1804) Papilio pumilio
Gegenes nostrodamus (Fabricius, 1793) Hesperia nostrodamus
Ochlodes sylvanus (Esper, 1777) Papilio sylvanus
Hesperia comma (Linnaeus, 1758) Papilio comma
ymelicus christi Rebel, 1894 ymelicus christi
ymelicus acteon (Rottemburg, 1775) Papilio acteon
ymelicus hyrax (Lederer, 1861) Hesperia hyrax
ymelicus sylvestris (Poda, 1761) Papilio sylvestris
ymelicus lineola (Ochsenheimer, 1808) Papilio lineola
Pyrginae
Spialia phlomidis (Herrich-Schäer, 1845) Hesperia phlomidis
Spialia sertorius (Homansegg, 1804) Hesperia sertorius
Spialia therapne (Rambur, 1832) Hesperia therapne
Spialia rosae Hernández-Roldán, Dapporto, Dincă,
Vicente & Vila, 2016 Spialia rosae 4
Spialia orbifer (Hübner, [1823]) Papilio orbifer
Carcharodus tripolinus (Verity, 1925) Erynnis alceae tripolina 5
Carcharodus alceae (Esper, 1780) Papilio alceae
Muschampia cribrellum (Eversmann, 1841) Hesperia cribrellum
Muschampia tessellum (Hübner, [1803]) Papilio tessellum
Muschampia proto (Ochsenheimer, 1808) Papilio proto
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
18
Taxon Original combination Notes
Carcharodus lavatherae (Esper, 1783) Papilio lavatherae
Carcharodus orientalis Reverdin, 1913 Carcharodus orientalis
Carcharodus occifera (Zeller, 1847) Hesperia occifera
Carcharodus stauderi Reverdin, 1913 Carcharodus stauderi
Carcharodus baeticus (Rambur, 1839) Spilothyrus baeticus
Erynnis tages (Linnaeus, 1758) Papilio tages
Erynnis marloyi (Boisduval, 1834) anaos marloyi
Pyrgus malvoides (Elwes & Edwards, 1897) Hesperia malvoides
Pyrgus malvae (Linnaeus, 1758) Papilio malvae
Pyrgus carthami (Hübner, [1813]) Papilio carthami
Pyrgus sidae (Esper, 1784) Papilio sidae
Pyrgus centaureae (Rambur, 1839) Hesperia centaureae
Pyrgus cacaliae (Rambur, 1839) Hesperia cacaliae
Pyrgus andromedae (Wallengren, 1853) Syrichtus andromedae
Pyrgus serratulae (Rambur, 1839) Hesperia serratulae
Pyrgus armoricanus (Oberthür, 1910) Syrichthus armoricanus
Pyrgus alveus (Hübner, [1803]) Papilio alveus
Pyrgus warrenensis (Verity, 1928) Hesperia warrenensis
Pyrgus foulquieri (Oberthür, 1910) Syrichthus alveus foulquieri 6
Pyrgus onopordi (Rambur, 1839) Hesperia onopordi
Pyrgus carlinae (Rambur, 1839) Hesperia carlinae
Pyrgus cirsii (Rambur, 1839) Hesperia cirsii
Pyrgus cinarae (Rambur, 1839) Hesperia cinarae
Pieridae
Dismorphiinae
Leptidea duponcheli (Staudinger, 1871) Leucophasia duponcheli
Leptidea morsei (Fenton, 1882) Leptosia morsei
Leptidea juvernica Williams, 1946 Leptidea sinapis juvernica 7
Leptidea sinapis (Linnaeus, 1758) Papilio sinapis
Leptidea reali Reissinger, 1990 Leptidea sinapis reali
Coliadinae
Gonepteryx rhamni (Linnaeus, 1758) Papilio rhamni
Gonepteryx cleobule (Hübner, [1831]) Anteos cleobule 8
Gonepteryx cleopatra (Linnaeus, 1767) Papilio cleopatra
Gonepteryx maderensis C. Felder, 1862 Gonopteryx cleopatra maderensis
Gonepteryx farinosa (Zeller, 1847) Rhodocera farinosa
Catopsilia orella (Fabricius, 1775) Papilio orella
Colias hyale (Linnaeus, 1758) Papilio hyale
Colias alfacariensis Ribbe, 1905 Colias hyale alfacariensis
Colias phicomone (Esper, [1780]) Papilio phicomone
Colias aurorina Herrich-Schäer, 1850 Colias aurorina
Colias chrysotheme (Esper, [1781]) Papilio chrysotheme
Colias erate (Esper, [1805]) Papilio erate
Colias crocea (Georoy, 1785) Papilio croceus 5, 9
Colias myrmidone (Esper, [1781]) Papilio myrmidone
Colias caucasica Staudinger, 1871 Colias myrmidone caucasica
Colias palaeno (Linnaeus, [1760]) Papilio palaeno 10
Colias tyche (Böber, 1812) Papilio tyche
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)19
Taxon Original combination Notes
Colias hecla Lefèbvre, 1836 Colias hecla
Pierinae
Colotis evagore (Klug, 1829) Pontia evagore
Aporia crataegi (Linnaeus, 1758) Papilio crataegi
Pontia chloridice (Hübner, [1813]) Papilio chloridice
Pontia callidice (Hübner, [1800]) Papilio callidice
Pontia edusa (Fabricius, 1777) Papilio edusa
Pontia daplidice (Linnaeus, 1758) Papilio daplidice
Pieris krueperi Staudinger, 1860 Pieris krueperi
Pieris brassicae (Linnaeus, 1758) Papilio brassicae
Pieris wollastoni (Butler, 1886) Ganoris wollastoni
Pieris cheiranthi (Hübner, [1808]) Papilio cheiranthi
Pieris rapae (Linnaeus, 1758) Papilio rapae
Pieris mannii (Mayer, 1851) Pontia mannii
Pieris ergane (Geyer, [1828]) Papilio ergane
Pieris bryoniae (Hübner, [1806]) Papilio bryoniae
Pieris napi (Linnaeus, 1758) Papilio napi
Pieris balcana Lorković, [1969] Pieris balcana 11
Euchloe tagis (Hübner, [1804]) Papilio tagis
Euchloe eversi Stamm, 1963 Euchloe belemia eversi
Euchloe grancanariensis Acosta, 2008 Euchloe belemia grancanariensis
Euchloe hesperidum Rothschild, 1913 Euchloe belemia hesperidum
Euchloe belemia (Esper, 1800) Papilio belemia
Euchloe insularis (Staudinger, 1861) Anthocharis tagis insularis
Euchloe crameri Butler, 1869 Euchloe crameri
Euchloe simplonia (Freyer, 1829) Pontia simplonia
Euchloe ausonia (Hübner, [1804]) Papilio ausonia
Euchloe charlonia (Donzel, 1842) Anthocharis charlonia
Euchloe penia (Freyer, 1851) Pontia penia
Euchloe bazae Fabiano, 1993 Euchloe charlonia bazae
Zegris pyrothoe (Eversmann, 1832) Pontia pyrothoe
Zegris eupheme (Esper, [1804]) Papilio eupheme
Anthocharis euphenoides Staudinger, 1869 Anthocharis euphenoides
Anthocharis cardamines (Linnaeus, 1758) Papilio cardamines
Anthocharis gruneri Herrich-Schäer, 1851 Anthocharis gruneri
Anthocharis damone Boisduval, 1836 Anthocharis damone
Riodinidae
Nemeobiinae
Hamearis lucina (Linnaeus, 1758) Papilio lucina
Lycaenidae
Lycaeninae
Lycaena dimorpha (Staudinger, 1881) Polyommatus dimorphus 5, 12
Lycaena helle ([Denis & Schiermüller], 1775) Papilio helle
Lycaena alciphron (Rottemburg, 1775) Papilio alciphron
Lycaena thetis Klug, 1834 Lycaena thetis
Lycaena thersamon (Esper, 1784) Papilio thersamon
Lycaena dispar ([Haworth], 1802) Papilio dispar
Lycaena hippothoe (Linnaeus, [1760]) Papilio hippothoe 10
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
20
Taxon Original combination Notes
Lycaena candens (Herrich-Schäer, 1844) Polyommatus candens
Lycaena ottomana (Lefèbvre, [1831]) Polyommatus ottomanus 5, 13
Lycaena bleusei (Oberthür, 1884) Polyommatus xanthe f. bleusei
Lycaena phlaeas (Linnaeus, [1760]) Papilio phlaeas 10
Lycaena virgaureae (Linnaeus, 1758) Papilio virgaureae
Lycaena tityrus (Poda, 1761) Papilio tityrus
Aphnaeinae
Cigaritis acamas (Klug, 1834) Lycaena acamas 14
eclinae
ecla betulae (Linnaeus, 1758) Papilio betulae
Favonius quercus (Linnaeus, 1758) Papilio quercus
Laeosopis roboris (Esper, [1793]) Papilio roboris 15
Tomares ballus (Fabricius, 1787) Papilio ballus
Tomares nogelii (Herrich-Schäer, 1851) ecla nogelii
Tomares callimachus (Eversmann, 1848) Lycaena callimachus
Callophrys avis Chapman, 1909 Callophrys avis
Callophrys suaveola (Staudinger, 1881) ecla suaveola
Callophrys rubi (Linnaeus, 1758) Papilio rubi
Callophrys chalybeitincta Sovinsky, 1905 Callophrys rubi chalybeitincta
Neolycaena rhymnus (Eversmann, 1832) Lycaena rhymnus
Satyrium pruni (Linnaeus, 1758) Papilio pruni
Satyrium ilicis (Esper, 1779) Papilio ilicis
Satyrium esculi (Hübner, [1804]) Papilio esculi
Satyrium ledereri (Boisduval, 1848) Lycaena ledereri
Satyrium w-album (Knoch, 1782) Papilio w-album
Satyrium spini ([Denis & Schiermüller], 1775) Papilio spini
Satyrium acaciae (Fabricius, 1787) Papilio acaciae
Polyommatinae
Leptotes pirithous (Linnaeus, 1767) Papilio pirithous
Cyclyrius webbianus (Brullé, 1839) Polyommatus webbianus
Azanus ubaldus (Stoll, 1782) Papilio ubaldus
Azanus jesous (Guérin-Méneville, 1849) Polyommatus jesous
Lampides boeticus (Linnaeus, 1767) Papilio boeticus
Cacyreus marshalli Butler, 1898 Cacyreus marshalli
Celastrina argiolus (Linnaeus, 1758) Papilio argiolus
Tarucus theophrastus (Fabricius, 1793) Hesperia theophrastus
Tarucus balkanicus (Freyer, 1844) Lycaena balkanica 5
Phengaris alcon ([Denis & Schiermüller], 1775) Papilio alcon
Phengaris arion (Linnaeus, 1758) Papilio arion
Phengaris teleius (Bergsträsser, 1779) Papilio teleius
Phengaris nausithous (Bergsträsser, 1779) Papilio nausithous
Turanana taygetica (Rebel, 1902) Lycaena panagaea taygetica
Pseudophilotes bavius (Eversmann, 1832) Lycaena bavius
Pseudophilotes barbagiae De Prins & van der Poorten,
1982 Pseudophilotes barbagiae
Pseudophilotes abencerragus (Pierret, 1837) Argus abencerragus
Pseudophilotes panoptes (Hübner, [1813]) Papilio panoptes
Pseudophilotes vicrama (Moore, 1865) Polyommatus vicrama
Pseudophilotes baton (Bergsträsser, 1779) Papilio baton
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)21
Taxon Original combination Notes
Scolitantides orion (Pallas, 1771) Papilio orion
Praephilotes anthracias (Christoph, 1877) Lycaena anthracias
Iolana iolas (Ochsenheimer, 1816) Lycaena iolas
Iolana debilitata (Schultz, 1905) Lycaena jolas var. debilitata 16
Glaucopsyche melanops (Boisduval, 1828) Polyommatus melanops
Glaucopsyche paphos Chapman, 1920 Glaucopsyche paphos
Glaucopsyche alexis (Poda, 1761) Papilio alexis
Zizeeria knysna (Trimen, 1862) Lycaena knysna
Zizeeria karsandra (Moore, 1865) Polyommatus karsandra
Tongeia scheri (Eversmann, 1843) Lycaena scheri
Cupido argiades (Pallas, 1771) Papilio argiades
Cupido decoloratus (Staudinger, 1886) Lycaena argiades decolorata 5
Cupido alcetas (Homansegg, 1804) Papilio alcetas
Cupido osiris (Meigen, 1829) Polyommatus osiris
Cupido minimus (Fuessly, 1775) Papilio minimus
Cupido lorquinii (Herrich-Schäer, 1850) Lycaena lorquinii 17
Luthrodes galba (Lederer, 1855) Lycaena galba 18
Freyeria trochylus (Freyer, 1844) Lycaena trochylus 18,19
Plebejus argus (Linnaeus, 1758) Papilio argus
Plebejus idas (Linnaeus, [1760]) Papilio idas 10
Plebejus bellieri (Oberthür, 1910) Lycaena bellieri
Plebejus argyrognomon (Bergsträsser, 1779) Papilio argyrognomon
Agriades orbitulus (Prunner, 1798) Papilio orbitulus 18
Agriades optilete (Knoch, 1781) Papilio optilete 18
Agriades pyrenaicus (Boisduval, 1840) Lycaena orbitulus var. pyrenaica 5, 18
Agriades dardanus (Freyer, 1843) Lycaena dardanus 18
Agriades zullichi Hemming, 1933 Agriades zullichi 18
Agriades glandon (Prunner, 1798) Papilio glandon 18
Agriades aquilo (Boisduval, 1832) Argus aquilo 18
Plebejidea loewii (Zeller, 1847) Lycaena loewii 18
Eumedonia eumedon (Esper, 1780) Papilio eumedon 18
Kretania psylorita (Freyer, 1845) Lycaena psylorita 18
Kretania hesperica (Rambur, 1839) Polyommatus hespericus 5, 18
Kretania eurypilus (Freyer, 1851) Lycaena eurypilus 18
Kretania trappi (Verity, 1927) Lycaena trappi 18
Kretania sephirus (Frivaldszky, 1835) Lycaena sephirus 18
Kretania pylaon (Fischer, 1832) Lycaena pylaon 18
Cyaniris semiargus (Rottemburg, 1775) Papilio semiargus
Glabroculus cyane (Eversmann, 1837) Lycaena cyane 18
Aricia morronensis (Ribbe, 1910) Lycaena idas morronensis
Aricia anteros (Freyer, 1838) Lycaena anteros
Aricia cramera (Eschscholtz, 1821) Lycaena cramera
Aricia nicias (Meigen, 1829) Polyommatus nicias 20
Aricia artaxerxes (Fabricius, 1793) Hesperia artaxerxes
Aricia montensis Verity, 1928 Aricia medon montensis
Aricia agestis ([Denis & Schiermüller], 1775) Papilio agestis
Neolysandra coelestina (Eversmann, 1843) Lycaena coelestina 18
Lysandra hispana (Herrich-Schäer, 1851) Lycaena coridon var. hispana 18
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
22
Taxon Original combination Notes
Lysandra corydonius (Herrich-Schäer, 1852) Lycaena coridon corydonius 18
Lysandra bellargus (Rottemburg, 1775) Papilio bellargus 18
Lysandra coridon (Poda, 1761) Papilio coridon 18
Lysandra caelestissima (Verity, 1921) Agriades coridon caelestissima 18
Lysandra albicans (Gerhard, 1851) Lycaena coridon var. albicans 18
Polyommatus escheri (Hübner, [1823]) Papilio escheri
Polyommatus thersites (Cantener, 1835) Argus thersites
Polyommatus daphnis ([Denis & Schiermüller], 1775) Papilio daphnis
Polyommatus amandus (Schneider, 1792) Papilio amandus
Polyommatus golgus (Hübner, [1813]) Papilio golgus
Polyommatus nivescens (Keferstein, 1851) Lycaena dorylas var. nivescens
Polyommatus dorylas ([Denis & Schiermüller], 1775) Papilio dorylas
Polyommatus celina (Austaut, 1879) Lycaena celina 21
Polyommatus icarus (Rottemburg, 1775) Papilio icarus
Polyommatus eros (Ochsenheimer, 1808) Papilio eros
Polyommatus damon ([Denis & Schiermüller], 1775) Papilio damon
Polyommatus damone (Eversmann, 1841) Lycaena damone
Polyommatus damocles (Herrich-Schäer, 1844) Lycaena damocles
Polyommatus admetus (Esper, 1783) Papilio admetus
Polyommatus ripartii (Freyer, 1830) Lycaena ripartii
Polyommatus nephohiptamenos (Brown & Coutsis, 1978) Agrodiaetus nephohiptamenos
Polyommatus iphigenia (Herrich-Schäer, 1847) Lycaena iphigenia
Polyommatus violetae (Gómez-Bustillo, Expósito &
Martínez, 1979) Agrodiaetus violetae
Polyommatus fulgens (Sagarra, 1925) Hirsutina dolus r. fulgens 22
Polyommatus fabressei (Oberthür, 1910) Lycaena rippertii r. fabressei
Polyommatus dolus (Hübner, [1823]) Papilio dolus
Polyommatus humedasae (Toso & Balletto, 1976) Agrodiaetus humedasae
Polyommatus timfristos Lukhtanov, Vishnevskaya &
Shapoval, 2016 Polyommatus timfristos 23
Polyommatus orphicus Kolev, 2005 Polyommatus orphicus
Polyommatus aroaniensis (Brown, 1976) Agrodiaetus alcestis aroaniensis
Nymphalidae
Limenitidinae
Neptis sappho (Pallas, 1771) Papilio sappho
Neptis rivularis (Scopoli, 1763) Papilio rivularis
Limenitis reducta Staudinger, 1901 Limenitis camilla reducta
Limenitis populi (Linnaeus, 1758) Papilio populi
Limenitis camilla (Linnaeus, 1764) Papilio camilla
Heliconiinae
Issoria lathonia (Linnaeus, 1758) Papilio lathonia
