ArticlePDF Available

Distribution of the stx1 and stx2 genes in Escherichia coli isolated from milk cattle according to season, age, and production scale in southwestern region of Goiás, Brazil

Authors:

Abstract and Figures

This study determined the distribution of stx1 and stx2 genes in Escherichia coli isolated from dairy herds with regard to animal age, season, and farm production-scale, and analyzed the phylogenetic distribution of the groups A, B1, B2, and D of 276 isolates of bovine feces Shiga toxin-producing E. coli (STEC). The stx1 profile was the most common, detected in 20.4% (202/990) of the isolates, followed by stx2 (4.54%, 45/990) and stx1+stx2 (2.92%, 29/990). The stx1 gene was detected more frequently in calves than in adult animals. In the dry season (winter), the presence of stx1+stx2 profile in cattle feces was higher than in the rainy season (summer), while no significant changes were observed between seasons for the stx1 and stx2 profiles. The most predominant phylogenetic groups in adult animals were B1, A, and D, while groups A and B1 prevailed in calves. Our data highlight the importance of identifying STEC reservoirs, since 7.5% of the tested isolates were positive for stx2, the main profile responsible for the hemolytic-uremic syndrome (HUS). Moreover, these microorganisms are adapted to survive even in hostile environments and can contaminate the food production chain, posing a significant risk to consumers of animal products.
Content may be subject to copyright.
A preview of the PDF is not available
... Various degrees of hlyA and eaeA genes were recorded in other studies, such that 0.9% and 9.1% of the examined raw milk was positive for the eaeA gene in Egypt and Saudi Arabia, respectively [37,52]. In general, the differences in prevalence rates of the E. coli strains and their virulence genes might be attributed to sampling density, isolation procedure, and country [53]. ...
Article
Full-text available
The objectives of the current study were first to determine the prevalence of non O157:H7E. coli, especially Shiga toxin-producing Escherichia coli (STEC) in retailed milk and dairy products in Egypt. Second, the antimicrobial resistance profiling and virulence genes of the isolated E. coli strains were screened. Third, evaluation of the inhibitory effects of D-tryptophan against E. coli O26:H11 was further performed. The results revealed that 20% (30/150) of the samples were STEC positive, with 64 isolates harboring some virulent genes, such as Stx1, Stx2, eaeA, and hylA. Serological identification revealed four different pathotypes belonging to EPEC, ETEC, EHEC, and EIEC. Antimicrobial susceptibility testing revealed that 100%, 98.44%, 92.19%, 71.87%, 65.63% and 64.06% of the isolates had a resistance against tetracycline, oxacillin, erythromycin, nalidixic acid, sulphamethoxazol, and ampicillin, respectively. D-tryptophan addition (40 mM) to E. coli O26:H11-inoculated soft cheese and ice cream revealed a significant reduction (p < 0.05) in bacterial growth, especially when accompanied with other food stressors. D-Tryptophan is considered as an effective food preservative and as a promising alternative candidate in the dairy industry.
... CI) was in the range of that reported in Brazil, USA, Italy and Spain (21.3-36.2%) [87][88][89][90][91]. The STEC prevalence reported in studies conducted in Argentina is also within the same range (11.8-38.9%) ...
Article
Full-text available
We developed a quantitative microbiological risk assessment (QMRA) of haemolytic uremic syndrome (HUS) associated with Shiga toxin-producing Escherichia coli (STEC)-contaminated beef (intact beef cuts, ground beef and commercial hamburgers) in children under 15 years of age from Argentina. The QMRA was used to characterize STEC prevalence and concentration levels in each product through the Argentinean beef supply chain, including cattle primary production, cattle transport, processing and storage in the abattoir, retail and home preparation, and consumption. Median HUS probability from beef cut, ground beef and commercial hamburger consumption was <10 −15 , 5.4x10-8 and 3.5x10-8 , respectively. The expected average annual number of HUS cases was 0, 28 and 4, respectively. Risk of infection and HUS probability were sensitive to the type of abattoir, the application or not of Hazard Analysis and Critical Control Points (HACCP) for STEC (HACCP-STEC), stx prevalence in carcasses and trimmings, storage conditions from the abattoir to retailers and home, the joint consumption of salads and beef products, and cooking preference. The QMRA results showed that the probability of HUS was higher if beef cuts (1.7x) and ground beef (1.2x) were from carcasses provided by abattoirs not applying HACCP-STEC. Thus, the use of a single sanitary standard that included the application of HACCP-STEC in all Argentinean abattoirs would greatly reduce HUS incidence. The average number of annual HUS cases estimated by the QMRA (n = 32) would explain about 10.0% of cases in children under 15 years per year in Argentina. Since other routes of contamination can be involved, including those not related to food, further research on the beef production chain, other food chains, person-to-person transmission and outbreak studies should be conducted to reduce the impact of HUS on the child population of Argentina.
