Conference PaperPDF Available

Promoting Student Engagement and Well-being through Community Knowledge Advancement

Authors:

Abstract and Figures

Promoting student engagement and well-being in schools is a perennial educational challenge. One of the greatest challenges for classroom teachers is to nurture students' intellectual engagement-to help them develop a serious emotional and cognitive investment in their learning. This paper highlights the potential of Knowledge Building-a pedagogical approach that puts students' ideas at the center of classroom activities-to enhance students' intellectual engagement, epistemic agency, and sense of well-being. Over the span of three years, a teacher-researcher team co-designed classroom interventions to advance these goals. In Year 1, we explored how to create a Knowledge Building culture through idea-centered discourse. In Year 2, we explored how to make Knowledge Building pervasive through complex, real-world problems. In Year 3, we are exploring ways to support symmetric knowledge advancement through cross-class collaborations. We conclude by discussing the importance of Knowledge Building for empowering learners' active participation in today's Knowledge Societies.
a) shows the discussion surrounding the big question, "How can we figure out 20% of a number?". Students generated many theories and prompted one another to test and refine their theories. Some examples of their decimal theories include: "20% of a number is 20/100 which can be simplified to 2/10 which can be simplified into 1/5"; "100 divided by 20 = 5, so number divided by 5 = 20%"; and "multiply the number by .20. since .20 is the equivalent of 20%, multiplying by .2 will give you 20% of that number". Figure 2 b) shows the social network of the class working in the respective view. Student A, who had a tendency to speak less often at T.O.G.A. than her peers, is represented as the large blue node in the social network. She wrote a total of 13 notes, making her one of the top contributors on Knowledge Forum. The green arrows show that Student A built onto others' notes 11 times, and the red arrows show that others built onto Student A's notes 5 times. It was surprising to see how the conversation dynamics unfolded online for a shy, introverted student like Student A. Student Reflection At the end of the intervention, students were interviewed about their Knowledge Building experiences and whether or not they felt Knowledge Forum had supported their learning. Questions included: "What do you like about Knowledge Forum?". "Do you like building onto each other's ideas?", and "Do you feel heard on Knowledge Forum?". The interviews revealed not only shifts in students' attitudes and mindsets, but also shifts in their intellectual engagement toward greater levels of epistemic agency. Below is an excerpt from Student A: I like using Knowledge Forum because it gives everyone a chance-like, to feel safe, and it's, like, just explain what they're thinking about the, like, idea… [It's helpful to] see everyone's different theory and strategy of what they actually did… I feel comfortable even if my theory's wrong, putting it up, because it's not an answer that's right or wrong. It's just a theory… Like, I'm thinking in my head, "Can anybody build onto this?" So I post it. And it's like, I want people to build on so I can understand more about it.
… 
Content may be subject to copyright.
Promoting Student Engagement and Well-being through
Community Knowledge Advancement
Suzana Milinovich, Hamilton-Wentworth District School Board, smilinov@hwdsb.on.ca
Leanne Ma, OISE/University of Toronto, leanne.ma@mail.utoronto.ca
Abstract: Promoting student engagement and well-being in schools is a perennial educational
challenge. One of the greatest challenges for classroom teachers is to nurture students’
intellectual engagement – to help them develop a serious emotional and cognitive investment
in their learning. This paper highlights the potential of Knowledge Building a pedagogical
approach that puts students’ ideas at the center of classroom activities – to enhance students’
intellectual engagement, epistemic agency, and sense of well-being. Over the span of three
years, a teacher-researcher team co-designed classroom interventions to advance these goals.
In Year 1, we explored how to create a Knowledge Building culture through idea-centered
discourse. In Year 2, we explored how to make Knowledge Building pervasive through
complex, real-world problems. In Year 3, we are exploring ways to support symmetric
knowledge advancement through cross-class collaborations. We conclude by discussing the
importance of Knowledge Building for empowering learners’ active participation in today’s
Knowledge Societies.