Issoria eugenia (Eversmann, 1847) Argynnis eugenia
Brenthis hecate ([Denis & Schiermüller], 1775) Papilio hecate
Brenthis ino (Rottemburg, 1775) Papilio ino
Brenthis daphne ([Denis & Schiermüller], 1775) Papilio daphne
Argynnis paphia (Linnaeus, 1758) Papilio paphia
Argynnis pandora ([Denis & Schiermüller], 1775) Papilio pandora
Argynnis laodice (Pallas, 1771) Papilio laodice
Speyeria aglaja (Linnaeus, 1758) Papilio aglaja 24
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)23
Taxon Original combination Notes
Fabriciana elisa (Godart, 1823) Argynnis elisa 24
Fabriciana niobe (Linnaeus, 1758) Papilio niobe 24
Fabriciana adippe ([Denis & Schiermüller], 1775) Papilio adippe 24
Boloria eunomia (Esper, 1800) Papilio eunomia 25
Boloria graeca (Staudinger, 1870) Argynnis pales graeca
Boloria pales ([Denis & Schiermüller], 1775) Papilio pales
Boloria alaskensis (Holland, 1900) Argynnis alaskensis
Boloria napaea (Homansegg, 1804) Papilio napaea
Boloria aquilonaris (Stichel, 1908) Argynnis aquilonaris
Boloria tritonia (Böber, 1812) Papilio tritonia
Boloria polaris (Boisduval, 1828) Argynnis polaris
Boloria thore (Hübner, [1804]) Papilio thore 26
Boloria selene ([Denis & Schiermüller], 1775) Papilio selene
Boloria euphrosyne (Linnaeus, 1758) Papilio euphrosyne
Boloria dia (Linnaeus, 1767) Papilio dia
Boloria improba (Butler, 1877) Arg ynnis improba
Boloria frigga (unberg, 1791) Papilio frigga 27
Boloria freija (unberg, 1791) Papilio freija 27
Boloria selenis (Eversmann, 1837) Argynnis selenis
Boloria oscarus (Eversmann, 1844) Argynnis oscarus
Boloria titania (Esper, [1793]) Papilio titania
Boloria chariclea (Schneider, 1794) Papilio chariclea
Boloria angarensis (Erscho, 1870) Argynnis angarensis
Apaturinae
Apatura iris (Linnaeus, 1758) Papilio iris
Apatura metis Freyer, 1829 Apatura metis
Apatura ilia ([Denis & Schiermüller], 1775) Papilio ilia
Nymphalinae
Araschnia levana (Linnaeus, 1758) Papilio levana
Vanessa virginiensis (Drury, 1773) Papilio cardui virginiensis
Vanessa cardui (Linnaeus, 1758) Papilio cardui
Vanessa vulcania Godart, 1819 Vanessa vulcania
Vanessa atalanta (Linnaeus, 1758) Papilio atalanta
Aglais io (Linnaeus, 1758) Papilio io
Aglais urticae (Linnaeus, 1758) Papilio urticae
Aglais ichnusa (Hübner, [1824]) Papilio ichnusa 28
Polygonia egea (Cramer, 1775) Papilio egea
Polygonia c-album (Linnaeus, 1758) Papilio c-album
Nymphalis vaualbum ([Denis & Schiermüller], 1775) Papilio vau album
Nymphalis polychloros (Linnaeus, 1758) Papilio polychloros
Nymphalis xanthomelas ([Denis & Schiermüller], 1775) Papilio xanthomelas
Nymphalis antiopa (Linnaeus, 1758) Papilio antiopa
Hypolimnas misippus (Linnaeus, 1764) Papilio misippus
Euphydryas desfontainii (Godart, 1819) Papilio desfontainii
Euphydryas aurinia (Rottemburg, 1775) Papilio aurinia
Euphydryas cynthia ([Denis & Schiermüller], 1775) Papilio cynthia
Euphydryas iduna (Dalman, 1816) Melitaea iduna
Euphydryas maturna (Linnaeus, 1758) Papilio maturna
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
24
Taxon Original combination Notes
Euphydryas intermedia (Ménétriés, 1859) Melitaea maturna intermedia
Melitaea trivia ([Denis & Schiermüller], 1775) Papilio trivia
Melitaea didyma (Esper, 1778) Papilio didyma
Melitaea arduinna (Esper, 1783) Papilio arduinna
Melitaea aetherie (Hübner, [1826]) Papilio aetherie
Melitaea phoebe ([Denis & Schiermüller], 1775) Papilio phoebe
Melitaea ornata Christoph, 1893 Melitaea phoebe ornata 29
Melitaea cinxia (Linnaeus, 1758) Papilio cinxia
Melitaea diamina (Lang, 1789) Papilio diamina
Melitaea celadussa Fruhstorfer, 1910 Melitaea athalia celadussa 30
Melitaea deione (Geyer, [1832]) Papilio deione
Melitaea britomartis Assmann, 1847 Melitaea britomartis
Melitaea athalia (Rottemburg, 1775) Papilio athalia
Melitaea varia Herrich-Schäer, 1851 Melitaea varia 31
Melitaea parthenoides Keferstein, 1851 Melitaea athalia parthenoides
Melitaea aurelia Nickerl, 1850 Melitaea aurelia
Melitaea asteria Freyer, 1828 Melitaea asteria
Libytheinae
Libythea celtis (Laicharting, 1782) Papilio celtis
Danainae
Danaus plexippus (Linnaeus, 1758) Papilio plexippus
Danaus chrysippus (Linnaeus, 1758) Papilio chrysippus
Charaxinae
Charaxes jasius (Linnaeus, 1767) Papilio jasius
Satyrinae
Coenonympha phryne (Pallas, 1771) Papilio phryne
Coenonympha oedippus (Fabricius, 1787) Papilio oedippus
Coenonympha dorus (Esper, 1782) Papilio dorus
Coenonympha thyrsis (Freyer, 1845) Hipparchia thyrsis
Coenonympha pamphilus (Linnaeus, 1758) Papilio pamphilus
Coenonympha tullia (Müller, 1764) Papilio tullia
Coenonympha rhodopensis Elwes, 1900 Coenonympha tiphon rhodopensis
Coenonympha amaryllis (Stoll, 1782) Papilio amaryllis
Coenonympha glycerion (Borkhausen, 1788) Papilio glycerion
Coenonympha corinna (Hübner, [1804]) Papilio corinna
Coenonympha leander (Esper, 1784) Papilio leander
Coenonympha hero (Linnaeus, [1760]) Papilio hero 10
Coenonympha gardetta (Prunner, 1798) Papilio gardetta
Coenonympha orientalis Rebel, 1909 Coenonympha arcania var. orientalis 32
Coenonympha arcania (Linnaeus, [1760]) Papilio arcania 10
Kirinia roxelana (Cramer, 1777) Papilio roxelana
Kirinia climene (Esper, 1783) Papilio climene
Lopinga achine (Scopoli, 1763) Papilio achine
Pararge xiphia (Fabricius, 1775) Papilio xiphia
Pararge xiphioides Staudinger, 1871 Pararge xiphia xiphioides
Pararge aegeria (Linnaeus, 1758) Papilio aegeria
Lasiommata maera (Linnaeus, 1758) Papilio maera
Lasiommata deidamia (Eversmann, 1851) Hipparchia deidamia
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)25
Taxon Original combination Notes
Lasiommata petropolitana (Fabricius, 1787) Papilio maera petropolitana
Lasiommata paramegaera (Hübner, [1824]) Papilio paramegaera
Lasiommata megera (Linnaeus, 1767) Papilio megera
Melanargia russiae (Esper, 1783) Papilio russiae
Melanargia larissa (Geyer, [1828]) Papilio larissa
Melanargia lachesis (Hübner, 1790) Papilio lachesis
Melanargia galathea (Linnaeus, 1758) Papilio galathea
Melanargia ines (Homansegg, 1804) Papilio ines
Melanargia arge (Sulzer, 1776) Papilio arge
Melanargia pherusa (Boisduval, 1833) Arge pherusa
Melanargia occitanica (Esper, [1793]) Papilio arge occitanica
Hipparchia fatua Freyer, 1843 Hipparchia fatua 33
Hipparchia statilinus (Hufnagel, 1766) Papilio statilinus
Hipparchia tilosi Manil, 1984 Hipparchia wyssii tilosi
Hipparchia bacchus (Higgins, 1967) Pseudotergumia wyssii bacchus
Hipparchia wyssii (Christ, 1889) Satyrus dia wyssii
Hipparchia tamadabae Owen & Smith, 1992 Hipparchia wyssi tamadabae
Hipparchia gomera (Higgins, 1967) Pseudotergumia wyssii gomera
Hipparchia dia (Linnaeus, 1767) Papilio dia
Hipparchia neomiris (Godart, 1823) Satyrus neomiris 34
Hipparchia autonoe (Esper, 1783) Papilio autonoe
Hipparchia hermione (Linnaeus, 1764) Papilio hermione
Hipparchia syriaca (Staudinger, 1871) Satyrus hermione syriaca
Hipparchia fagi (Scopoli, 1763) Papilio fagi
Hipparchia mersina (Staudinger, 1871) Satyrus semele mersina
Hipparchia miguelensis (Le Cerf, 1935) Satyrus azorinus miguelensis
Hipparchia azorina (Strecker, 1899) Satyrus azorinus 5, 35
Hipparchia senthes (Fruhstorfer, 1908) Eumenis semele senthes
Hipparchia maderensis (Bethune-Baker, 1891) Satyrus semele maderensis
Hipparchia semele (Linnaeus, 1758) Papilio semele
Hipparchia blachieri (Fruhstorfer, 1908) Eumenis semele blachieri
Hipparchia aristaeus (Bonelli, 1826) Papilio aristaeus
Hipparchia volgensis (Mazokhin-Porshnyakov, 1952) Satyrus semele volgensis
Hipparchia neapolitana (Stauder, 1921) Satyrus neapolitana
Hipparchia leighebi Kudrna, 1976 Hipparchia semele leighebi
Hipparchia pellucida (Stauder, 1924) Satyrus semele pellucida 36
Hipparchia sbordonii Kudrna, 1984 Hipparchia sbordonii
Hipparchia cypriensis (Holik, 1949) Satyrus semele cypriensis
Hipparchia cretica (Rebel, 1916) Satyrus semele cretica
Hipparchia christenseni Kudrna, 1977 Hipparchia christenseni
Minois dryas (Scopoli, 1763) Papilio dryas
Brintesia circe (Fabricius, 1775) Papilio circe
Arethusana arethusa ([Denis & Schiermüller], 1775) Papilio arethusa
Oeneis tarpeia (Pallas, 1771) Papilio tarpeia
Oeneis bore (Schneider, 1792) Papilio bore
Oeneis ammon Elwes, 1899 Oeneis bore var. ammon 37
Oeneis melissa (Fabricius, 1775) Papilio melissa
Oeneis magna Graeser, 1888 Oeneis jutta magna
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
26
Taxon Original combination Notes
Oeneis jutta (Hübner, [1806]) Papilio jutta
Oeneis norna (unberg, 1791) Papilio norna
Oeneis polixenes (Fabricius, 1775) Papilio polixenes
Oeneis glacialis (Moll, 1785) Papilio glacialis 38
Satyrus ferula (Fabricius, 1793) Papilio ferula
Satyrus virbius Herrich-Schäer, 1844 Satyrus virbius
Satyrus actaea (Esper, 1781) Papilio actaea
Chazara briseis (Linnaeus, 1764) Papilio briseis
Chazara prieuri (Pierret, 1837) Satyrus prieuri
Chazara persephone (Hübner, [1805]) Papilio persephone
Pseudochazara geyeri (Herrich-Schäer, 1846) Satyrus geyeri
Pseudochazara graeca (Staudinger, 1870) Satyrus pelopea graeca
Pseudochazara amymone Brown, 1976 Pseudochazara amymone
Pseudochazara anthelea (Hübner, [1824]) Papilio anthelea
Pseudochazara amalthea (Frivaldszky, 1845) Hipparchia amalthea 39
Pseudochazara williamsi (Romei, 1927) Satyrus hippolyte williamsi
Pseudochazara euxina (Kuznetsov, 1909) Hipparchia euxina
Pseudochazara mercurius (Staudinger, 1887) Satyrus mercurius 40
Pseudochazara cingovskii (Gross, 1973) Satyrus sintenisi cingovskii
Pseudochazara tisiphone Brown, [1981] Pseudochazara cingovskii tisiphone 39
Pseudochazara orestes De Prins & van der Poorten, 1981 Pseudochazara orestes
Ypthima asterope (Klug, 1832) Hipparchia asterope
Proterebia phegea (Borkhausen, 1788) Papilio phegea 41
Hyponephele huebneri Koçak, 1980 Hyponephele huebneri
Hyponephele lycaon (Kühn, 1774) Papilio lycaon
Hyponephele lupina (Costa, 1836) Satyrus lupinus 5
Aphantopus hyperantus (Linnaeus, 1758) Papilio hyperantus
Pyronia cecilia (Vallantin, 1894) Epinephele ida cecilia
Pyronia tithonus (Linnaeus, 1771) Papilio tithonus 42
Pyronia bathseba (Fabricius, 1793) Papilio bathseba
Maniola jurtina (Linnaeus, 1758) Papilio jurtina
Maniola nurag (Ghiliani, 1852) Satyrus nurag
Maniola chia omson, 1987 Maniola chia
Maniola megala (Oberthür, 1909) Epinephele janira megala
Maniola cypricola (Graves, 1928) Epinephele cypricola
Maniola telmessia (Zeller, 1847) Hipparchia telmessia
Maniola halicarnassus omson, 1990 Maniola halicarnassus
Erebia edda Ménétriés, 1851 Erebia edda
Erebia fasciata Butler, 1868 Erebia fasciata
Erebia discoidalis (Kirby, 1837) Hipparchia discoidalis
Erebia rossii (Curtis, 1835) Hipparchia rossii 43
Erebia cyclopius (Eversmann, 1844) Hipparchia cyclopius
Erebia embla (unberg, 1791) Papilio embla
Erebia disa (unberg, 1791) Papilio disa
Erebia meolans (Prunner, 1798) Papilio meolans
Erebia dabanensis Erscho, 1872 Erebia dabanensis 44
Erebia jeniseiensis Trybom, 1877 Erebia ligea jeniseiensis
Erebia claudina (Borkhausen, 1789) Papilio claudina
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)27
Taxon Original combination Notes
Erebia manto ([Denis & Schiermüller], 1775) Papilio manto
Erebia ottomana Herrich-Schäer, 1847 Erebia dromus ottomana
Erebia hispania Butler, 1868 Erebia hispania
Erebia rondoui Oberthür, 1908 Erebia rondoui
Erebia callias Edwards, 1871 Erebia callias 45
Erebia tyndarus (Esper, 1781) Papilio tyndarus
Erebia cassioides (Hohenwarth, 1792) Papilio cassioides 46
Erebia nivalis Lorković & Lesse, 1954 Erebia nivalis
Erebia neleus (Freyer, 1832) Hipparchia neleus 47
Erebia calcarius Lorković, 1953 Erebia tyndarus calcarius
Erebia arvernensis Oberthür, 1908 Erebia tyndarus arvernensis 47
Erebia oeme (Hübner, [1804]) Papilio oeme
Erebia gorge (Hübner, [1804]) Papilio gorge
Erebia sthennyo Graslin, 1850 Erebia sthennyo
Erebia pandrose (Borkhausen, 1788) Papilio pandrose
Erebia eriphyle (Freyer, 1836) Hipparchia eriphyle
Erebia epistygne (Hübner, [1819]) Papilio epistygne
Erebia euryale (Esper, 1805) Papilio euryale
Erebia palarica Chapman, 1905 Erebia palarica
Erebia ligea (Linnaeus, 1758) Papilio ligea
Erebia pluto (Prunner, 1798) Papilio pluto
Erebia aethiopellus (Homansegg, 1806) Papilio aethiopellus
Erebia gorgone Boisduval, 1833 Erebia gorgone
Erebia rhodopensis Nicholl, 1900 Erebia gorgone rhodopensis
Erebia mnestra (Hübner, [1804]) Papilio mnestra
Erebia albergana (Prunner, 1798) Papilio alberganus 5
Erebia sudetica Staudinger, 1861 Erebia melampus sudetica
Erebia melampus (Fuessly, 1775) Papilio melampus
Erebia triarius (Prunner, 1798) Papilio triarius
Erebia polaris Staudinger, 1861 Erebia medusa var. polaris 48
Erebia medusa ([Denis & Schiermüller], 1775) Papilio medusa
Erebia aethiops (Esper, 1777) Papilio aethiops
Erebia pharte (Hübner, [1804]) Papilio pharte
Erebia christi Rätzer, 1890 Erebia christi
Erebia orientalis Elwes, 1900 Erebia epiphron orientalis
Erebia epiphron (Knoch, 1783) Papilio epiphron
Erebia avofasciata Heyne, 1895 Erebia avofasciata
Erebia montana (Prunner, 1798) Papilio montanus 5
Erebia styx (Freyer, 1834) Hipparchia styx
Erebia stiria (Godart, [1824]) Satyrus stirius 5
Erebia scipio Boisduval, 1833 Erebia scipio 49
Erebia pronoe (Esper, 1780) Papilio pronoe
Erebia melas (Herbst, 1796) Papilio melas
Erebia lefebvrei (Boisduval, 1828) Satyrus lefebvrei
Erebia zapateri Oberthür, 1875 Erebia zapateri
Erebia neoridas (Boisduval, 1828) Satyrus neoridas
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
28
Table 3. Annotations to the updated checklist of the butteries of Europe.