... Pervez et al., [32] reported that 10% of the isolates of calves were positive for VT1 gene while eaeA not detected. The VT1 gene was detected more frequently in calves than in adult animals [40]. ...
Article
Full-text available
Introduction: Diseases causing diarrhea are one of the major causes of deaths in low and middle income countries and responsible for high mortality rate in young calves resulting in economic losses. Several studies concluded to the high distribution of Escherichia coli (E. coli) strains in infectious calf diarrhea. STEC causes human gastrointestinal illnesses with diverse clinical spectra. So this study was planned for isolation, identification and molecular characterization of the currently circulating E-coli between calves and related workers in Egypt and to determine the role of virulence genes and pathotypes of E. coli in diarrhea in both calves and humans. Material and methods: A total of 161 Holsteins calves with varying ages in four different farms in Egypt were examined clinically for diarrhea as well as related human workers in these farms. 43 fresh fecal samples were collected from diarrheic calves as well as 18 stool swab samples from workers then transferred to microbiological laboratory for bacteriological and molecular examination. Results: The prevalence rates of E. coli were 53% among diarrheic calf samples. The highest isolation rate was 40% among Group I (age <month) and decreased with age. The meanwhile isolation rate in human samples was 50% (9 out of 18). Regarding virulence genes, VT1, VT2 and eaeA virulence gens were successfully amplified in 4 calves’ samples while human isolates showed only positive reaction with VT1 and VT2 were recovered from 3 stool samples while eaeA gave no positive reaction. Conclusion: Depending on the virulence gene profiling of E. coli isolates, there was 8 out 23 animal isolates were Shiga Toxin Producing E. Coli (STEC) representing 35% of total animal isolates and 7 out of 23 animal isolates were Enteropathogenic E. Coli (EPEC) representing 30% of total animal isolates. Meanwhile, 100% of the human isolates were STEC.
... [35] In general, such differences might be attributed to several factors related to a herd such as stress condition, geographic region, density, and season. [36] E. coli O157:H7 is considered as the most dangerous type of STEC as it causes severe human illness. The main reservoir for harbouring E. coli O157:H7 is cattle and other ruminants. ...
Article
Food contaminated with Shiga toxin-producing Escherichia coli (STEC) represents a hazardous public health problem worldwide. Therefore, the present study was performed to elucidate the virulent and antimicrobial resistance characteristics of STEC isolated from milk and dairy products marketed in Egypt. A total of 125 samples (raw market milk, bulk tank milk, Kareish cheese, white soft cheese, and small scale-produced ice cream, 25 each) were collected for determination the prevalence and antimicrobial resistance profiling of STEC. Thirty-six STEC isolates were recovered from milk and dairy products. Serological analysis illustrated that three isolates were E. coli O157:H7 and 33 isolates belonged to different serotypes. Molecular examination indicated that all isolates harboured stx1 and/or stx2 genes, 14 isolates expressed eaeA gene and 3 isolates possessed rfbE gene. Antimicrobial resistance profiling of the isolates was both phenotypically and genetically examined. Interestingly, 31 out of 36 (86.11%) isolates were multidrug-resistant and harboured the extended-spectrum β-lactamase encoding genes, namely, blaCTX-M-15, blaSHV-12 and blaCTX-M-14. Moreover, 12 isolates (33.33%) harboured plasmid-mediated quinolone resistant gene, qnrS. The overall conclusion of the current investigation indicated insufficient hygienic measures adopted during milking, handling, and processing leading to development of pathogenic and multidrug-resistant STEC.