Introduction
Student engagement is the central driving force of the intellectual life in a classroom. Student engagement can
be conceptualized along three dimensions (Dunleavy, Milton, & Willms, 2012): 1) social engagement as
meaningful participation in school life through positive connections and relationships, 2) institutional
engagement as participation in school activities in order to meet completion requirements, and 3) intellectual
engagement as serious emotional and cognitive investment in one’s own learning. According to Dunleavy and
colleagues (2012), “All types of engagement social, institutional and intellectual contribute to valued
developmental outcomes for [our] learners. However, when students have opportunities to describe their
experiences of engagement, we see that the percentage of students who are intellectually engaged is
significantly lower than the percentage of students who are socially and institutionally engaged” (p. 2).
One way to foster intellectual engagement in the classroom is through a culture of sustained inquiry.
Inquiry-based learning is a dynamic and emergent process wherein students conduct “open-ended investigations
into a question or a problem, requiring them to engage in evidence-based reasoning and creative problem-
solving… [with] personally meaningful content and ideas” (Ontario Ministry of Education, 2013, p.2). Research
on inquiry-based learning shows that honouring students’ questions and ideas increases their motivation, leading
to higher levels of engagement, improved understanding, and a love of learning (Chiarotto, 2011).
Knowledge Building represents a community-oriented form of inquiry-based learning. Similar to inquiry-
based learning, it starts with students’ natural tendency to ask questions and generate theories, but extends to the
difficult part of contributing ideas and theories that will advance collective understanding (Scardamalia &
Bereiter, 2014). One key principle for fostering a Knowledge Building community is collective responsibility
for knowledge advancement (Scardamalia, 2002). When students are building community knowledge, their
ideas are the main objects of inquiry. The principles of real ideas, authentic problems, idea diversity, and
improvable ideas help teachers keep students’ ideas at the center of classroom interactions and activities. The
principle of epistemic agency gives students ownership of their learning so that they themselves are initiating
conversations and investigations to test and improve their theories rather than the other way around, which is
often the case in inquiry-based learning. Students’ ideas can also be improved through Knowledge Building
discourse, which occurs in both face-to-face and online contexts (e.g., Knowledge Forum). During Knowledge
Building discourse, students examine ideas from different perspectives by posing questions, generating theories,
and deconstructing assumptions in order to negotiate fit between contrasting ideas and ultimately, convert these
tensions into rise above theories that hold greater explanatory power. Knowledge Building scaffolds (see Figure
3a) help sustain the discussion so that students are continually building on each other’s ideas and improving the
coherence of their community knowledge. Additional principles of Knowledge Building include democratizing
knowledge and symmetric knowledge advancement, which aim to facilitate the flow of ideas within and across
communities (Scardamalia, 2002).
This paper follows the 3-year journey of Suzana Milinovich, a Knowledge Building teacher in Hamilton,
Ontario, dedicated to exploring new classroom practices to enhance her grade 5, grade 6, and grade 7 students’
intellectual engagement, epistemic agency, and sense of well-being. In each subsection, we provide an overview
of the classroom context before describing the pedagogical and technological intervention. We conclude each
subsection with student and teacher reflections on how Knowledge Building and Knowledge Forum has
transformed their learning experiences.
Year 1: Creating a Knowledge Building Culture
Community knowledge, collective responsibility, Knowledge Building discourse, Democratizing knowledge
Design Challenge
In Year 1, Suzana was teaching a grade 6/7 class consisting 25 students, several with special needs (i.e.,
Individualized Education Programs). At the beginning of the school year, Suzana gave her students an informal
survey which revealed that 88% of her students held a negative attitude towards math, and 85% of her students
had low self-efficacy in math. Suzana identified this as her problem of practice and began to explore how to
shift the negative learning attitudes and fixed mindsets of her students. Her goal was to use “Number Talks” in
math class to “deepen [students’] conceptual knowledge of numbers, and number sense AND to intentionally
create a Knowledge Building culture by teaching effective Knowledge Building discourse in mathematics.”
Knowledge Building Intervention
Given the importance of discourse in collaborative learning (Koschmann, 2013) and knowledge creation
(Bereiter & Scardamalia, 2017), Suzana felt that her students would benefit from engaging in “Number Talks”
with one another. During the “Number Talks”, which took place several times per week, she began to create the
community norm that all members ideas would be valued. The whole class would gather at a center table for
discussion. She encouraged students to share their math strategies and explain their thinking to one another
while solving a number problem. As students discussed, she recorded their responses.
a) b)
Figure 1. a) T.O.G.A table before and b) T.O.G.A table after.