1Iphiclides feisthamelii is considered a separate species based on dierences in adult morphology (Coutsis and van
Oorschot 2011, Lafranchis et al. 2015) and nuclear genetic markers (Wiemers and Gottsberger 2010; Dincă
et al. 2015), despite very local hybridisation along the contact zone in southern France (Lafranchis et al. 2015)
and extensive mitochondrial introgression in the Iberian Peninsula (Wiemers and Gottsberger 2010; Dincă et
al. 2015). Its distribution includes the SW part of France, the Iberian Peninsula, and northern Africa.
2Author of the name is Giuseppe Gené (1800–1847), not Achille Guenée.
3Dapporto (2009) has shown that Zerynthia cassandra from peninsular Italy is a separate species based on
dierences in genital morphology. is was further conrmed by molecular studies (Zinetti et al. 2013).
4Spialia rosae has been recognised as a separate species endemic to mountains of Spain based on dierences in
ecology and evidence from molecular studies (mitochondrial DNA, chemical proles) (Hernández-Roldán et al.
2016, 2018). e species has already been included in Fauna Europaea (2018).
5Gender agreement changes were applied consistently in accordance with Art. 31.2 and Art. 34.2 (ICZN 1999).
6As descriptions of both Syrichtus alveus f. foulquieri and Syrichtus alveus f. bellieri were published simultaneously
(Oberthür, 1910), the name used by the rst reviser (i. e. Rebel 1914), Pyrgus foulquieri, should be used in
accordance with Art. 24.2.1 and Art. 24.2.2 (ICZN 1999).
7Recent studies have shown that Leptidea reali actually comprises two species, L. reali and L. juvernica. L. reali
is known from south-western Europe (Spain, S France and Italy) and is replaced by L. juvernica in the rest of
the continent (Dincă et al. 2011b). L. sinapis, L. reali, and L. juvernica are reproductively isolated due to female
mate choice (Dincă et al. 2013).
8e year of the publication of the name Anteos cleobule is 1831, not 1830 (the original plate [79], published in
1824, carried no names).
9e name Papilio croceus should be credited to Georoy in Fourcroy, 1785, not to Fourcroy (Ganglbauer and
Heyden 1906, D'Aguilar and Raimbault 1990, Grieshuber et al. 2012).
10 e date of the publication of the names by Linnaeus in Fauna Svecica (ed. 2) is 14 November 1760, not 1761
(see Evenhuis 1997, Bousquet 2016).
11 e year of the publication of the name Pieris balcana is 1969, not 1970. e publication year of volume 21
(1–4) (1968) of Biološki glasnik [= volume 70 of Periodicum Biologorum] is printed on the cover page as “1969”
and, moreover, Lorković´s personal copy held in the Croatian Natural History museum has a hand written
addition of the publication year “1969” in the header of his article (Šašić, pers. comm.). Additionally, the
author´s name is misspelled and should be Lorković (see also Lorković 1969).
12 According to Lvovsky and Morgun (2007) the species is present in Russia south of the Urals in the Orenburg
region. e subspecies Lycaena dimorpha irghiza was originally described as a subspecies of L. japhetica
(Nekrutenko 1985), but we follow the decision in the taxonomic review by Lukhtanov (2000).
13 e year of the publication of the name Polyommatus ottomanus is 1831, not 1830. Lefèbvre cited the date
1830, which corresponds to the date of submission of his article, but the issue of the journal was published in
January 1831. See Lefèbvre (1831)
14 e generic names Apharitis and Spindasis were synonymised with Cigaritis due to morphological similarities
(see Heath and Pringle 2011).
15 e name Papilio roboris was rst published in 1793, not 1789 (Lamas 2013).
16 Iolana debilitata has been recognised as a separate species based on constant dierences in adult morphology
(Dumont 2004) and mitochondrial DNA – barcoding gene (Dincă et al. 2015).
17 e year of the publication of the name and plates for Cupido lorquinii is 1850, not 1847 (Hemming 1937,
Heppner 1982).
18 Genus level classification in the subfamily Polyommatinae follows Talavera et al. (2013) based on molecular
phylogeny. is arrangement partially concurs with dierences in genital morphology (see Balletto et al. 2014,
Coutsis 2017).
19 e year of the publication of the name Lycaena trochylus is 1844, not 1845 (Tremewan 1988, Olivier 2000).
20 e year of the publication of the name Polyommatus nicias is ante September 1829, not 1830 (Grin 1931).
21 Polyommatus celina has been recognised as a separate species distributed in the Iberian Peninsula, northern
Africa, Sardinia and Sicily based on molecular markers and adult morphology (Wiemers et al. 2010; Dincă et
al. 2011a).
22 e author´s surname Sagarra should be without the particle “de”. It is listed as such in the members list of the
Institució Catalana d'Història Natural in 1925 bulletin Vol. 5 – Num. 1. Generally, when the particle is written
in lowercase, it should be treated as a sux that goes after the rst name (Welter-Schultes 2013).
23 Polyommatus timfristos is considered a separate species due to dierences in haploid chromosome number
compared to P. aroaniensis and mitochondrial DNA – barcoding gene (Vishnevskaya et al. 2016).
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)29
24 Genus level classification in the tribe Argynnini follows De Moya et al. (2017) based on molecular
phylogenetics. It is corroborated by extensive dierences in genital morphology (Simonsen 2006a, 2006b).
25 e name Papilio eunomia was rst published in 1800, not 1799 (Poche, 1938).
26 e name Papilio thore was rst published in 1804, not 1803 (Hemming 1937).
27 Description of Boloria freija and Boloria frigga must be credited to unberg, not to Becklin (unberg wrote
Becklin's dissertation), see Karsholt and Nielsen (1986).
28 Papilio ichnusa was rst described by Hübner (ante 23 December) 1824. Vanessa ichnusa Bonelli was published
in February 1825 and is a junior secondary homonym and junior subjective synonym, see Hemming (1937).
29 Among the species with red headed larvae within the Melitaea phoebe species group only M. ornata is present in
Europe in southeastern Russia, the Balkan Peninsula, Spain, southeastern France, and southern Italy. M. telona
is limited to the Levant and M. punica to northern Africa (Toth et al. 2014).
30 Melitaea celadussa Fruhstorfer, 1910 is considered a separate species distributed in western Europe that diers
in genital morphology (Higgins 1932) and molecular markers (Leneveu et al. 2009, Dincă et al. 2015) from M.
athalia, with hybrids known from the contact zone (Achtelik 2006; Oorschot and Coutsis 2014). e species
was referred to also as M. nevadensis Oberthür, 1904, which is a junior primary homonym of Melitaea parthenie
var. nevadensis Spuler, 1901, currently regarded as a junior subjective synonym of Melitaea parthenoides
Keferstein, 1851.
31 Melitaea varia was rst described by Herrich-Schäer (1851) in Systematische Bearbeitung der Schmetterlinge von
Europa Vol. 6(48): 2 (Hemming 1937). Melitaea parthenie var. varia Meyer-Dür, 1852 (not 1851) is a junior
primary homonym.
32 e name Coenonympha arcánia var. orientális [sic] appeared in part 4 of the ninth edition of Berge’s
Schmetterlingsbuch, which was published on 22 May 1909 (Lempke 1949), not in 1910.
33 e name Hipparchia fatua was rst published in 1843, not 1844 (Olivier 2000).
34 e name Satyrus neomiris was rst published in 1823, not 1822. Satyrus neomiris rst appeared on page 19 in
Godart’s Tableau méthodique des lépidoptères..., published in 1823. e vernacular name Godart used in vol. 2 of
Hist. nat. Lépid. Pap. France, pp. 88–89, pl. 11, gs. 1–2 (1822), »Satyre néomiris«, is unavailable, as it is not a
scientic name.
35 e name Satyrus azorinus was rst published in 1899, not 1898.
36 e name Satyrus semele pellucida was rst published on 15 May 1924, not in 1923.
37 Oeneis ammon is present in Europe in the Polar Urals (Tsvetkov 2006).
38 e name Papilio glacialis was rst published in 1785, not 1783.
39 Based on dierentiation in mtDNA (barcodes) and dierences in morphology, Pseudochazara amalthea and P.
tisiphone are considered separate species from allopatric P. anthelea and P. mniszechii respectively (Verovnik and
Wiemers 2016).
40 Pseudochazara hippolyte (Esper, 1783) is a junior primary homonym of Papilio hyppolite Drury, 1782. e oldest
available name for this taxon is Satyrus mercurius Staudinger, 1887.
41 Papilio afer Esper, 1783 is a junior primary homonym of Papilio afer Drury, 1782 (see Koçak 1981), as is
Papilio afra Fabricius, 1787, because it diers only in gender. erefore the oldest available name is Papilio
phegea Borkhausen, 1788.
42 e name Papilio tithonus was rst published in 1771 in Mantissa Plantarum Altera, not in 1767.
43 e name Hipparchia rossii was rst published in November 1835, not in 1834.
44 e name Erebia dabanensis was published on 13 November 1872, not in 1871.
45 Recently, a population of Erebia was discovered in the Polar Urals and described as a new species, E. churkini
Bogdanov, 2008, but is now considered a subspecies of Erebia callias (Tatarinov & Gorbunov, 2015). However,
no further material is available, therefore it is tentatively considered as part of the European fauna. Erebia callias
is a member of the tyndarus group (Albre et al. 2008) and ranges from the mountains of the Asian part of
Russia and Mongolia to Colorado (USA).
46 e author of the name Papilio cassioides is Hohenwarth alone as indicated on page III of Reiner and
Hohenwarth (1792), not Reiner and Hohenwarth.
47 Based on molecular data and dierences in wing patterns Erebia cassioides has been split into three allopatric
species (Schmitt et al. 2016). E. cassioides is limited to the eastern Alps, E. arvernensis is distributed in the
western Alps, Cantabrian mountains and Pyrénées, while E. neleus is present in the mountains of the Balkan
Peninsula and the southern Carpathians.
48 e name Erebia medusa polaris was rst published in September 1861, not in 1871.
49 e year of publication of the name Erebia scipio by Boisduval is 1833, not 1832 (Cowan 1970).
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
30
Table 4. Species richness of European buttery families and subfamilies.
Family Subfamily Genera Species
Hesperiidae 13 47
Hesperiinae 6 11
Heteropterinae 2 3
Pyrginae 5 33
Lycaenidae 39 130
Aphnaeinae 1 1
Lycaeninae 1 13
Polyommatinae 30 98
eclinae 7 18
Nymphalidae 41 246
Apaturinae 1 3
Charaxinae 1 1
Danainae 1 2
Heliconiinae 6 32
Libytheinae 1 1
Limenitidinae 2 5
Nymphalinae 8 37
Satyrinae 21 165
Papilionidae 5 15
Papilioninae 2 5
Parnassiinae 3 10
Pieridae 11 57
Coliadinae 3 18
Dismorphiinae 1 5
Pierinae 7 34
Riodinidae 1 1
Nemeobiinae 1 1
Total 21 110 496
A larger number of changes concern the genus names. Most of them are in the
family Lycaenidae, where 26 species changed their genus name, mainly based on the
molecular study by Talavera et al. (2013), which substantially improved our knowledge
of phylogenetic relationships of the subtribe Polyommatina. However, none of the
genus names is new and many of them have already been used with the same species.
In addition, four species formerly placed in the genus Argynnis were transferred into
the genera Fabriciana and Speyeria, based on the study by De Moya et al. (2017). e
former genus name had already been used previously for the same species, whereas the
latter seems new to European lepidopterists, but is commonly used in North America.
Although it could be argued that the change was avoidable by keeping a larger genus
Argynnis, a solution originally also favoured by Simonsen et al. (2006), this would
have meant to rename a large number of North American butteries currently placed
in the genus Speyeria, and was rejected by North American lepidopterists. erefore,
the recommended changes appear to cause the least changes on a global level and will
hopefully contribute to a more consistent taxonomy of Holarctic Argynnini.
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)31
Table 5. Authors of currently valid European buttery species (with a minimum of three described taxa).