... This farm had a high occurrence of isolates containing the gene stx2 in milk and feces samples, and one isolate in water samples. In this property, there might have been cross-contamination among animal feces, milking parlor water, and raw milk due to high environmental contamination, demonstrating the need for hygienic practices (36) . ...
Article
Full-text available
This study focused on detecting diarrheagenic Escherichia coli, enteropathogenic E. coli (EPEC), Shiga-toxin-producing E. coli (STEC), enterohemorrhagic E. coli (EHEC or STEC:EPEC), enterotoxigenic E. coli (ETEC), and enteroaggregative E. coli (EAEC) in raw milk, water, and cattle feces sampled from non-technified dairy farms located in the northeastern São Paulo State, Brazil. Thirty-six water samples were collected at different points, namely, water wells (8 samples), water intended for human consumption (8 samples), water from milking parlor (8 samples), and water intended for animal consumption (7 samples), headwaters (1 sample), rivers (3 samples), and reservoirs (1 sample). Three raw milk samples were taken directly from bulk tanks in each farm, totalizing 24 samples. Feces samples were collected using rectal swabs from 160 bovines (20 animals per farm). E. coli was detected in 128 feces samples (80%), 16 raw milk samples (66.67%), and 20 water samples (55.56%). STEC (26 samples, 16.25%), EPEC (10 samples, 6.25%), STEC: EPEC (5 samples, 3.13%), and STEC: ETEC (1 sample, 0.63%) were the most prevalent strains detected in samples from cattle feces. EPEC, STEC, and STEC: EPEC strains were detected in 4.17% (1 sample), 16.67% (4 samples), and 4.17% (1 sample) of raw milk samples, respectively. STEC strains were detected in water used in the milking parlor, while no EAEC strain was detected. As a conclusion, cattle feces are important contamination sources of pathogenic E. coli in non-technified dairy farms and, consequently, cross-contamination among feces, water, and/or raw milk can occur. The use of quality water and hygienic practices during milking are recommended to avoid contamination since pathogens can be transmitted to humans via raw milk or raw milk cheese ingestion. Keywords: EAEC, ETEC, EPEC, STEC, public health
Article
Shiga toxin‐producing Escherichia coli (STEC) is a zoonotic pathotype associated with human gastrointestinal disease that may progress to severe complications. Ruminants, especially cattle, are the main reservoirs of STEC from which they can contaminate the environment and foods of animal or vegetable origin. Besides Shiga toxin, other virulence factors are involved in STEC virulence. O157:H7 remains the most frequent serotype associated with disease. In Brazil, the prevalence of STEC reaches values as high as 90% in cattle and 20%inmeat productswhich may impact the Brazilian food export trade.However, only few reports are related to human disease. The stx1 gene prevails in cattle whereas the stx2 gene is more frequent in food. Several STEC serotypes have been isolated from cattle and food in Brazil, including the O157:H7, O111:NT, NT:H19 as well as O26 and O103 serogroups. O113: H21 STEC strains are frequent in ruminants and foods but with no report in human disease. The virulence profile of Brazilian STEC strains from cattle and food suggests a pathogenic potential to humans, although some differences with clinical strains have been detected. Further studies, employing recent and more discriminative techniques are in need to better clarify their virulence potential.