Suzana hypothesized that setting the conditions for Knowledge Building Discourse, would eventually lead to
Democratizing knowledge. In order to test this hypothesis, she placed a whiteboard over the center table used for
“Number Talks” so that students could make their thinking visible to one another. Little did she know that this
small environmental change would lead to the transformation of her class into a Knowledge Building
community: Students felt safe to share their ideas, respectfully question each other’s ideas, and design KB
scaffolds to support their discussions. The students even decided to name this space their “Table of Great
Achievement” (T.O.G.A.) Figure 1a) shows the T.O.G.A. table at the beginning, with only two scaffolds: “I
agree with [idea]” and “I disagree with [idea]”. Figure 1b) shows the T.O.G.A. table at the end, with eight
scaffolds added onto each side of the table to support their Knowledge Building discourse. Examples of the new
scaffolds include: “My theory,” “Can you explain [idea]”, “I can add onto [idea]”, and “I wonder…”. Suzana
encouraged her students to regularly reflect on the KB scaffolds that they used during the “Number Talks”.
Over time, students became increasingly confident with their math skills and empowered to contribute their
ideas to the community knowledge. Eventually, Suzana turned over the discussion entirely to her students so
that they could freely explore their ideas together. This was a huge turning point for Suzanna – when she finally
released her responsibility to her students during the “Number Talks” – because students were taking collective
responsibility for each other’s learning.
Knowledge Forum Support
Knowledge Forum served as the online community space to make student thinking visible and sustain
Knowledge Building discourse. Examples of KB scaffolds include: “My theory”, “I need to understand”, New
evidence”, and “Putting our knowledge together” (see Figure 4b). Students contributed their theories into
Knowledge Forum during the day and continued discussions at home. Over the span of a few weeks, students
wrote approximately 200 notes across 2 views to discuss their theories on fractions, decimal, and percentages.
a) b)
Figure 2. a) Grade 6/7 Knowledge Forum view and b) Knowledge Forum social network tool.
Figure 2a) shows the discussion surrounding the big question, “How can we figure out 20% of a number?”.
Students generated many theories and prompted one another to test and refine their theories. Some examples of
their decimal theories include: “20% of a number is 20/100 which can be simplified to 2/10 which can be
simplified into 1/5”; “100 divided by 20 = 5, so number divided by 5 = 20%”; and “multiply the number by .20.
since .20 is the equivalent of 20%, multiplying by .2 will give you 20% of that number”. Figure 2 b) shows the
social network of the class working in the respective view. Student A, who had a tendency to speak less often at
T.O.G.A. than her peers, is represented as the large blue node in the social network. She wrote a total of 13
notes, making her one of the top contributors on Knowledge Forum. The green arrows show that Student A built
onto others’ notes 11 times, and the red arrows show that others built onto Student A’s notes 5 times. It was
surprising to see how the conversation dynamics unfolded online for a shy, introverted student like Student A.
Student Reflection
At the end of the intervention, students were interviewed about their Knowledge Building experiences and
whether or not they felt Knowledge Forum had supported their learning. Questions included: “What do you like
about Knowledge Forum?”. “Do you like building onto each other's ideas?”, and “Do you feel heard on
Knowledge Forum?”. The interviews revealed not only shifts in students’ attitudes and mindsets, but also shifts
in their intellectual engagement toward greater levels of epistemic agency. Below is an excerpt from Student A:
I like using Knowledge Forum because it gives everyone a chance like, to feel safe,
and it's, like, just explain what they're thinking about the, like, idea [It’s helpful to]
see everyone's different theory and strategy of what they actually did I feel
comfortable even if my theory's wrong, putting it up, because it's not an answer that's
right or wrong. It's just a theory Like, I'm thinking in my head, "Can anybody build
onto this?" So I post it. And it's like, I want people to build on so I can understand
more about it.
Teacher reflection
At the end of the intervention, Suzana was interviewed about her Knowledge Building experiences, particularly
what surprised her the most. Below is an excerpt of her reflection:
[For a while,] students would still try to look to me for confirmation or to make the connection
to another student. But as soon as I stepped out… they were happy to take on the leadership.