Author Life data Nationality Species Period
Linnaeus, Carolus 1707–1778 Swedish 71 1758–1771
Poda von Neuhaus, Nicolaus (Nikolaus) 1723–1798 Austrian 4 1761
Scopoli, Giovanni Antonio 1723–1788 Italian 4 1763
Pallas, Peter Simon 1741–1811 German 8 1771
Schiermüller, Johann Ignaz 1727–1806 Austrian 21 1775
Fabricius, Johan Christian 1745–1808 Danish 16 1775–1793
Rothenburg [alias Rottemburg], Siegmund
Adrian von 1745–1797 German 8 1775
Esper, Eugen Johann Christoph 1742–1810 German 32 1777–1805
Bergsträsser, Johann Andreas Benignus 1732–1812 German 5 1779–1780
Knoch, August Wilhelm 1742–1818 German 3 1781–1783
Borkhausen, Moritz Balthasar 1760–1806 German 4 1788–1789
Hübner, Jacob 1761–1826 German 31 1790–1831
unberg, Carl Peter 1743–1828 Swedish 5 1791
Schneider, David Hinrich 1755–1826 German 3 1792–1794
Prunner, Leonhard von 17??–1830 German 8 1798
Homansegg, Johann Centurius Graf von 1766–1849 German 6 1804–1806
Ochsenheimer, Ferdinand 1767–1822 German 4 1808–1816
Godart, Jean Baptiste 1775–1825 French 6 1819–1824
Freyer, Christian Friedrich 1794–1885 German 16 1828–1851
Boisduval, Jean Baptiste Alphonse
Dechauour de 1799–1879 French 13 1828–1848
Geyer, Carl 1802–1889 German 4 1828–1832
Klug, Johann Christoph Friedrich 1775–1856 German 4 1829–1834
Meigen, Johann Wilhelm 1764–1845 German 3 1829
Eversmann, Eduard Friedrich von 1794–1860 Russian 14 1832–1851
Rambur, Jules Pierre 1801–1870 French 10 1832–1839
Herrich-Schäer, Gottlieb August Wilhelm 1799–1874 German 14 1844–1852
Zeller, Philipp Christoph 1808–1883 German 4 1847
Lederer, Julius 1821–1870 Austrian 3 1855–1864
Staudinger, Otto 1830–1900 German 17 1860–1901
Butler, Arthur Gardiner 1844–1925 British 6 1868–1898
Oberthür, Charles 1845–1924 French 9 1875–1910
Rebel, Hans 1861–1940 Austrian 5 1894–1916
Elwes, Henry John 1846–1922 British 3 1899–1900
Chapman, omas Algernon 1842–1921 British 3 1905–1920
Fruhstorfer, Hans 1866–1922 German 3 1908–1910
Verity, Ruggero 1883–1959 Italian 5 1921–1928
Kudrna, Otakar 1939– Czech 3 1976–1984
Brown, John 19??– British 3 1976–1981
Finally, quite a number of minor changes have been implemented, which correct
mistakes in names of authors, year of publication, or the incorrect use of parentheses
for species that have changed generic combinations. An example is the change of year
for 6 buttery names due to a correction of the publication date of Linnaeus’ Fauna
Svecica. Evenhuis (1997: 480) has shown convincingly that this edition was actually
published on [14 November 1760], not “1761” as stated in the title page of the work
and Bousquet (2016) also agrees with that year of publication.
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
32
Figure 4. Species richness of buttery families in Europe.
Table 6. Buttery species excluded from the European list with explanations.
Turanana panagaea Distributed outside Europe in the Asian part of Turkey and replaced by Turanana
taygetica in Europe (Hesselbarth et al. 1995; Coutsis 2005). [Junior subjective
synonym of Lycaena endymion Gerhard, 1851; misspelled as Turanana panagea in
Fauna Europaea]
(Herrich-Schäer, 1851)
Polyommatus eleniae Considered conspecic with Polyommatus orphicus based on the equal haploid
chromosome number and no dierences in mitochondrial DNA – barcoding gene
(Vishnevskaya et al. 2016).
Coutsis & De Prins, 2005
Polyommatus galloi According to the molecular study of Vila et al. (2010) P. galloi represents an
isolated population of Polyommatus ripartii and is not considered as a separate
species.
(Balletto & Toso, 1979)
Polyommatus menalcas Distributed outside Europe in Asian part of Turkey (Hesselbarth et al. 1995).
(Freyer, 1837)
Polyommatus pljushtchi Species status is based on erroneous sequences (opinion in Kudrna et al. (2011);
Shapoval and Lukhtanov (2015).) Considered here as ssp. of Polyommatus damone
(Eversmann, 1841).
Lukhtanov & Budashkin, 1993
Melitaea punica Distributed outside Europe in northern Africa (Toth et al. 2014).
Oberthür, 1876
Melitaea telona Distributed outside Europe in Levant (Toth et al. 2014).
Fruhstorfer, 1908
Pseudochazara mniszechii Distributed outside Europe in Asian part of Turkey (Hesselbarth et al. 1995). P.
tisiphone, often considered as a subspecies of P. mniszechii, was shown not to be
closely related to it (Verovnik and Wiemers 2016).
(Herrich-Schäer, 1851)
Pseudochazara beroe Distributed outside Europe in Asian part of Turkey (Hesselbarth et al. 1995).
(Freyer, 1843)
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)33
Conclusions
Taking into account the many recent research ndings, especially those with molecu-
lar methods, we think that the new taxonomy represents a step forward in stabilizing
European buttery taxonomy and nomenclature. Nevertheless, we have to note that
some groups, e.g., the genera Euchloe, Callophrys, Pseudophilotes, Melitaea, and Hip-
parchia, as well as the subgenus Agrodiaetus of the genus Polyommatus are still in need
of revision, which will certainly lead to additional changes in the future. Furthermore,
we still have large knowledge gaps for species in other regions of the Palearctic region
(especially in Central Asia), which might require changes in order to achieve a consist-
ent taxonomy of Palearctic and Holarctic butteries.
Acknowledgements
We thank Dirk Maes (Belgium) and his following collaborators for the country-level dis-
tribution data of European butteries, which were assembled for another paper on na-
tional checklists and Red Lists (Maes et al. submitted): Jiří Beneš (CZ), Dimitri Brosens
(BE), Stoyan Beshkov (BG), Simona Bonelli (IT), Jaroslaw Buszko (PL), Lisette Cantú
Salazar (LU), Louis Francis Cassar (MT), Sue Collins (GB), Milan Djuric (RS), Goran
Dusej (CH), Hallvard Elven (NO), Filip Franeta (RS), Patricia Garcia-Pereira (PT), Yurii
Geryak (UA), Philippe Goart (BE), Ádám Gór (HU), Ulrich Hiermann (AT), Helmut
Höttinger (AT), Peter Huemer (AT), Predrag Jakšić (RS), Eddie John (CY), Henrik
Kalivoda (SK), Vassiliki Kati (GR), Paul Kirkland (GB), Benjamin Komac (AD), Ádám
Kőrösi (HU), Anatolij Kulak (BY), Mikko Kuussaari (FI), Lionel L’Hoste (LU), Suvad
Lelo (BA), Xavier Mestdagh (LU), Nikola Micevski (MK), Iva Mihoci (HR), Sergiu
Table 7. List of the 14 European buttery species that are aected by the gender agreement provision.
Name Original species epithet
Agriades pyrenaicus pyrenaica
Carcharodus tripolinus tripolina
Colias crocea croceus
Cupido decoloratus decolorata
Erebia aethiopella aethiopellus
Erebia albergana alberganus
Erebia montana montanus
Erebia stiria stirius
Hipparchia azorina azorinus
Hyponephele lupina lupinus
Kretania hesperica hespericus
Lycaena dimorpha dimorphus
Lycaena ottomana ottomanus
Tarucus balkanicus balkanica
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
34
Mihut (RO), Yeray Monasterio-León (ES), Dmitry V. Morgun (RU), Tomás Murray
(IE), Per Stadel Nielsen (DK), Erling Ólafsson (IS), Erki Õunap (EE), Lazaros Pamperis
(GR), Alois Pavlíčko (CZ), Lars B. Pettersson (SE), Serhiy Popov (UA), Miloš Popović
(RS), Juha Pöyry (FI), Mike Prentice (GB), Nils Ryrholm (SE), Martina Šašić (HR),
Nikolay Savenkov (LV), Josef Settele (DE), Marcin Sielezniew (PL), Sergey Sinev (RU),
Constanti Stefanescu (ES), Giedrius Švitra (LT), Toomas Tammaru (EE), Anu Tiitsaar
(EE), Elli Tzirkalli (CY), Olga Tzortzakaki (GR), Arne Lykke Viborg (DK), Martin S.
Warren (GB), Irma Wynho (NL), and Konstantina Zografou (GR).
Our thanks also go to Ole Karsholt for his review which helped to improve the
manuscript.
VL was supported by grant N 14-14-00541 from the Russian Science Foundation
to the Zoological Institute of the Russian Academy of Sciences and ZF by grant 14-
36098G from the Czech Science Foundation.
References
Achtelik G (2006) Molekularbiologische Analyse der genetischen Diversität des Melitaea ath-
alia/celadussa-Komplexes (Lepidoptera: Nymphalidae) unter Anwendung der ISSR-PCR
auf Art-, Unterart- und Populationsebene. Dissertation, University of Bochum, 165 pp.
https://hss-opus.ub.ruhr-uni-bochum.de/opus4/frontdoor/index/index/docId/3119
Albre J, Gers C, Legal L (2008) Molecular phylogeny of the Erebia tyndarus (Lepidoptera,
Rhopalocera, Nymphalidae, Satyrinae) species group combining CoxII and ND5 mito-
chondrial genes: A case study of a recent radiation. Molecular Phylogenetics and Evolution
47: 196–210. https://doi.org/10.1016/j.ympev.2008.01.009
Balletto E, Bonelli S (2014) Case 3637 Papilio phoebus De Prunner, 1798: proposed conserva-
tion in its accustomed usage by suppression of Papilio phoebus Fabricius, 1793 (Insecta,
Lepidoptera, Papilionidae). Bulletin of Zoological Nomenclature 71(2): 75–80. https://
doi.org/10.21805/bzn.v71i2.a6
Balletto E, Cassulo LA, Bonelli S (2014) An annotated Checklist of the Italian Butteries
and Skippers (Papilionoidea, Hesperiioidea). Zootaxa 3853(1): 1–114. https://doi.
org/10.11646/zootaxa.3853.1.1
Beccaloni G, Scoble M, Kitching I, Simonsen T, Robinson G, Pitkin B, Hine A, Lyal C [Eds]
(2003) e Global Lepidoptera Names Index (LepIndex). http://www.nhm.ac.uk/our-
science/data/lepindex/lepindex/ [last accessed 25 April 2018]
Bousquet Y (2016) Litteratura Coleopterologica (1758–1900): a guide to selected books related
to the taxonomy of Coleoptera with publication dates and notes. ZooKeys 583: 1–776.
https://doi.org/10.3897/zookeys.583.7084
Coutsis JG (2005) Revision of the Turanana endymion species-group (Lycaenidae). Nota lepi-
dopterologica 27(4): 251–272. https://biodiversitylibrary.org/page/46956733
Coutsis JG (2017) A re-evaluation of certain generic transfers of species-group taxa belong-
ing to the subtribes Polyommatiti and Leptotiti (Lepidoptera: Lycaenidae, Polyommatini).
Phegea 45(2): 26–34. http://www.phegea.org/Phegea/Phegea45_2017.htm
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)35
Coutsis JG, van Oorschot H (2011) Dierences in the male and female genitalia between Iphi-
clides podalirius and Iphiclides feisthamelii, further supporting species status for the latter (Lep-
idoptera: Papilionidae). Phegea 39(1): 12–22. https://biodiversitylibrary.org/page/49125235
Cowan CF (1970) Boisduval’s Icones des Lèpidoptéres d’Europe “1832” [-1841]. Journal of the
Society for the Bibliography of Natural History 5(4): 291–302. https://doi.org/10.3366/
jsbnh.1970.5.PART_4.291
D’Aguilar J, Raimbault F (1990) Notes de bibliographie entomologique. 3. Georoy, Fourcroy
et l’article 51 du Code de Nomenclature. L’Entomologiste 46(1): 37–40. https://lento-
mologiste.fr/wp-content/uploads/1990-46/lentomologiste_1990_46_1.pdf
Dapporto L (2009) Speciation in Mediterranean refugia and post-glacial expansion of Zeryn-
thia polyxena (Lepidoptera, Papilionidae). Journal of zoological systematics and evolution-
ary research 48(3): 229–237. https://doi.org/10.1111/j.1439-0469.2009.00550.x
de Jong Y, Verbeek M, Michelsen V, Bjørn P, Los W, Steeman F, Bailly N, Basire C, Chylarecki
P, Stloukal E, Hagedorn G, Wetzel F, Glöckler F, Kroupa A, Korb G, Homann A, Häuser
C, Kohlbecker A, Müller A, Güntsch A, Stoev P, Penev L (2014) Fauna Europaea – all
European animal species on the web. Biodiversity Data Journal 2: e4034. https://doi.
org/10.3897/BDJ.2.e4034
De Moya RS, Savage WK, Tenney C, Bao X, Walberg N, Hill RI (2017) Interrelationships and
diversication of Argynnis Fabricius and Speyeria Scudder butteries. Systematic Entomol-
ogy 42: 635–649. https://doi.org/10.1111/syen.12236
Dincă V, Montagud S, Talavera G, Hernández-Roldán JL, Munguira ML, García-Barros E,
Hebert PDN, Vila R (2015) DNA barcode reference library for Iberian butteries ena-
bles a continental-scale preview of potential cryptic diversity. Scientic Reports 5: 12395.
https://doi.org/10.1038/srep12395
Dincă V, Wiklund C, Lukhtanov VA, Kodandaramaiah U, Norén K, Dapporto L, Wahlberg N,
Vila R, Friberg M (2013) Reproductive isolation and patterns of genetic dierentiation in
a cryptic buttery species complex. Journal of Evolutionary Biology 26(10): 2095–2106.
https://doi.org/10.1111/jeb.12211
Dincă V, Dapporto L, Vila R (2011a) A combined genetic-morphometric analysis unravels the
complex biogeographical history of Polyommatus icarus and Polyommatus celina Common
Blue butteries. Molecular Ecology 20(18): 3921–3935. https://doi.org/10.1111/j.1365-
294X.2011.05223.x
Dincă V, Lukhtanov VA, Talavera G, Vila R (2011b) Unexpected layers of cryptic diversity in
wood white Leptidea butteries. Nature Communications 2: 324. https://doi.org/10.1038/
ncomms1329
Dumont D (2004) Révision du genre Iolana Bethune-Baker 1914 (Lepidoptera: Lycaenidae).
Linneana belgica 19(8): 332–358.
Espeland M, Breinholt J, Willmott KR, Warren AD, Vila R, Toussaint EFA, Maunsell SC,
Aduse-Poku K, Talavera G, Eastwood R, Jarzyna MA, Guralnick R, Lohman DJ, Pierce
NE, Kawahara AY (2018) A comprehensive and dated phylogenomic analysis of butter-
ies. Current Biology 28(5): 770–778. https://doi.org/10.1016/j.cub.2018.01.061
Evenhuis NL (1997) Litteratura Taxonomica Dipterorum (1758–1930). Backhuys Publishers,
Kerkwerve, NL, 871 pp.
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
36
Ganglbauer L, Heyden L (1906) Über die Entomologia parisiensis von Georoy und Four-
croy. Wiener Entomologische Zeitung 25(7/8): 301–392. https://doi.org/10.5962/bhl.
part.5406
Grieshuber J, Worthy B, Lamas G (2012) e genus Colias Fabricius, 1807. Jan Haugum’s
annotated catalogue of the Old World Colias (Lepidoptera, Pieridae). Tshikolovets Publica-
tions, Pardubice-Bad Griesbach-Caretham-Lima, 438 pp.
Grin FJ (1931) On the Dates of the Parts of “Meigen (J. W.) Syst. Besch. Eur. Schmett.”.
Annals and Magazine of Natural History, London 8: 421.
Gross FJ (1973) Satyrus sintenisi auch in Europa, nebst Beschreibung einer neuen Unterart
(Lep., Satyridae). Entomologische Zeitschrift 83: 211–214.