Article
Full-text available
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 represents the major Shiga toxin-producing E. coli (STEC) strain related to large outbreaks and severe diseases such as hemorrhagic colitis (HC) and the potentially lethal hemolytic uremic syndrome (HUS). The aim of this study was to report the occurrence and molecular characterization of O157:H7 isolates obtained by rectal swab from 52 healthy dairy cattle belonging to 21 farms in Mid-West of Brazil. Detection of 16SrRNA, stx1, stx2, rfbO157, fliCh7, eae, ehxA, saa, cnf1, chuA, yjaA and TSPE4.C2 genes was performed by PCR. The isolates were further characterized by serotyping. Two hundred and sixty E. coli isolates were obtained, of which 126 were characterized as STEC. Two isolates from the same cow were identified as serotype O157:H7. Both isolates presented the stx2, eae, ehxA, saa and cnf1 virulence factor genes and the chuA gene in the phylogenetic classification (virulent group D), suggesting that they were clones. The prevalence of O157:H7 was found to be 1.92% (1/52 animals), demonstrating that healthy dairy cattle from farms in the Mid-West of Brazil are an important reservoir for highly pathogenic E. coli O157:H7.
Article
Full-text available
Controlling the prevalence of Escherichia coli O157 in cattle at the pre-harvest level is critical to reduce outbreaks of this pathogen in humans. Multilayers of factors including the environmental and bacterial factors modulate the colonization and persistence of E. coli O157 in cattle that serve as a reservoir of this pathogen. Here, we report animal factors contributing to the prevalence of E. coli O157 in cattle. We observe the lowest number of E. coli O157 in Brahman breed when compared with other crosses in an Angus-Brahman multibreed herd, and bulls excrete more E. coli O157 than steers in the pens where cattle were housed together. The presence of super-shedders, cattle excreting >10(5) CFU/rectal anal swab, increases the concentration of E. coli O157 in the pens; thereby super-shedders enhance transmission of this pathogen among cattle. Molecular subtyping analysis reveal only one subtype of E. coli O157 in the multibreed herd, indicating the variance in the levels of E. coli O157 in cattle is influenced by animal factors. Furthermore, strain tracking after relocation of the cattle to a commercial feedlot reveals farm-to-farm transmission of E. coli O157, likely via super-shedders. Our results reveal high risk factors in the prevalence of E. coli O157 in cattle whereby animal genetic and physiological factors influence whether this pathogen can persist in cattle at high concentration, providing insights to intervene this pathogen at the pre-harvest level.
Article
Full-text available
When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.
Article
Full-text available
In this study, multiplex PCR was employed to investigate the virulence factors of Escherichia coli strains isolated from 60-day-old calves. Faecal samples were collected from 54 calves at 12 dairy farms in the state of Minas Gerais, Brazil. A total of 156 isolates were obtained after culture and microbiological isolation and were tested by multiplex PCR for the presence of genes encoding toxins (Stx1, Stx2 and STa) and adherence factors (intimin, F41 and F5). Seventy of 156 isolates were positive for at least one virulence factor: ten (14.3 %) from diarrhoeic animals and 60 (85.7 %) from healthy calves. The virulence markers identified were: Stx1 (82.8 %), eae (24.3 %), F41 (11.4 %), F5 (10 %), STa (4.28 %) and Stx2 (4 %). In diarrhoeic animals, Stx1 (70 %) and F41 (30 %) were identified, while Stx1 (83.3 %), eae (28.3 %), F41 (8.3 %), F5 (11.6 %), STa (5 %) and Stx2 (1.6 %) were detected in isolates from healthy calves. Mixed infections with pathotypes Shiga toxin-producing E. coli (STEC)/enteropathogenic E. coli, STEC/enterohaemorrhagic E. coli and STEC/other (eae/F5, Stx1/STa) were detected in five healthy calves. Pathogenic E. coli were identified in 59.26 % of all calves and on 75 % of the dairy farms studied, not only in diarrhoeic (five of six) but also in healthy calves (27 of 48), which demonstrates the importance of this agent in the aetiology of diarrhoea in calves in the state of Minas Gerais.