And they were happy to start the discourse without me entirely. So it was at that point I feel as
though that was something that I had an "Aha!" moment. From the beginning, I'd say some
students were reluctant to share. Their perception of who the expert is in mathematics really
came into play. And they were reluctant to share at that point. And soon they started to
determine that this -- their perception of a person who was an expert, may not be so. So they
began to now pose questions and refine their thinking by asking for advocating and asking for
clarification from each other. And really started to understand that they were involved in this
learning process, and they were a valuable contributing member to the ideas of this group.
And the group can advance with their contribution. And that's the beauty of this model. It is a
reverse-type of model where the students gather, collectively, and start to really think about
strategies and what these strategies are. And start to share ideas and generate a few theories.
And from that point, then the students refine these theories and decide that they're going to
explore these theories in an inquiry-type fashion model. And break out and continue to really
start testing the theories. And then they will… reconvene and start to make connections
between all of these strategies and the theories they had thought about at the beginning of the
lesson. Which is pretty amazing because these students are all actively thinking. Their minds
are on… And I feel that this has been a huge advancement for the group's knowledge.
Year 2: Making Cross-curricular Connections
Real ideas, authentic problems, Pervasive Knowledge Building, Knowledge Building discourse, Rise above
Design Challenge
In Year 2, Suzana was teaching a grade 5/6 class consisting 22 students, several newcomers and ESL learners.
Suzana attempted to incorporate Knowledge Building across multiple subjects – math, science, and technology
in order to deepen the student engagement and learning in her class. However, robotics activities posed as a
stereotype threat for some of her students. It is unfortunate that children enter schools holding clear stereotypes
that boys are better than girls at robotics and coding (Master et. al., 2017). These beliefs have a negative impact
on student interest and engagement. Suzana identified this as her problem of practice and began to explore how
creating a Knowledge Building culture can not only shift attitudes and mindsets, but also gender stereotypes.
Knowledge Building Intervention
Building onto Year 1, Suzana gathered her students at the “Table of Great Achievement” (T.O.G.A.) to foster a
sense of psychological safety and build community knowledge together. In addition to the existing set of KB
scaffolds along the sides of the table, a new set of scaffolds co-designed by the students were placed at the
center of the table along with a microphone to capture their face-to-face discourse (see Figure 3a). Examples of
the new scaffolds include: “How do you know this?”, “Lets take a moment to think about this…”, “Should this
be revised?” and “I’ve changed my thinking…”. Since Suzana was also new to robotics and coding, she invited
an expert into her classroom to speak at T.O.G.A and help her students with coding their VEX robots (see
Figures 3b) and 3c). “Project Innovation” allowed students to gain a deeper understanding of math, robotics, and
coding. While initially the boys in her class were more excited to play with the VEX robot than the girls,
eventually, everyone became very comfortable with designing their own problems, and building and coding
their robots. Students particularly enjoyed coding their VEX robots to draw different shapes and travel along
certain obstacle courses. Toward the end of the year, students’ ideas extended outside of the classroom, and they
invited parents to help them tackle their wicked challenge: “How can VEX contribute to a “clean and green”
city?” The students decided to re-design their VEX robots to pick up litter, which involved adding shovels at the
front and baskets at the back. Suzana noticed that by allowing students to become the designers of the lessons,
they felt empowered to take ownership of their learning at the highest levels. Since the students were the ones
making the decisions for next steps on their KB journey, Suzana also learned a lot from following their lead.
a) b) c)
Figure 3. a) New scaffolds added to T.O.G.A, b) Students discussing ideas at T.O.G.A, and c) VEX robot.
Knowledge Forum Support
Knowledge Forum served as the online community space to sustain Knowledge Building discourse, as well as
facilitate self-organization around idea improvement and rise above. Over the span of a few months, students
wrote over 400 notes across 10 views to discuss their theories on robotics, math, and coding. Figure 4a) shows
one of their discussions on robotics, and Figure 4b) shows the scaffolds used in that view. Emergent topics
included comparing the relationship between variables, exploring the geometric properties of shapes, mapping
coordinates along a Cartesian plane, and discussing strategies for data management and data visualization.
a) b)
Figure 4. a) Grade 5/6 Knowledge Forum view and b) Knowledge Forum scaffold growth tool.