Hanus J, èye M-L (2010) Parnassius phoebus (Fabricius, 1793), a misidentied species (Lepi-
doptera: Papilionidae). Nachrichten des entomologischen Vereins Apollo, Neue Folge
31(1/2): 71–84. https://www.zobodat.at/pdf/NEVA_31_0071-0084.pdf
Heikkilä M, Kaila L, Mutanen M, Peña C, Wahlberg N (2012) Cretaceous origin and repeated
tertiary diversication of the redened butteries. Proceedings of the Royal Society Bio-
logical Sciences 279(1731): 1093–1099. https://doi.org/10.1098/rspb.2011.1430
Hemming AF (1937) Hübner. A bibliographical and systematic account of the entomological works
of Jacob Hübner. Royal Entomological Society, London, 605 pp [Vol. 1], 274 pp [Vol. 2].
Hemming AF (1967) e generic names of the butteries and their type-species (Lepidoptera: Rho-
palocera). Bulletin of the British Museum (Natural History). Entomology Suppl. 9: 1–509.
Heppner JB (1981) e dates of E. J. C. Esper’s “Die Schmetterlinge in Abbildungen.... “
1776–[1830]. Archives of Natural History 10(2): 251–254. https://doi.org/10.3366/
anh.1981.10.2.251
Heppner JB (1982) Dates of selected Lepidoptera literature for the western hemisphere fauna.
Journal of the Lepidopterists’ Society 36(2): 87–111. http://images.peabody.yale.edu/lep-
soc/jls/1980s/1982/1982-36(2)87-Heppner.pdf
Hernández-Roldán JL, Vicente JC, Vila R, Munguira ML (2018) Natural history and imma-
ture stage morphology of Spialia Swinhoe, 1912 in the Iberian Peninsula (Lepidoptera,
Hesperiidae). Nota Lepidopterologica 41(1): 1–22. https://doi.org/10.3897/nl.41.13539
Hernández-Roldán JL, Dapporto L, Dincă V, Vicente JC, Hornett EA, Šíchová J, Lukhtanov V,
Talavera G, Vila R (2016) Integrative analyses unveil speciation linked to host plant shift in
Spialia butteries. Molecular Ecology 25(17): 4267–84. https://doi.org/10.1111/mec.13756
Hesselbarth G, Van Oorschot H, Wagener S (1995) Die Tagfalter der Türkei unter Berücksich-
tigung der angrenzenden Länder. Author’s edition, Bocholt, 1354 + 847 pp.
Higgins LG, Riley ND (1970) A eld guide to the butteries of Britain and Europe. Collins,
London & Glasgow, 381 pp.
ICZN (1999) International Code of Zoological Nomenclature. Fourth Edition. International
Trust for Zoological Nomenclature, London, 306 pp.
ICZN (2017) Opinion 2382 (Case 3637) – Conservation of the accustomed usage of Papilio
phoebus De Prunner, 1798 by suppression of Papilio phoebus Fabricius, 1793 not approved
(Insecta, Lepidoptera, Papilionidae). Bulletin of Zoological Nomenclature 73(2–4): 148–
149. http://www.bioone.org/doi/abs/10.21805/bzn.v73i2.a21
Jutzeler D, Lafranchis T (2011) Die Larvalstadien von Proterebia afra pyramus (De Louker &
Dils, 1987) aus dem Norden Griechenlands. Larvalentwicklung der dalmatinischen P. afra
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)37
dalmata (Godart, 1824) im Vergleich und zur Geschichte des Namens unserer Art (Lepi-
doptera: Nymphalidae, Satyrinae). Entomologica romanica 16: 5–18. http://er.lepidoptera.
ro/16_2011/ER16201101_Jutzeler_Lafranchis.pdf
Karsholt O, Nielsen ES (1986) e Lepidoptera described by C. P. unberg. Entomologica
scandinavica 16(4): 433–463. https://doi.org/10.1163/187631285X00388
Karsholt O, Nieukerken EJ van (Eds) (2011) Lepidoptera. Fauna Europaea version 2.4. http://
www.faunaeur.org [online 28 January 2011].
Karsholt O, Razowski J (Eds) (1996) e Lepidoptera of Europe. A Distributional Checklist.
Apollo Books, Stenstrup, 380 pp.
Koçak AÖ (1981) On the type-species of the genus Proterebia Roos & Arnscheid, 1980 (Saty-
ridae, Lepidoptera). Priamus 1(1): 6–7. https://archive.org/details/CentreForEntomologi-
calStudiesAnkaraPriamus11/page/n1
Kudrna O (2015) e never ending story of Schiermüller’s names – a long evaded nomen-
clatural issue of pressing urgency and a special case for the ICZN (Insecta: Lepidoptera).
Quadrina 12: 17–26.
Kudrna O, Belicek J (2005) On the ‘Wiener Verzeichnis’, its authorship and the butteries
named therein. Oedippus 23: 1–32. http://www.ufz.de/export/data/10/129759_
Oedippus_23.pdf
Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Dis-
tribution atlas of butteries in Europe. Gesellschaft für Schmetterlingsschutz e.V., Halle,
576 pp.
Lafranchis T, Delmas S, Mazel R (2015) Le contact Iphiclides feisthamelii - I. podalirius. Statut
de ces deux taxons (Lepidoptera, Papilionidae). Revue de l’Association Roussillonnaise
d’Entomologie 24(3): 111–132. http://diatheo.weebly.com/uploads/2/8/2/3/28235851/
feisthamelii_podalirius_lafranchis_2015__2_.pdf
Lamas G (2013) Papilio lachesis Hübner, 1790 has priority over Papilio nemausiaca Esper,
[1793] (Lepidoptera: Nymphalidae, Satyrinae). SHILAP Revista de lepidopterologia
41(162): 207–211. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.910.9054
&rep=rep1&type=pdf
Lefèbvre A (1831) Polyommatus ottomanus. Latreille. Magasin de zoologie, d’Anatomie com-
parée et de la Paléontologie 1(2): 19–20. [Paris]
Lempke BJ (1949) Rebel’s edition of Berge’s “Schmetterlingsbuch”. Journal of the Society
for the Bibliography of Natural History 2(5): 171–172. https://doi.org/10.3366/jsb-
nh.1949.2.5.171
Leneveu J, Chichvarkhin A, Wahlberg N (2009) Varying rates of diversication in the genus
Melitaea (Lepidoptera: Nymphalidae) during the past 20 million years. Biological Journal of
the Linnean Society 97(2): 346–361. https://doi.org/10.1111/j.1095-8312.2009.01208.x
Lorković Z (1969) Karyologischer Beitrag zur Frage der Fortpanzungsverhältnisse südeuropäis-
cher Taxone von Pieris napi (L.) (Lep., Pieridae). Biolośki Glasnik 21(1968): 95–136.
Lukhtanov VA (2000) Zur Systematik und Verbreitung der Taxa der Athamanthia dimorpha
Gruppe. Atalanta 31(1/2): 179–192. http://www.zobodat.at/pdf/Atalanta_31_0179-0192.pdf
Lukhtanov VA, Pelham JP, Cotton AM, Calhoun JV (in press) Case 3767: Papilio phoebus Fab-
ricius, 1793 (currently Parnassius phoebus) (Insecta, Lepidoptera): proposed conservation
of prevailing usage of the specic name and that of Doritis ariadne Lederer, 1853 (currently
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
38
Parnassius ariadne) by the designation of a neotype. Bulletin of Zoological Nomenclature.
[accepted 2 October, 2018]
Lvovsky AL, Morgun DV (2007) Butteries of the Eastern Europe. KMK Scientic Press, Ltd.,
Moscow, 443 pp. [In Russian]
Maes D, Verovnik R, Wiemers M, Brosens D, Beshkov S, Bonelli S, Buszko J, Cantú Salazar
L, Cassar LF, Collins S, Dincă V, Djuric M, Dusej G, Elven H, Franeta F, Garcia Pereira P,
Geryak Y, Goart P, Gór A, Hiermann U, Höttinger H, Huemer P, Jakšić P, John E, Ka-
livoda H, Kati V, Komac B, Kőrösi A, Kulak AV, Kuussaari M, L’Hoste L, Lelo S, Mestdagh
X, Micevski N, Mihut S, Monasterio León Y, Munguira ML, Murray T, Nielsen PS, Ólafs-
son E, Õunap E, Pamperis L, Pavlíčko A, Pettersson LB, Popov S, Popović M, Ryrholm
N, Šašić M, Pöyry J, Savenkov N, Settele J, Sielezniew M, Sinev S, Stefanescu C, Švitra
G, Tammaru T, Tiitsaar A, Tzirkalli E, Tzortzakaki O, van Swaay CAM, Viborg AL, Wyn-
ho I, Zografou K, Warren MS (submitted) Integrating national Red Lists for prioritising
conservation actions for European butteries. Journal of Insect Conservation. [in review]
Muñoz Sariot MG (2011) Biología y ecología de los licénidos españoles (Lepidoptera, Lycaeni-
dae). M.G. Muñoz Sariot, 384 pp.
Mutanen M, Wahlberg N, Kaila L (2010) Comprehensive gene and taxon coverage elucidates
radiation patterns in moths and butteries. Proceedings of the Royal Society Biological
Sciences 277(1695): 2839–2848. https://doi.org/10.1098/rspb.2010.0392
Nekrutenko YP (1985) New blue buttery taxa (Lepidoptera, Lycaenidae) from Transcaucasia
and Middle Asia. Vestnik Zoologii 4: 29–35. [In Russian]
Olivier A (2000) Christian Friedrich Freyer’s “Neuere Beiträge zur Schmetterlingskunde mit
Abbildungen nach der Natur”: an analysis, with new data on its publication dates (Insecta,
Lepidoptera). Beiträge zur Entomologie 50(2): 407–486. https://www.zobodat.at/pdf/
Beitraege-zur-Entomologie_50_0407-0486.pdf
Oorschot H Van, Coutsis JG (2014) e genus Melitaea Fabricius, 1807 – Taxonomy and
systematics with special reference to the male genitalia (Lepidoptera: Nymphalidae, Nym-
phalinae). Tshikolovets Publications, Pardubice, 360 pp.
PESI (2018) Pan-European Species directories Infrastructure. http://www.eu-nomen.eu/portal
[2018-04-25]
Poche F (1938) Über die Erscheinungszeit und den Inhalt mehrerer Hefte, die bibliographische
Anordnung und die verschiedenen Ausgaben von E. J. C. Esper, Die Schmetterlinge in
Abbildungen nach der Natur mit Beschreibungen. Festschrift Embrik Strand (Riga) 4: 453–463.
Rebel H (1914) Vorweisung von Belegematerial über die Alveus- und Malvae- Gruppe der
Gattung Hesperia. (Versammlung der Sektion für Lepidopterologie). Verhandlungen der
kaiserlich-königlichen Zoologisch-Botanischen Gesellschaft Wien 64: 189–201.
Reiner J, Hohenwarth S von (1792) Botanische Reisen nach einigen Oberkärntnerischen und
benachbarten Alpen unternommen, und nebst einer ausführlichen Alpenora und ento-
mologischen Beiträgen als ein Handbuch für reisende Liebhaber. Erste Reise im Jahr 1791,
C. F. Walliser, Klagenfurt, 270 pp. [6 pls] https://www.biodiversitylibrary.org/item/84327
Sattler K, Tremewan WG (1984) e Lepidoptera names of Denis & Schiermüller – a case
for stability. Nota lepidopterologica 7(3): 282–285. http://biostor.org/reference/117914
Sattler K, Tremewan WG (2009) e authorship of the so-called ‘Wiener Verzeichnis’. Nota
lepidopterologica 32(1): 3–10. http://biostor.org/reference/234732
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)39
Savela M (2018) Lepidoptera and some other life forms. Online Database. http://www.nic.
funet./pub/sci/bio/life/insecta/lepidoptera/ [last accessed on 25 April 2018]
Schmitt T, Louy D, Zimmermann E, Habel JC (2016) Species radiation in the Alps: multiple
range shifts caused diversication in Ringlet butteries in the European high mountains.
Organisms Diversity & Evolution 16 (4): 791–808. https://doi.org/10.1007/s13127-016-
0282-6
Seitz A (1907–1909): Die Groß-Schmetterlinge der Erde. 1, 1 Die Palaearktischen Tagfalter.
Fritz Lehmann’s Verlag, Stuttgart.
Shapoval N, Lukhtanov V (2015) Taxonomic position and status of Polyommatus (Agrodiaetus)
iphigenia (Lepidoptera, Lycaenidae) from the Peloponnese, southern Greece. Folia Bio-
logica (Kraków) 63: 295–300. https://doi.org/10.3409/fb63_4.295
Simonsen TJ (2006a) Fritillary phylogeny, classication, and larval host plants: reconstructed
mainly on the basis of male and female genitalic morphology (Lepidoptera: Nymphali-
dae: Argynnini). Biological Journal of the Linnean Society 89: 627–673. https://doi.
org/10.1111/j.1095-8312.2006.00697.x
Simonsen TJ (2006b) Glands, muscles and genitalia. Morphological and phylogenetic impli-
cations of histological characters in the male genitalia of Fritillary butteries (Lepidop-
tera: Nymphalidae: Argynnini). Zoologica Scripta 35: 231–241. https://doi.org/10.1111/
j.1463-6409.2006.00225.x
Simonsen TJ, Wahlberg N, Brower AVZ, de Jong R (2006) Morphology, molecules and fritil-
laries: approaching a stable phylogeny for Argynnini (Lepidoptera: Nymphalidae). Insect
Systematics & Evolution 37: 405–418. https://doi.org/10.1163/187631206788831407
Talavera G, Lukhtanov VA, Pierce NE, Vila R (2013) Establishing criteria for higher-level
classication using molecular data: the systematics of Polyommatus blue butteries
(Lepidoptera, Lycaenidae). Cladistics 29(2): 166–192. https://doi.org/10.1111/j.1096-
0031.2012.00421.x
Tatarinov AG, Gorbunov PYu (2015) Spatial organisation of the Ural buttery fauna (Lepi-
doptera: Papilionoidea & Hesperioidea). Fauna of the Urals and Siberia 1: 48–76. https://
cyberleninka.ru/article/v/prostranstvennaya-organizatsiya-fauny-bulavousyh-cheshuekry-
lyh-lepidoptera-papilionoidea-hesperioidea-urala
Tolman T, Lewington R (2008) Collins Buttery Guide. e most complete guide to the but-
teries of Britain and Europe. HarperCollins, London, 384 pp.
Toth JP, Bereczki J, Varga Z, Rota J, Sramko G, Wahlberg N (2014) Relationships within
the Melitaea phoebe species group (Lepidoptera: Nymphalidae): new insights from mo-
lecular and morphometric information. Systematic Entomology 39: 749–757. https://doi.
org/10.1111/syen.12083
Tremewan WG (1988) C. F. Freyer’s Neuere Beiträge zur Schmetterlingskunde mit Abbildun-
gen nach der Natur. Bulletin of the British Museum (Natural History), Historical series
16(1): 1–16.
Tshikolovets VV (2011) Butteries of Europe and the Mediterranean Area. Tshikolovets Pub-
lications, Pardubice, 544 pp.
Tsvetkov EV (2006) On two species of genus Oeneis Hübner, 1819 (Lepidoptera: Satyridae)
from the Polar Urals. Eversmannia 5: 11–14. http://eversmannia.entomology.ru/evers-
mannia_05_11.pdf
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
40
van Nieukerken E, Kaila L, Kitching I, Kristensen NP, Lees D, Minet J, Mitter J, Mutanen
M, Regier J, Simonsen T, et al. (2011) Order Lepidoptera Linnaeus, 1758. Zootaxa 3148:
212–221. http://www.mapress.com/zootaxa/2011/f/zt03148p221.pdf
Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira LM, Šašić M, Settele J, Verovnik
R, Verstrael T, Warren M, Wiemers M, Wynho I (2010) European Red List of Butteries.