Article
Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler’s diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (enteropathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
Article
This study aimed to detect virulence factors, pathovars, and phylogenetic groups of Escherichia coli strains obtained from feces of calves with and without diarrhea up to 70 days old and to determine the association between occurrence of diarrhea, phylogenetic groups, and pathovars. Phylo-typing analysis of the 336 E. coli strains isolated from calves with Clermont method showed that 21 (6.25 %) belong to phylogroup A, 228 (67.85 %) to phylogroup B1, 2 (0.6 %) to phylogroup B2, 5 (1.49 %) to phylogroup C, 57 (16.96 %) to phylogroup E, and 3 (0.9 %) to phylogroup F. Phylogroup D was not identified and 20 strains (5.95 %) were assigned as "unknown." The distribution of phylogenetic groups among pathovars showed that NTEC belong to phylogroups B1 (17) and C (4); EPEC to phylogroups B1 (6) and E (8); STEC to phylogroups A (5), B1 (56), B2 (2), C (1), and E (15); EHEC to phylogroups B1 (95) and E (5); and ETEC to phylogroups A (3), B1 (7), and E (10). The EAST-1 strains were phylogroups A (13), B1 (47), E (19), and F (3); E. coli strains of "unknown" phylogroups belonged to pathovars EPEC (1), EHEC (2), STEC (7), and EAST-1 strains (6). ETEC was associated with diarrhea (P = 0.002). Our study did not find association between the phylogenetic background and occurrence of diarrhea (P = 0.164) but did find some relationship in phylogenetic group and pathovar. The study showed that EHEC and STEC are classified as phylogroup B1, EAST-1 phylogroup A, ETEC, and EPEC phylogroup E.
Article
Escherichia coli is the predominant nonpathogenic facultative flora of the human intestine. Some E. coli strains, however, have developed the ability to cause disease of the gastrointestinal, urinary, or central nervous system in even the most robust human hosts. Diarrheagenic strains of E. coli can be divided into at least six different categories with corresponding distinct pathogenic schemes. Taken together, these organisms probably represent the most common cause of pediatric diarrhea worldwide. Several distinct clinical syndromes accompany infection with diarrheagenic E. coli categories, including traveler's diarrhea (enterotoxigenic E. coli), hemorrhagic colitis and hemolytic-uremic syndrome (enterohemorrhagic E. coli), persistent diarrhea (enteroaggregative E. coli), and watery diarrhea of infants (entero-pathogenic E. coli). This review discusses the current level of understanding of the pathogenesis of the diarrheagenic E. coli strains and describes how their pathogenic schemes underlie the clinical manifestations, diagnostic approach, and epidemiologic investigation of these important pathogens.
Article
Rectal swabs of 198 Holstein × Gir crossbred beef cattle from 34 milk farms in the central west of Brazil were analyzed from August 2010 to February 2011. Strains of shiga toxin-producing Escherichia coli (STEC) were isolated from 72.73 % (144/198) of the animals, on over 97 % of the surveyed properties. The molecular characterization indicated the most common toxin gene stx1 in 70.88 % of the animals (202/285), followed by 18.95 % (54/285) stx1/sxt2, and 10.18 % (29/285) stx2. The presence of STEC in animals together with the probable risk factors based on a questionnaire was evaluated in the owners of the evaluated animals. Results showed that the animal category "calves" and production/technification scale "low" of the farm were related to high STEC prevalence in cattle. The season did not significantly affect the presence of STEC in cattle. The STEC strains are considered a major pathogen, causing severe and potentially lethal diseases in humans such as hemorrhagic colitis and hemolytic uremic syndrome. This high prevalence of STEC in dairy cattle poses a significant risk to public health, since these microorganisms can contaminate products intended for human consumption, e.g., water, raw and pasteurized milk, meat products, dairy products, and/or products of plant origin.
Article
The involvement of the pathogenic Shiga-toxin-producing Escherichia coli (STEC; also called verocytotoxic-producing E. coli or VTEC) in sporadic cases and disease outbreaks is presently increasing. Infrequent cases are due to ingestion of milk and dairy products. As ruminants are healthy carriers of STEC and most dairy products may provide these bacteria with favourable conditions for their growth, milk and dairy products are a potential source of STEC. But not all STEC serotypes are pathogens; only relatively small numbers in the entire family of STEC are pathogenic. This review focuses on the recent advances in understanding of STEC and their significance in milk and dairy products. It is intended to gather the information that is needed to understand how these bacteria are described, detected and characterised, how they contaminate milk and grow in dairy products, and how the dairy industry can prevent them from affecting the consumer.