Student reflection
On the last day of school, one of Suzana’s students – who came from a culture with strict gender roles – wrote
her a thank-you card. She reflected on how Knowledge Building has shaped her confidence and well-being:
I am writing this letter to say thank you. You might be wondering, thank you for what? Well
thank you for being the best teacher ever!! You builded my confidence and no other teacher
has done that. You’ve gave me a better understanding of math and other subjects. T.O.G.A.
really helped me because in any other class I’ve been in, the teacher just gives the work and
you do it, but T.O.G.A. let everybody share their theory… [The KB scaffolds] help us speak
politely and make the conversation more comfortable. So Mrs. Milinovich, Thank You. P.S.
Can you PLEASE grade 7 next year?
Teacher reflection
At the end of the intervention, Suzana was interviewed about her Knowledge Building experiences, particularly
what surprised her the most. It is interesting to note that when Suzana took a risk with her teaching, it yielded
one of her greatest learning experiences. Below is an excerpt of her reflection:
At first I was very uncomfortable with robotics. I know nothing about robotics. So to take that
risk for me was huge. And you know, I believed in these kids. And they brought me along the
ride. And I would constantly be referring back the manual, thinking okay, does this make
sense? Are they going to get this part? And I so wanted for them to rise above, several times.
And they did. And they had different creative ideas on how to build a plow at the front, and
then they had a catcher at the back, or how they would take the residual garbage and how it
would catch at the back – they amazed me. And I feel like if I hadn't taken that risk, I wouldn't
know as much as I do about Knowledge Building and knowledge creation.
Year 3: Designing Cross-community Collaborations
Community knowledge, Democratizing knowledge, Idea Diversity, Symmetric knowledge advancement
a) b)
Figure 5. a) Grade 6 Knowledge Forum view and b) Knowledge Forum word cloud tool.
Design Challenge and Next Steps
In year 3, Suzana is teaching a class of grade 6 students, consisting 23 students – a few students were in her
class during Year 2 and a few students are new to the school. Due to a school-wide initiative to promote school
inclusiveness, students started the year with designing surveys to collect data from each of the classes to study
the school culture and climate. As a result, Suzana extended her Year 2 cross-curricular design by using safety,
inclusiveness and well-being as learning goals to weave into various curriculum areas, such as health, social
studies, science, and math. Figure 5a) shows the community’s welcome view, and Figure 5b) shows the word
cloud from their first brainstorming session. Over the next few months, Suzana’s students will be exploring the
relationships between technology, health, and well-being before connecting with two other classrooms in
Ontario to explore the larger question “What role do robots play in society?”. Students will be working toward
building community knowledge while making symmetric knowledge advancements on Knowledge Forum.
Discussion
As a longstanding research stream in the Learning Sciences, Knowledge Building has a consistent record of
fostering key 21st century skills, as well as knowledge-creating competencies essential for participation in the
Knowledge Society (Scardamalia & Bereiter, 2014). The current study emphasizes how Knowledge Building
simultaneously develops students’ intellectual engagement and sense of well-being. Over the span of three
years, Suzana has designed and re-designed classroom practices to shift students’ attitudes, mindsets, and
epistemic agency. Not only did they take ownership of their learning, they also took risks with ideas. Students
collectively identified their knowledge goals and pushed each other to advance their community knowledge.
According to Suzana, creating a Knowledge Building culture actually starts with nurturing student well-being:
Students in a Knowledge Building community really get a sense of understanding and
learning… and feel very inclusive as a collective. When I think back to preparing my students
for a year of learning at the beginning of the year… you're getting to know each and every one
of your students... And you start to imagine the possibilities for them. And so I think that
when we look at students in this way and we provide and set the conditions for our learning
community, students will truly thrive, and really exceed our expectations as educators. You
know, a knowledge-building community will allow students to act as resources to each other.
Students will call upon each other, and eventually the teacher role shifts a bit. And really, I see
that it's very powerful as an educator in the future, in the upcoming years.
References
Bereiter, C., & Scardamalia, M. (2017). “Good Moves” in knowledge-creating dialogue. QWERTY - Open and
Interdisciplinary Journal of Technology, Culture and Education, 11(2), 12-26.