Publications Oce of the European Union, Luxembourg, 47 pp. http://ec.europa.eu/envi-
ronment/nature/conservation/species/redlist/downloads/European_butteries.pdf
Verovnik R, Wiemers M (2016) Species delimitation in the Grayling genus Pseudochazara (Lep-
idoptera, Nymphalidae, Satyrinae) supported by DNA barcodes. ZooKeys 600: 131–154.
https://doi.org/10.3897/zookeys.600.7798
Vila R, Lukhtanov VA, Talavera G, Gil-T F, Pierce NE (2010) How common are dot-like distri-
bution ranges? Taxonomical oversplitting in Western European Agrodiaetus (Lepidoptera,
Lycaenidae) revealed by chromosomal and molecular markers. Biological Journal of the
Linnean Society 101: 130–154. https://doi.org/10.1111/j.1095-8312.2010.01481.x
Vishnevskaya MS, Saitdinova AF, Lukhtanov VA (2016) Karyosystematics and molecular taxon-
omy of the anomalous blue butteries (Lepidoptera, Lycaenidae) from the Balkan Peninsula.
Comparative Cytogenetics 10(5): 1–85. https://doi.org/10.3897/CompCytogen.v10i5.10944
Warren BCS (1926) Monograph of the tribe Hesperiidi (European species) with revised classi-
cation of the subfamily Hesperiinae (Palaearctic species) based on the genital armature of the
males. Transactions of the entomological Society of London 74: 1–170. [plts 1–60, 2 gs]
Welter-Schultes FW (2013) Guidelines for the capture and management of digital zoological
names information, version 1.1, released on March 2013. Global Biodiversity Information
Facility, Copenhagen, 126 pp. http://www.gbif.org/orc/?doc_id=2784
Wiemers M, Gottsberger B (2010) Discordant patterns of mitochondrial and nuclear dieren-
tiation in the Scarce Swallowtail Iphiclides podalirius feisthamelii (Duponchel, 1832) (Lepi-
doptera: Papilionidae). Entomologische Zeitschrift 120(3): 111–115.
Wiemers M, Stradomsky BV, Vodolazhsky DI (2010) A molecular phylogeny of Polyommatus
s. str. and Plebicula based on mitochondrial COI and nuclear ITS2 sequences. European
Journal of Entomology 107: 325–336. https://doi.org/10.14411/eje.2010.041
Zinetti F, Dapporto L, Vovlas A, Chelazzi G, Bonelli S, Balletto E, Cio C (2013) When the
rule becomes the exception. No evidence of gene ow between two Zerynthia cryptic but-
teries suggests the emergence of a new model group. PLoS ONE 8(6): e65746. https://
doi.org/10.1371/journal.pone.0065746
Appendix 1
Evidence that the junior synonym Polyommatus ottomanus Lefèbvre, 1831 has been
used to denote the taxon currently known as Lycaena ottomana (Lefèbvre, [1831]), in
at least 25 works, published by at least 10 authors during the last 50 years and encom-
passing a span of not less than 10 years, and thus fullling the conditions of article
23.9.1.2 of the code in order to reverse the precedence of Lycaena legeri Freyer, 1830.
Already during the decades immediately following the publication of legeri Freyer,
this name does not seem to have been used but as a subjective junior synonym of ot-
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)41
tomanus Lefèbvre. e latter name was thought to represent the valid name and was
rst used in its original combination (Polyommatus ottomanus) and starting from the
20th century mostly in the combination of Chrysophanus ottomanus:
• Brullé(1832):Polyommatus ottomanus Lef.
• Herrich-Schäer(1843):Polyomm. Ottomanus Lef.; synonym: Legeri
• Mann(1862):Polyommatus ottomanus Lef.
• Lang(1884):Polyommatus Ottomanus, Lefebrve [sic]; synonym: Legeri, Frr.
• Rebel(1903):Chrysophanus Ottomanus Lef.
• Spuler(1908):Chrysóphanus ottománus Lef.
• Courvoisier (1921): Chrysophanus ottomanus Lefebvre 1830; synonym: legeri
Freyer, 1832
• Galvagni(1924):Chrysophanus ottomanus Lef.
• RebelandZerny(1934):Chrysophanus ottomanus Lef.
• Kanus(1963):Heodes (Chrysophanus) ottomanus Lef.
During the last 50 years we are not aware of any use of legeri Freyer, except as a
subjective junior synonym of ottomanus Lefèbvre. e latter name was mostly used
in the combination of Heodes ottomanus and later as Lycaena ottomanus or, due to the
gender agreement rule of the code, as Lycaena ottomana:
1. Higgins and Riley (1970): Heodes ottomanus Lefèbvre, 1830
2. Higgins (1975): Heodes ottomanus Lefèbvre 1830
3. Higgins and Riley (1978): Heodes ottomanus Lefèbvre 1830
4. Schmidt-Koehl (1980): Heodes ottomanus Lefebvre, 1830
5. Krzywicki (1981): Heodes ottomanus Lefevre [sic]
6. Wiemers (1983): Heodes ottomanus ottomanus Lef.
7. Higgins and Riley (1983): Heodes ottomanus Lefèbvre, 1830
8. Kudrna (1986): Lycaena ottomanus Lefebvre, 1830
9. Jakšić (1988): Lycaena ottomanus Lefèbvre, 1830
10. Schaider and Jakšić (1989): Lycaena ottomanus Lef.
11. Hesselbarth et al. (1995): Lycaena ottomana (Lefebvre, [1830]); synonym: “Gen.
IX. Lycaena. 182. Pap. Legeri” Freyer, C.F., [Dezember] 1830
12. Karsholt and Razowki (1996): Lycaena ottomanus (Lefèbvre, 1830)
13. Pamperis (1997): Heodes ottomanus
14. Jakšić (1998): Lycaena ottomanus Lefèbvre, 1830
15. Tolman and Lewington (1998): Lycaena ottomana (Lefèbvre, 1830)
16. Abadjiev (2001): Lycaena ottomana (Lefebvre, [1830])
17. Bozano and Weidenhoer (2001): Lycaena ottomanus (Lefebvre, 1830); synonym:
legeri Freyer, 1839
18. Mihoci et al. (2005): Lycaena ottomanus (Lefèbvre, 1830)
19. Coutsis and Ghavalas (2006): Lycaena ottomanus (Lefebvre, 1830)
20. Wagener (2006): Lycaena ottomanus (Lefebvre, 1830)
21. Settele et al. (2008): Lycaena ottomana (Lefebvre, 1830)
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
42
22. Tolman and Lewington (2008): Lycaena ottomana Lefèbvre, 1830
23. Pamperis (2009): Lycaena ottomanus
24. Van Swaay et al. (2010): Lycaena ottomana (Lefèbvre, 1830)
25. Tshikolovets (2011): Lycaena ottomana (Lefebvre, [1830]); synonym: legeri Freyer,
1839
26. Kemal and Koçak (2011): Lycaena (Heodes) ottomanus (Lefèbvre, [1830]); syno-
nym: legeri Freyer, 1830
27. Kudrna et al. (2011): Lycaena ottomana (Lefebvre, 1831)
28. Koren et al. (2012): Lycaena ottomana (Lefèbvre, 1830)
29. Verovnik & Popović (2012): Lycaena ottomanus (Lefèbvre, 1830)
30. Kudrna et al. (2015): Lycaena ottomana (Lefebvre, 1831)
31. Çalişkan (2016): Lycaena ottomanus (Lefèbvre, [1830])
References:
Abadjiev S (2001) An atlas of the Distribution of the Butteries of Bulgaria (Lepidoptera: Hes-
perioidea & Papilionoidea). Zoocartographia Balcanica 1: 1–335.
Baytaş A (2007) A eld guide to the butteries of Turkey. NTV, Istanbul, 218 pp.
Bozano GC, Weidenhoer Z (2001) Lycaenidae part I. Subfamily Lycaeninae. In: Bozano GC
(Ed.) Guide to the butteries of the Palearctic region. Omnes Artes, Milano, 62 pp.
Brullé M (1832) Expédition scientique de Morée. Section des Sciences Physiques. Tome III. 1re
Partie – Zoologie. Deuxième Section – Des animaux articulé. FG Levrault, Strasbourg, 402 pp.
Çalişkan SS (2016) Contribution to the Buttery Fauna of the Gevne Valley (South Turkey: West
Toros) – Entomofauna 37: 281–296. https://www.zobodat.at/pdf/ENT_0037_0281-0296.pdf
Courvoisier LG (1921) Zur Synonymie des Genus Lycaena. Deutsche entomologische Zeitschrift
Iris 35: 54–110. http://www.zobodat.at/pdf/Deutsche-ent-Z-Iris_35_0054-0110.pdf
Coutsis JG, Ghavalás N (2006) Butteries and Skippers from the Greek island of Évvia (=
Euboea) (Lepidoptera: Hesperioidea & Papilionoidea). Phegea 34(2): 49–55. http://www.
phegea.org/Phegea/2006/Phegea34-2_49-55.pdf
Galvagni E (1935) Griechische Falter, insbesondere über die auf der Griechenlandreise der Uni-
versität Wien, Ostern 1933, 8.–23. April beobachteten Schmetterlinge. Schluß. Zeitschrift
des Österreichischen Entomologischen Vereins 20: 5–7. https://www.zobodat.at/pdf/
ZOEV_20_0005-0007.pdf
Herrich-Schäer GAW (1843) Systematische Bearbeitung der Schmetterlinge von Europa,
zugleich als Text, Revision und Supplement zu Jakob Hübner’s Sammlung europäischer
Schmetterlinge. Bd. 1. Die Tagfalter. Manz, Regensburg, 164 pp.
Hesselbarth G, Van Oorschot H, Wagener S (1995) Die Tagfalter der Türkei unter Berücksich-
tigung der angrenzenden Länder. Author’s edition, Bocholt, 1354 + 847 pp.
Higgins LG, Riley ND (1970) A eld guide to the butteries of Britain and Europe. Collins,
London & Glasgow, 381 pp.
Higgins LG (1975) e classication of European Butteries. Collins, London & Glasgow, 320 pp.
Higgins LG, Riley ND (1978) Die Tagfalter Europas und Nordwestafrikas. Übersetzt und bear-
beitet von Dr. Walter Forster. 2. Auage. Paul Parey, Hamburg & Berlin, 377 pp.
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)43
Higgins LG, Riley ND (1983) A eld guide to the butteries of Britain and Europe (5th edn).
Collins, London, 384 pp.
Jakšić P (1988) Privremene Karte Rasprostranjenosti Dnevnih Leptira Jugoslavije / Provisional
Distribution Maps of the Butteries of Yugoslavia (Lepidoptera, Rhopalocera). Societas
Entomologica Jugoslavica, Zagreb, 215 pp.
Jakšić P (1998) Male genitalia of butteries on Balkan Peninsula with a checklist (Lepidoptera:
Hesperioidea and Papilionoidea). František Slamka, Bratislava, 144 pp.
Kanus A (1963) Türkiye Lepidoptera Faunası İçin İlkel Liste. III. Bıtkı Koruma Bülteni 3:
83–85.
Karsholt O, Razowski J (Eds) (1996) e Lepidoptera of Europe. A Distributional Checklist.
Apollo Books, Stenstrup, 380 pp.
Kemal M, Koçak AÖ (2011) A synonymical, and distributional checklist of the Papilionoidea
and Hesperioidea of East Mediterranean countries, including Turkey (Lepidoptera). Pria-
mus (Suppl.) 25: 1–162. [42 pls]
Koren T, Štih A, Trkov D, Črne M (2012) New records of Grecian Cooper, Lycaena ottomana
(Lefèbvre, 1830) (Lep.: Lycaenidae) in Croatia. Entomologist’s Record and Journal of Vari-
ation 124: 215–223.
Krzywicki M (1981) Anmerkungen zur Tagfalterfauna Bulgariens. Nota lepidopterologica 4(1–
2): 29–46. https://www.zobodat.at/pdf/Nota-lepidopterologica_4_0029-0046.pdf
Kudrna O (1986) Aspects of the Conservation of Butteries in Europe. In: Kudrna O (Ed.)
Butteries of Europe, vol 8, Aula, Wiesbaden, 323 pp.
Kudrna O, Harpke A, Lux K, Pennerstorfer J, Schweiger O, Settele J, Wiemers M (2011) Distribu-
tion atlas of butteries in Europe. Gesellschaft für Schmetterlingsschutz e.V., Halle, 576 pp.
Kudrna O, Pennerstorfer J, Lux K (2015) Distribution Atlas of European Butteries and Skip-
pers. Peks, Schwanfeld, 632 pp.
Lang HC (1884) Rhopalocera Europae Descripta et Delineata. e butteries of Europe de-
scribed and gured. L. Reeve, London, 396 pp. https://doi.org/10.5962/bhl.title.126361
Mann JJ (1862) Verzeichniss der im Jahre 1851 bei Brussa in Kleinasien gesammelten Schmet-
terlinge. Tafel 3. Wiener Entomologische Monatsschrift 6: 356–371. https://biodiversityli-
brary.org/page/31455868
Mihoci I, Tvrtković N, Šašić M (2005) Grecian Copper Lycaena ottomanus (Lefèbvre, 1830)
(Lepidoptera, Lycaenidae) – a new species in the Croatian buttery fauna. Natura Croatica
14(4): 255–262. https://hrcak.srce.hr/le/2746
Pamperis LN (1997) e Butteries of Greece. Bastas-Plessas, Athens, 559 pp.
Pamperis LN (2009) e Butteries of Greece. 2nd revised edition. Editions Pamperis, Lárisa,
766 pp.
Rebel H (1903) Studien über die Lepidopterenfauna der Balkanländer. 1. Teil: Bulgarien und
Ostrumelien. Annalen des naturhistorischen Museums in Wien 18: 123–348.
Rebel H, Zerny H (1934) Wissenschaftliche Ergebnisse der im Auftrage und mit Kosten der Akad-
emie der Wissenschaften in Wien im Jahre 1918 entsendeten Expedition nach Nordalbanien.
Die Lepidopterenfauna Albaniens (mit Berücksichtigung der Nachbargebiete). Denkschriften
der Akademie der Wissenschaften. Mathematisch Naturwissenschaftliche Klasse 103: 37–161.
Schaider P, Jakšić P (1989) Die Tagfalter von jugoslawisch Mazedonien. Paul Schaider,
München, 82 pp. [46 pls, 199 maps]
Martin Wiemers et al. / ZooKeys 811: 9–45 (2018)
44
Schmidt-Koehl W (1980) Geographisch-entomologische Studienreise nach Südgriechenland im
Juli 1979. Atalanta 11: 212–233. https://www.zobodat.at/pdf/Atalanta_11_0212-0233.pdf
Settele J, Kudrna O, Harpke A, Kühn I, Van Swaay C, Verovnik R, Warren M, Wiemers M,
Hanspach J, Hickler T, Kühn E, Van Halder I, Veling K, Vliegenthart A, Wynho I, Sch-
weiger O (2008) Climatic Risk Atlas of European Butteries. Pensoft, Soa, Moscow.
BioRisk 1 (Special Issue): 1–710. https://doi.org/10.3897/biorisk.1
Spuler A (1908) Die Schmetterlinge Europas. I. Band. Schweizerbart, Stuttgart, 385 pp.
Tolman T, Lewington R (1998) Die Tagfalter Europas und Nordwestafrikas. Übersetzt und
bearbeitet von Matthias Nuss. Kosmos, Stuttgart, 319 pp.
Tolman T, Lewington R (2008) Collins Buttery Guide. e most complete guide to the but-
teries of Britain and Europe. HarperCollins, London, 384 pp.
Tshikolovets VV (2011) Butteries of Europe and the Mediterranean Area. Tshikolovets Pub-
lications, Pardubice, 544 pp.
Van Swaay CAM, Cuttelod A, Collins S, Maes D, Munguira LM, Šašić M, Settele J, Verovnik
R, Verstrael T, Warren M, Wiemers M, Wynho I (2010) European Red List of Butteries.
Publications Oce of the European Union, Luxembourg, 47 pp. http://ec.europa.eu/envi-
ronment/nature/conservation/species/redlist/downloads/European_butteries.pdf
Verovnik R, Popović M (2012) Annotated checklist of Albanian butteries (Lepidoptera, Papilio-
noidea and Hesperioidea). ZooKeys 323: 75–89. https://doi.org/10.3897/zookeys.323.5684
Wagener PS (2006) Buttery Diversity and Protection in Turkey. Bonner Zoologische Beiträge
54(1): 3–23. https://www.zobodat.at/pdf/Bonner-Zoologische-Beitraege_54_0003-0023.pdf
Wiemers M (1983) Tagfalterbeobachtungen in Mittelgriechenland im August 1982. Nach-
richten des entomologischen Vereins Apollo, Neue Folge 4(2): 25–58. https://www.zobo-
dat.at/pdf/NEVA_4_0025-0058.pdf
Supplementary material 1
Distributional checklist of European butteries (country checklist)
Authors: Martin Wiemers, Emilio Balletto, Vlad Dincă, Zdenek Faltynek Fric, Gerar-
doLamas, Vladimir Lukhtanov, Miguel L. Munguira, ChrisA.M.vanSwaay, Roger
Vila, Albert Vliegenthart, Niklas Wahlberg, Rudi Verovnik
Data type: occurrence
Copyright notice: is dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). e Open Database License
(ODbL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.811.28712.suppl1
An updated checklist of the European Butteries (Lepidoptera, Papilionoidea)45
Supplementary material 2
Distributional checklist of European butteries (CoL)
Authors: Martin Wiemers, Emilio Balletto, Vlad Dincă, Zdenek Faltynek Fric, Gerar-
doLamas, Vladimir Lukhtanov, Miguel L. Munguira, ChrisA.M.vanSwaay, Roger
Vila, Albert Vliegenthart, Niklas Wahlberg, Rudi Verovnik
Data type: occurrence
Copyright notice: is dataset is made available under the Open Database License
(http://opendatacommons.org/licenses/odbl/1.0/). e Open Database License
(ODbL) is a license agreement intended to allow users to freely share, modify, and
use this Dataset while maintaining this same freedom for others, provided that the
original source and author(s) are credited.
Link: https://doi.org/10.3897/zookeys.811.28712.suppl2
... The primary resources we referred to are as follows: (1) the checklists of Western Palaearctic butterflies by Wiemers et al. (2018) and Middleton-Welling et al. (2020); and (2) a series of DNAbarcode libraries of Eurasiatic butterflies (Dapporto et al., 2019;Dincă et al., 2011Dincă et al., , 2015Dincă et al., , 2021Hausmann et al., 2011;Huemer & Tarmann, 2016;Litman et al., 2018;Lukhtanov et al., 2009;Menchetti et al., 2021). We revised the checklists and added 2541 specimens sequenced de novo, including a comprehensive DNA-barcode library for Maghreb and Macaronesia. ...
... We revised and updated a recent butterfly checklist for Europe (Wiemers et al., 2018) and one for Europe and Maghreb (Middleton-Welling et al., 2020) (Table S1). For the taxonomic revision, we accepted the conclusions of the most updated literature combining at least quantitative morphology and different genetic markers or based on genomic approaches (including double digest restrictionsite associated DNA sequencing and phylogenomics) (see Table S2 and references therein). ...
... We included the European mainland and the islands under European administration in the Mediterranean, North and Baltic seas. No obvious faunistic boundaries exist to the east, and following previous checklists (Middleton-Welling et al., 2020;Wiemers et al., 2018) we included the western slopes of the Urals and excluded the Caucasus and western Kazakhstan. Given that any geographical boundary includes taxa at their distribution limit, we used a wider "dataset area" to provide context ( Figure 1). ...
Article
Full-text available
Motivation: Butterflies represent a model in biology and a flagship group for invertebrate conservation. We provide four new resources for the Western Palaearctic butterflies: (1) an updated checklist comprising 552 species; (2) a curated dataset of 32,126 mitochondrial cytochrome c oxidase subunit I (COI) sequences for 532 species, including a de novo reference library for the Maghreb (Morocco, northern Algeria and Tunisia) and Macaronesia (Azores, Madeira and Canary Islands); (3) seven indexes of intraspecific genetic variation (IGV): observed and expected number of haplotypes, haplotype and nucleotide diversity, two fixation indexes and maximum p-distance; and (4) species-level maps illustrating the distribution of COI variability and haplotype networks. The updated checklist will be fundamental for any application dealing with butterfly diversity in the Western Palaearctic. The IGV indexes provide measures for genetic polymorphism and spatial structure and represent proxies for dispersal capacity. These resources will facilitate comparative studies of macrogenetics, foster integrative taxonomy and aid conservation strategies. Main types of variables contained: A complete species checklist in table format, 32,126 mitochondrial DNA barcodes provided with metadata (species membership, WGS84 coordinates and sequence length) and a book in PDF format, including the IGV atlas and indexes, are provided. Spatial location and grain The checklist encompasses Europe up to the Urals in the east, north Macaronesia (the Azores, Madeira and the Canary Islands) and the Maghreb (Morocco, northern Algeria and Tunisia). COI sequences have been retained in the geographical interval of −31.3 to 67.5° of longitude and 27.5–71.2° of latitude. Time period and grain: COI sequences originate from studies published between 1998 and 2022 and from de novo sequencing of 2541 specimens done between 2007 and 2022. Major taxa and level of measurement: Butterflies (Lepidoptera: Papilionoidea), analysed from individual to species level. Software format: Data and functions to manage the dataset are provided in the iodatabase R package (https://github.com/leondap/iodatabase) and in Dryad (https://doi.org/10.5061/dryad.9w0vt4bjj).
... Moreover, the taxonomy of this group seems to be approaching a consensus (e.g. Wiemers et al., 2018), although debate still exists, as there have been recent rearrangements (Zhang et al., 2020) and cryptic species continue to be discovered (Hinojosa et al., 2021). Most work has focused on Europe, so the taxonomic framework and barcode reference libraries for North Africa are much less developed, although this region shares a Mediterranean biome and many species with Europe. ...
... For this study, we limited the area of interest to Europe [as defined in Wiemers et al. (2018)] and north-western Africa (defined as Morocco, Algeria and Tunisia). To recover ecological interactions, records of Hesperiidae that were parasitized from the study area and/or included information on their hostplant, accumulated by the authors during the course of their respective research, were extracted from collection databases of the authors. ...
... Morphological identifications for both Hesperiidae and their parasitoids were also provided to the lowest possible taxonomic level and compared to those obtained through molecular analysis. The taxonomy of Hesperiidae followed Wiemers et al. (2018) with modifications from Zhang et al. (2020) and Hinojosa et al. (2021) for European species, and Tshikolovets (2011) for species restricted to Africa. Hostplants were identified morphologically in the field or from pressed samples; identifications were verified by botanists Llorenç Sáez (Autonomous University of Barcelona, Barcelona) and Modesto Luceño (Pablo de Olavide University, Seville), and the taxonomy follows the Plants of the World Online initiative (POWO, 2022). ...
Article
Full-text available
The study of ecological interactions between plants, phytophagous insects and their natural enemies is an essential but challenging component for understanding ecosystem dynamics. Molecular methods such as DNA barcoding can help elucidate these interactions. In this study, we employed DNA barcoding to establish hostplant and parasitoid interactions with hesperiid butterflies, using a complete reference library for Hesperiidae of continental Europe and north-western Africa (53 species, 100% of those recorded) based on 2934 sequences from 38 countries. A total of 233 hostplant and parasitoid interactions are presented, some recovered by DNA barcoding larval remains or parasitoid cocoons. Combining DNA barcode results with other lines of evidence allowed 94% species-level identification for Hesperiidae, but success was lower for parasitoids, in part due to unresolved taxonomy. Potential cases of cryptic diversity, both in Hesperiidae and Microgastrinae, are discussed. We briefly analyse the resulting interaction networks. Future DNA barcoding initiatives in this region should focus attention on north-western Africa and on parasitoids, because in these cases barcode reference libraries and taxonomy are less well developed.
... In our study system, both the ML inference and ASTRAL species tree inference recovered the same set of major clades in both the target enrichment and ddRAD approaches, thus providing a consistent phylogenetic picture for the group. M. celadussa was long considered as a subspecies of M. athalia (Higgins, 1955) but was recently given a full species status (Leneveu et al., 2009;Wiemers et al., 2018). We (Table 2). ...
Article
Full-text available
Parapatrically distributed taxa pose a challenge for species delimitation due to the presence of gene flow and inherent arbitrariness of exactly defining the species boundaries in such systems. We tackled the problem of species delimitation in a parapatric species pair of Melitaea butterflies using two popular genomic methods—double digest restriction-site associated DNA sequencing (ddRAD) and target enrichment. We compared newly generated target enrichment dataset with 1733 loci to the already available ddRAD data from a previous study on the same set of specimens using a suite of phylogenetic, population genetic, and species delimitation methods. We recovered consistent phylogenetic relationships across the datasets, both demonstrating the presence of a genetically distinct Balkan lineage and paraphyly of Melitaea athalia with respect to Melitaea celadussa. Population genetic STRUCTURE analyses supported the presence of two species when using ddRAD data, but three species when using target enrichment, while a Bayes factor delimitation analysis found both two and three species scenarios equally decisive in both datasets. As the results obtained from both methods were largely congruent, we discuss some practical considerations and benefits of target enrichment over RAD sequencing. We conclude that the choice of method of genomic data collection does not influence the results of phylogenetic analyses at alpha taxonomic level, given a sufficient number of loci. Finally, we recommend a solution for delineating species in parapatric scenarios by proposing that parapatric taxa be consistently classified as subspecies or complete species, but not both, to promote taxonomic stability.
... Here, a new checklist of the currently accepted names of the larval foodplants of the European butterflies has been created. Wiemers et al. (2018) has been used to define the list of European butterflies. Tshikolovets (2011) was used to create an initial list of larval foodplants. ...
Article
Full-text available
Successful conservation of butterflies is dependent on knowing which larval foodplants they use. However, many published lists of larval foodplants have been copied from previous lists, which in turn have been copied from previous lists. Consequently, errors have crept in, and many plant names have long been superseded. This can result in duplicates in the list, with the same plant being given two different names. Most plant lists do not include the authority, which can make it difficult or impossible to identify which plant is being referred to. For the first time, a list of the current accepted plant names utilised by 471 European butterfly larvae is presented, with references. Where possible, errors in previous lists have been removed. The list of larval foodplants doubled from previous published lists. This has resulted in a list of 1506 different plant species in 72 different families. 86 plant records are only known at the generic level. Larval foodplants of 25 butterfly species are currently unknown. Whilst most plant families are utilised by less than six butterfly species, a few plant families are particularly favoured, with the Poaceae and Fabaceae being the most popular. Similarly, most plant species are only utilised by a few butterfly species, but Festuca ovina and Festuca rubra are favoured by a large number of butterfly species. 20% of European butterfly larvae are monophagous, 50% are oligophagous, and 30% are polyphagous, with Celastrina argiolus able to use plants in 19 different families.
... Only recently, it has increasingly been recognised as a distinct species (e.g. García-Barros et al., 2013;Tshikolovets, 2011;Wiemers et al., 2018). Its taxonomic status and its placement within the charlonia group (subgenus Elphinstonia)which, according to Back et al. (2006), includes E. bazae, E. charlonia, E. lucilla Butler, 1886, E. penia (Freyer, 1852 and E. transcaspica (Staudinger 1892)is supported by mitochondrial DNA barcodes (Back et al., 2006;Dinc a et al., 2015Dinc a et al., , 2021, but no nuclear DNA evidence has been published. ...
Article
Full-text available
Although both positive (expansion of thermophilous species) and negative effects (retraction of cold‐adapted species) have been attributed to global warming, range shifts may be constrained by the ecological traits of species. This can be especially true for highly specialised organisms like the Spanish Greenish Black‐tip (Euchloe bazae), an Iberian endemic specialist of semiarid steppes with a debated taxonomic and conservation status. Here, we first seek to clarify the taxonomic status of this butterfly and its populations by using multilocus phylogenetic inference. Then, we update its distribution range and employ ecological niche modelling, combined with other sources of data, to re‐evaluate its conservation status. Our results confirm E. bazae as a well‐differentiated species with one of the most restricted distribution ranges among the European butterflies. We demonstrate that its two disjunct populations, regarded as subspecies, are genetically differentiated and should be treated as independent management units. Climate models under two future emission scenarios suggest an increase of the area climatically suitable. However, the suitability of the areas currently occupied is estimated to decrease, meaning that rapid range shifts could be required for the survival of the species. Given the presumably low dispersal capabilities of E. bazae, its current restricted distribution, high degree of population fragmentation (divided in two distant populations), low intrapopulation genetic variability, decline in extension and abundance, low densities, high yearly fluctuations, and numerous threats to its habitat, we consider that their populations are extremely fragile and we propose to consider it ‘Endangered’ [EN B1ab(i,ii,iii,iv); B2ab(i,ii,iii,iv)]. Our results confirm E. bazae as a well‐differentiated species and show that its two disjunct populations, regarded as subspecies, are genetically differentiated and should be treated as independent management units. Climate models under two future emission scenarios suggest an increase of the area climatically suitable. However, the suitability of the areas currently occupied is estimated to decrease, meaning that rapid range shifts could be required for the survival of the species. Given the presumably low dispersal capabilities of E. bazae and complementary data gathered from other studies, we propose to consider it ‘Endangered’ [EN B1ab(i,ii,iii,iv); B2ab(i,ii,iii,iv)]. Tot i que s'han atribuït tant efectes positius (expansió d'espècies termòfiles) com negatius (contracció d'espècies adaptades al fred) a l'escalfament global, canvis en les distribucions poden estar condicionats pels trets ecològics de les espècies. Això pot ser especialment cert per a organismes altament especialitzats com la grogueta del desert (Euchloe bazae), un endemisme ibèric especialista d'estepes semiàrides amb un estatus taxonòmic i de conservació debatut. En aquest estudi, primer cerquem esclarir l'estatus taxonòmic d'aquesta papallona i de les seves poblacions mitjançant la inferència filogenètica multilocus. També actualitzem la seva distribució i fem servir la modelització de nínxols ecològics combinada amb altres dades per reavaluar el seu estatus de conservació. Els nostres resultats confirmen que E. bazae és una espècie ben diferenciada i amb una de les distribucions més restringides entre les papallones europees. Demostrem que els seus dos nuclis de població, cadascun considerat una subespècie, són diferents genèticament i s'han de tractar com a unitats de gestió independents. Els models climàtics elaborats amb dos escenaris d'emissions futurs suggereixen un augment de l'àrea climàticament adient. No obstant això, s'estima que la idoneïtat de l'àrea actualment ocupada disminuirà, el que podria requerir canvis ràpids en la seva distribució per garantir‐ne la supervivència. Tenint en compte que E. bazae disposaria d'una capacitat de dispersió baixa, la distribució actual reduïda, l'alt grau de fragmentació (dividida en dues poblacions llunyanes), la baixa variabilitat genètica intrapoblacional, la disminució de l'extensió i l'abundància, les baixes densitats, les elevades fluctuacions anuals i les nombroses amenaces al seu hàbitat, considerem que les poblacions d'aquesta papallona són extremament fràgils i proposem considerar‐la “En perill” [EN B1ab(i,ii,iii,iv); B2ab(i,ii,iii,iv)].
... The information available about the taxonomy (Wiemers et al. 2018), evolution (Dapporto et al. 2019, Wiemers et al. 2020, Dincă et al. 2021, distribution (Kudrna et al. 2015) and ecology (Settele et al. 2009) of the European butterflies is massive even at local and regional scale, which highlights them as probably the best-known insect group in Europe. Nevertheless, the emergence of genetic techniques revealed that this knowledge was not as complete as believed due to the existence of cryptic diversity: taxa that have remained unnoticed due to the morphological similarity with other species. ...