Chiarotto, L. (2011). Natural Curiosity: A Resource for Teachers: Building Children's Understanding of the
World Through Environmental Inquiry. Laboratory School at the Dr. Eric Jackman Institute of Child
Study, Ontario Institute for Studies in Education, University of Toronto.
Dunleavy, J., Milton, P., & Willms, J. D. (2012). Trends in Intellectual Engagement. What did you do in School
Today? Research Series Report Number Three. Toronto: Canadian Education Association.
Koschmann, T. (2013). Conversation analysis and collaborative learning. In C. Hmelo-Silver, C. Chinn, C.
Chan & A. O'Donnell (Eds.), International Handbook of Collaborative Learning (pp. 149-167). New
York: Routledge
Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher
STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160, 92-106.
Ontario Ministry of Education (2013). Inquiry-based Learning. Toronto, ON: Queen’s Printer for Ontario
Scardamalia, M. (2002). Collective cognitive responsibility for the advancement of knowledge. In B. Smith, &
C. Bereiter (Eds.), Liberal Education in a Knowledge Society (pp. 67-98). Berkeley: Publishers Group
West.
Scardamalia, M., & Bereiter, C. (2014). Knowledge building and knowledge creation: Theory, pedagogy, and
technology. In K. Sawyer (Ed.), Cambridge Handbook of the Learning Sciences (2nd ed.) (pp. 397-417).
New York: Cambridge University Press.
Acknowledgments
We are grateful to Knowledge Building researchers and consultants, Dr. Monica Resendes, Ahmad Khanlari,
Karen Dobbie, Elaine Hine and Denis Maika for their time and support. Their creative ideas and insight have
been invaluable to our Knowledge Building.
... Teachers new to Knowledge Building face the added challenge of unlearning practices that keep them at the center of discourse and assignments. Students must also unlearn the game of schooling, including the desire to look smart by contributing fake theories (Bielaczyc, 2018) and relying on the teacher to validate their ideas (Milinovich & Ma, 2018). While past studies (e.g., Zhang et al., 2009;Tarchi et al., 2013) indicate that it can take anywhere from a few months to a few years to foster a Knowledge Building culture in the classroom, recent work in the context of the Knowledge Building Innovation Network (Ma et al., 2019) in Ontario suggests that engaging educators in iterative design cycles of principle-based practices can support and even catalyze the development of teachers' efficacy in Knowledge Building. ...
... Another reason could be due to her choice of principles -ones that are drastically different from traditional schooling cultures (i.e., epistemic agency, community knowledge, democratizing knowledge, Knowledge Building discourse, improvable ideas). In a similar way, another Knowledge Building teacher in Ontario started with principles of community knowledge, democratizing knowledge, and Knowledge Building discourse which not only deepened student learning but also shifted their attitudes toward learning (Milinovich & Ma, 2018). We are not promoting a sequential or scripted approach to Knowledge Building, but we also do not rule out the possibility that some principles may be more effective than others at getting started with fostering a Knowledge Building culture. ...
Conference Paper
Full-text available
Communities can be powerful drivers of learning and transformation. Knowledge Building communities aim to foster students' epistemic agency toward high levels of ownership over individual and collective learning-students come to enjoy relying on one another to advance their community knowledge. This case study examines pedagogical and technological designs for enculturating students into World 3, the world of ideas, theories, designs, and conceptual artifacts. From the first day of school, the teacher adopted a holistic approach toward principle-based designs, simultaneously engaging in multiple principles across multiple curricular areas. Furthermore, the process was catalyzed when she directly involved students in co-designing their Knowledge Building culture, including the norms of interaction, discourse structures, knowledge goals, and trajectory of knowledge advancement. Student and teacher reflections reinforce the notion that Knowledge Building is more than just an instructional framework: It is a philosophy-a way of living and being in contemporary knowledge societies.
... Knowledge Building (Scardamalia & Bereiter, in press) has been shown to support students' socio-emotional development and well-being. Recent work from Milinovich and Ma (2018) and Zhu and colleagues (2020) demonstrate that there is a strong culture of trust and psychological safety in Knowledge Building classrooms -students' ideas are at the center of social interactions; students' thoughts and experiences are validated by their peers; students take ownership of their learning by taking risks with ideas; and all are invited to extend ideas and integrate diverse perspectives towards deeper understandings. Within the context of social distance education, Knowledge Building pedagogy and Knowledge Forum technology offer a promising way for students to sustain meaningful relationships with their peers by sharing their experiences, empathizing with others' experiences, and rising above superficial differences to acknowledge their shared humanity. ...