Article
Full-text available
The Melitaea phoebe group is constituted by six species distributed throughout the Palearctic. One of the most widespread species is Melitaea ornata Christoph, 1893, present from France (Provence) to Central Asia. Recently, populations of M. ornata were discovered in a mountainous region of southeastern Iberia, although doubts about their taxonomy existed. To clarify the taxonomic status of these populations and to revise the distribution of this taxon in Iberia, we have sequenced mitochondrial (COI barcode region) and nuclear (wg, RPS5, MDH, and EF-1α) markers, and analyzed the male genitalia for 72 Iberian individuals and for all the species of the M. phoebe group. This information was complemented with phenological and ecological data. Our results unveiled that the Iberian M. ornata-like taxon is in fact distributed through most of the Iberian Peninsula, except for the southwest and northeast. In contrast to the univoltine M. ornata, the Iberian taxon can be bivoltine in the wild. The Iberian taxon was retrieved to be related to M. ornata, but the differences in the genetic markers and genitalia were comparable to those found between species in the group. Based on the evidence here presented and according to species delimitation results, we propose to consider the Iberian taxon as a novel species , tentatively named Melitaea pseudornata Muñoz Sariot & Sánchez Mesa, 2019, stat. nov.
... Butterflies have two characteristics that make them particularly suitable to study reticulation processes. First, a robust taxonomic framework exists for them and large-scale studies in systematics have been conducted, especially in Europe Wiemers et al., 2018Wiemers et al., , 2020. The presence of a reliable classification of the study species is an essential step that facilitates the design of genetic studies and the interpretation of genetic results. ...
Article
Full-text available
The importance of hybridization and introgression is well documented in the evolution of plants, however, in insects, their role is not fully understood. Given the fact that insects are the most diverse group of organisms, assessing the impact of reticulation events on their evolution may be key to comprehend the emergence of such remarkable diversity. Here, we used an insect model, the Spialia butterflies, to gather genomic evidence of hybridization as a promoter of novel diversity. By using the ddRADseq protocol, we explored the phylogenetic relationships between Spialia orbifer, S. rosae and S. sertorius, and documented two independent events of interspecific gene flow. Our data support that the Iberian endemism S. rosae probably received genetic material from S. orbifer in both mitochondrial and nuclear DNA, which could have contributed to a shift in the ecological preferences of S. rosae. We also show that admixture between S. sertorius and S. orbifer likely occurred in Italy. As a result, the admixed Sicilian populations of S. orbifer are differentiated from the rest of populations both genetically and morphologically, and display signatures of reproductive character displacement in the male genitalia. Additionally, our analyses indicated that genetic material from S. orbifer is present in S. sertorius along the Italian Peninsula. Our findings add to the view that hybridization is a pervasive phenomenon in nature and in butterflies in particular, with important consequences for evolution due to the emergence of novel phenotypes.
... Counts are conducted weekly during the butterfly flight season, which varies depending on the climatic zone within the range of March to the end of September. The species nomenclature is defined following Wiemers et al. 59 . ...
Article
Full-text available
Climatic anomalies are increasing in intensity and frequency due to rapid rates of global change, leading to increased extinction risk for many species. The impacts of anomalies are likely to vary between species due to different degrees of sensitivity and extents of local adaptation. Here, we used long-term butterfly monitoring data of 143 species across six European bioclimatic regions to show how species’ population dynamics have responded to local or globally-calculated climatic anomalies, and how species attributes mediate these responses. Contrary to expectations, degree of apparent local adaptation, estimated from the relative population sensitivity to local versus global anomalies, showed no associations with species mobility or reproductive rate but did contain a strong phylogenetic signal. The existence of phylogenetically-patterned local adaptation to climate has important implications for forecasting species responses to current and future climatic conditions and for developing appropriate conservation practices.
... Our observations took place in two locations respectively in the Babia Biosphere Reserve (designated Site of Community Interest and Area of Special Protection for Birds) and the Asturian side of Somiedo Natural Park. The observed butterflies at puddles comprised of five species (nomenclature following Wiemers et al. 2018): the greenveined white Pieris napi, the chalk-hill blue Lysandra coridon, the turquoise blue Polyommatus dorylas, the long-tailed blue Lampides boeticus, and the large skipper Ochlodes sylvanus. Three species (i.e., chalk-hill blue, turquoise blue, and large skipper), have been described as Iberian or even Spanish endemic subspecies (i.e., L. c. asturiensis, P. d. castilla, and O. s. faunus), although only L. c. asturiensis is still fully recognized (García-Barros et al. 2013; Table 1). ...
Article
Full-text available
Road-kill represents a major threat for butterflies and more generally for pollinators. Here we report an observation of conspicuous aggregations of butterflies mud-puddling on roadsides and, for this reason, being massively road-killed by farm vehicles. Implications for insect conservation While the reported observation by itself may not entail a significant threat to the populations of the observed species, it provides the opportunity to discuss an overlooked ecological trap, potentially affecting butterflies and especially threatened or endemic species. Indeed, this kind of mortality, due to a very common behaviour in butterflies, could affect any species in any area, and for this reason should be furtherly investigated and, when necessary, appropriately mitigated. Mitigation actions should prevent the formation of moist surfaces along roadsides, and in case of wide verges, provide artificial mud-puddling sites away from roads, in correspondence with the ecotone between roadside and matrix habitat.
... celadussa into three main well-supported (Bootstrap Support (BS) > 0.95) clusters. Based on their established distribution [22], one cluster was assigned to M. celadussa, and the other two to M. athalia. One of the M. athalia clusters consisted of six specimens originating from the Balkans and from here on we refer to it as "the Balkan lineage", and the rest of M. athalia will be referred to as "main M. athalia". ...
Article
Full-text available
We studied the evolutionary relationship of two widely distributed parapatric butterfly species, Melitaea athalia and Melitaea celadussa, using the ddRAD sequencing approach, as well as genital morphology and mtDNA data. M. athalia was retrieved as paraphyletic with respect to M. celadussa. Several cases of mito-nuclear discordance and morpho-genetic mismatch were found in the contact zone. A strongly diverged and marginally sympatric clade of M. athalia from the Balkans was revealed. An in-depth analysis of genomic structure detected high levels of admixture between M. athalia and M. celadussa at the contact zone, though not reaching the Balkan clade. The demographic modelling of populations supported the intermediate genetic make-up of European M. athalia populations with regards to M. celadussa and the Balkan clade. However, the dissimilarity matrix of genotype data (PCoA) suggested the Balkan lineage having a genetic component that is unrelated to the athalia-celadussa group. Although narrowly sympatric, almost no signs of gene flow were found between the main M. athalia group and the Balkan clade. We propose two possible scenarios on the historical evolution of our model taxa and the role of the last glacial maximum in shaping their current distribution. Finally, we discuss the complexities regarding the taxonomic delimitation of parapatric taxa.
Article
Full-text available
We present new data on the ecology, natural history and geographic distribution of the recently described skipper Spialia rosae Hernández-Roldán, Dapporto, Dincă, Vicente & Vila, 2016 and compare its immature stage morphology with the sympatric species S. sertorius (Hoffmannsegg, 1804). Spialia rosae uses species of Rosa L. (Rosaceae) as larval host-plants and prefers montane habitats, while S. sertorius feeds on Sanguisorba minor Scop. (Rosaceae) and inhabits lower altitudes. Rosa corymbifera Borkh. and R. tomentosa Sm. are documented for the first time as foodplants of S. rosae. We report Microgaster australis Thomson, 1895 (Hymenoptera, Braconidae, Microgastrinae) as a larval parasitoid of S. rosae. Details of the immature stages of S. rosae and S. sertorius are shown using scanning electron microscope photographs, confirming the similar immature stage morphology, at least as regards the Iberian S. sertorius. In both species, the egg has high radial ribs, the last instar larva has branched setae covering the head, and the pupa has setae with pointed tips, barrel-like cuticular formations, and hairy mesothoracic tubercles. By extensive sampling of the species of Spialia in the region of Segovia, Central Spain, we extend the previously known geographic distribution of S. rosae to 56 new 100 km2 MGRS squares, which represents a 155 % increase. Spialia rosae is present in the northern part of the interior plateau and in the main mountain systems of the Iberian Peninsula. The main threats to the populations of S. rosae are its limited distribution range and the possible effects of climate change due to its specialization in montane habitats. The conservation status of S. rosae was previously regarded as Data Deficient (DD). With the addition of new data the species can now be evaluated as Least Concern (LC).
Article
Full-text available
Diverse radiations of insects are often associated with adaptations to host plants, and well-resolved phylogenetic relationships are required to fully understand them. Palearctic Argynnis and related subgenera, together with North American Speyeria butterflies make up a radiation whose species hypotheses are confounded by shared wing colour patterns between sympatric populations of closely related recognized species. Previous studies of this group indicate that Speyeria is a lineage within Argynnis, but sampling in these studies has either involved too few Speyeria species or incomplete sampling of Argynnis species. Thus, no comprehensive phylogenetic analysis exists for all members that answers the question of monophyly of Speyeria, or other subgeneric taxa, and their relationship to Argynnis species. We completed a phylogenetic analysis of all North American Speyeria species and all but one species within Argynnis, using one mitochondrial (cytochrome c oxidase I, COI) and four nuclear genes [elongation factor 1 alpha (EF1α), wingless (WG), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and ribosomal protein S5 (RPS5)]. The results indicate three major lineages within Argynnis s.l.: two Palearctic and one containing both Palearctic and Nearctic species. In summary, the phylogenetic analyses suggest the need for reorganization into three natural groups: Argynnis, Fabriciana and Speyeria. Within each of these genera the phylogenetic hypothesis indicates an evolutionary history marked by rapid diversification and potential extinction, followed by ongoing lineage sorting. The position of North American Speyeria is nested within the Palearctic lineages, which indicates that the radiation began in Asia and was fuelled by existing Viola diversity in North America. Dating analyses of Viola and Speyeria corroborate this hypothesis. The current North American Speyeria species are mixed on the tree, indicating a recent and ongoing radiation. These results provide needed clarity on the evolution of this group, which contains species of conservation concern.
Article
Full-text available
The Balkan Peninsula represents one of the hottest biodiversity spots in Europe. However, the invertebrate fauna of this region is still insufficiently investigated, even in respect of such well-studied organisms as Lepidoptera. Here we use a combination of chromosomal, molecular and morphological markers to rearrange the group of so-called anomalous blue butterflies (also known as ‘brown complex’ of the subgenus Agrodiaetus Hübner, [1822] and as the Polyommatus (Agrodiaetus) admetus (Esper, 1783) species group) and to reveal its cryptic taxonomic structure. We demonstrate that P. aroaniensis (Brown, 1976) is not as widespread in the Balkans as was previously thought. In fact, it has a dot-like distribution range restricted to the Peloponnese Peninsula in South Greece. Polyommatus orphicus Kolev, 2005 is not as closely related to the Turkish species P. dantchenkoi (Lukhtanov & Wiemers, 2003) as was supposed earlier. Instead, it is a Balkan endemic represented by two subspecies: P. orphicus orphicus (Bulgaria) and P. orphicus eleniae Coutsis & De Prins, 2005 (Northern Greece). Polyommatus ripartii (Freyer, 1830) is represented in the Balkans by an endemic subspecies P. ripartii pelopi. The traditionally recognized P. admetus (Esper, 1783) is shown to be a heterogeneous complex and is divided into Polyommatus admetus sensu stricto (the Balkans and west Turkey) and P. yeranyani (Dantchenko & Lukhtanov, 2005) (east Turkey, Armenia, Azerbaijan and Iran). Polyommatus nephohiptamenos (Brown & Coutsis, 1978) is confirmed to be a species with a dot-like distribution range in Northern Greece. Finally, from Central Greece (Timfristos and Parnassos mountains) we describe Polyommatus timfristos Lukhtanov, Vishnevskaya & Shapoval, sp. n. which differs by its haploid chromosome number (n=38) from the closely related and morphologically similar P. aroaniensis (n=47-48) and P. orphicus (n=41-42). We provide chromosomal evidence for three separate south Balkan Pleistocene refugia (Peloponnesse, Central Greece and Northern Greece/South Bulgaria) and stress the biogeographic importance of Central Greece as a place of diversification. Then we argue that the data obtained have direct implications for butterfly karyology, taxonomy, biogeography and conservation.
Article
Christian Friedrich Freyer‘s (1794-1885) Werk 'Neuere Beiträge zur Schmetterlingskunde mit Abbildungen nach der Natur' ([1831]-1858) wird analysiert, insbesondere im Hinblick auf eine möglichst genaue Datierung des Erscheinens der 120 Lieferungen der insgesamt sieben Bände dieses klassischen Werkes der Lepidopterologie. Zunächst erfolgt eine Kurzbiographie des berühmten Autors auf der Grundlage des einzigen überlieferten Nachrufes durch Wulzinger (1887), ergänzt mit Angaben aus Freyers eigenen Werken. Als nächstes werden die 'Neueren Beiträge' in ihrer Gesamtheit diskutiert, wobei ihr grundlegendes Konzept, die Herkunft des behandelten Materials, die vielfältigen Kontakte Freyers und schließlich der Einfluß des Werks auf seine Zeitgenossen besonders herausgestellt werden. Danach folgt der Hauptteil des vorliegenden Beitrages, nämlich die Datierung der einzelnen Lieferungen der 'Neueren Beiträge'. Grundlage dieser Datierung bilden die Erkenntnisse von Tremewan (1988), die dieser Autor im wesentlichen den gedruckten Umschlägen der Lieferungen des im British Museum (Natural History) [heute The Natural History Museum, London] aufbewahrten Exemplars des Gesamtwerkes entnommen hat, sowie eine Durchsicht zeitgenössischer Literatur. Die Ergebnisse werden gemäß Artikel 21 der aktuellen Nomenklaturregeln (ICZN 1999) präsentiert. Den Abschluß dieser Arbeit bildet eine chronologische Checklist aller nominellen Arten oder Unterarten, die Freyer in seinen 'Neueren Beiträge' beschrieb, abbildete oder erwähnte. Insgesamt sind dies 245 verfügbare Namen für erstmalig beschriebene Taxa des Artengruppen-Niveaus, 193 davon für Lepidopteren exklusive Tagfalter (mit einem Stern markiert) und 52 für Tagfalter (mit zwei Sternen markiert). Stichwörter Lepidoptera, Christian Friedrich Freyer, literature, nomenclature, publication dates.
Article
The purpose of this application under Article 75.6 of the Code is to conserve the specific names of the European ‘Small Apollo’ butterfly Parnassius phoebus (Fabricius, 1793) and the Altai ‘Apollo’ butterfly Parnassius ariadne (Lederer, 1853) in their current usage. Hanus & Theye (2010) discovered that the traditional concept of the name P. phoebus was a misidentification and published actions contrary to Art. 75.6. We herein request that the International Commission on Zoological Nomenclature use its plenary power to set aside all previous type fixations for the nominal species Papilio phoebus Fabricius, 1793, and to designate a neotype representative of the current usage of P. phoebus.
Article
Butterflies (Papilionoidea), with over 18,000 described species [1], have captivated naturalists and scientists for centuries. They play a central role in the study of speciation, community ecology, biogeography, climate change, and plant-insect interactions and include many model organisms and pest species [2, 3]. However, a robust higher-level phylogenetic framework is lacking. To fill this gap, we inferred a dated phylogeny by analyzing the first phylogenomic dataset, including 352 loci (> 150,000 bp) from 207 species representing 98% of tribes, a 35-fold increase in gene sampling and 3-fold increase in taxon sampling over previous studies [4]. Most data were generated with a new anchored hybrid enrichment (AHE) [5] gene kit (BUTTERFLY1.0) that includes both new and frequently used (e.g., [6]) informative loci, enabling direct comparison and future dataset merging with previous studies. Butterflies originated around 119 million years ago (mya) in the late Cretaceous, but most extant lineages diverged after the Cretaceous-Paleogene (K-Pg) mass-extinction 65 mya. Our analyses support swallowtails (Papilionidae) as sister to all other butterflies, followed by skippers (Hesperiidae) + the nocturnal butterflies (Hedylidae) as sister to the remainder, indicating a secondary reversal from diurnality to nocturnality. The whites (Pieridae) were strongly supported as sister to brush-footed butterflies (Nymphalidae) and blues + metalmarks (Lycaenidae and Riodinidae). Ant association independently evolved once in Lycaenidae and twice in Riodinidae. This study overturns prior notions of the taxon's evolutionary history, as many long-recognized subfamilies and tribes are para- or polyphyletic. It also provides a much-needed backbone for a revised classification of butterflies and for future comparative studies including genome evolution and ecology.