Conference Paper
Full-text available
Now more than ever, schools need to provide safe and supportive learning spaces that promote all students' socio-emotional development and well-being. The current study investigates how Knowledge Forum can be used to extend classroom learning beyond school walls to enable asynchronous collaboration between two classrooms to foster digital citizenship and intercultural communication skills. Using sentiment analysis, we assessed students' online discussions about family traditions during Christmas and their experiences during the Covid-19 quarantine in the spring. As expected, the Christmas discussion was generally more positive than the Covid-19 discussion, however, the Covid-19 discussion evolved from more negative to more positive. Additional analyses are underway to explore the extent to which magnitude of emotions travel within the community. Preliminary findings are interpreted within the context of designing socio-emotional learning assessments and computer-supported collaborative learning environments as schools move toward a hybrid model for the upcoming school year.
Chapter
There are substantial similarities between deep learning and the processes by which knowledge advances in the disciplines. During the 1960s efforts to exploit these similarities gave rise to learning by discovery, guided discovery, inquiry learning, and Science: A Process Approach (American Association for the Advancement of Science, 1967). Since these initial reform efforts, scholars have learned a great deal about how knowledge advances. A mere listing of keywords suggests the significance and diversity of ideas that have come to prominence since the 1960s: Thomas Kuhn, Imre Lakatos, sociology of science, the "Science Wars," social constructivism, schema theory, mental models, situated cognition, explanatory coherence, the "rhetorical turn," communities of practice, memetics, connectionism, emergence, and self-organization. Educational approaches have changed in response to some of these developments; there is a greater emphasis on collaborative rather than individual inquiry, the tentative nature of empirical laws is more often noted, and argumentation has become an important part of some approaches. But the new "knowledge of knowledge" has much larger educational implications: Ours is a knowledge-creating civilization. A growing number of "knowledge societies" (Stehr, 1994), are joined in a deliberate effort to advance all the frontiers of knowledge. Sustained knowledge advancement is seen as essential for social progress of all kinds and for the solution of societal problems. From this standpoint the fundamental task of education is to enculturate youth into this knowledge-creating civilization and to help them find a place in it. In light of this challenge, both traditional education, with its emphasis on knowledge transmission, and the newer constructivist methods, appear as limited in scope if not entirely missing the point. Knowledge building, as elaborated in this chapter, represents an attempt to refashion education in a fundamental way, so that it becomes a coherent effort to initiate students into a knowledge creating culture. Accordingly, it involves students not only
Good Moves" in knowledge-creating dialogue. QWERTY -Open and Interdisciplinary Journal of Technology
  • C Bereiter
  • M Scardamalia
Bereiter, C., & Scardamalia, M. (2017). "Good Moves" in knowledge-creating dialogue. QWERTY -Open and Interdisciplinary Journal of Technology, Culture and Education, 11(2), 12-26.
Natural Curiosity: A Resource for Teachers: Building Children's Understanding of the World Through Environmental Inquiry. Laboratory School at the Dr
  • L Chiarotto
Chiarotto, L. (2011). Natural Curiosity: A Resource for Teachers: Building Children's Understanding of the World Through Environmental Inquiry. Laboratory School at the Dr. Eric Jackman Institute of Child Study, Ontario Institute for Studies in Education, University of Toronto.
Trends in Intellectual Engagement
  • J Dunleavy
  • P Milton
  • J D Willms
Dunleavy, J., Milton, P., & Willms, J. D. (2012). Trends in Intellectual Engagement. What did you do in School Today? Research Series Report Number Three. Toronto: Canadian Education Association.
Programming experience promotes higher STEM motivation among first-grade girls
  • T Koschmann
Koschmann, T. (2013). Conversation analysis and collaborative learning. In C. Hmelo-Silver, C. Chinn, C. Chan & A. O'Donnell (Eds.), International Handbook of Collaborative Learning (pp. 149-167). New York: Routledge Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of Experimental Child Psychology, 160, 92-106.