Lithium-ion batteries (LIBs) with high energy efficiency are urgently needed in various fields. For the LIBs electrodes, defects would be generated during manufacture processes and mechanical degradation, and the defects significantly impact the stability and performance of LIBs. However, the effects of electrode defects on the electrochemical processes are still not clear. Herein, an in situ optical observation system is developed for monitoring the Li diffusion around the pre-introduced defects in the commercial graphite electrodes. The experiments show the gas-filled defects vertical to the direction of the Li diffusion would obviously decelerate Li diffusion, while the electrolyte-filled defects parallel to the direction of the Li diffusion would accelerate Li diffusion. In addition, finite element analysis (FEA) suggests consistent with the experiments, showing nonuniform distribution of local Li concentration around the defect. The equivalent diffusivity obtained by FEA is also dependent on the configuration of the defects. The diffusivities of electrolyte-filled parallel defect and gas-filled vertical defect are 12.6 % and 11.0 %, respectively. For the gas-filled defects, the size-effect calculation manifests that equivalent diffusivity would decrease with the enlarged defect size, and the shape of the defects would substantially impact the decrease rate. The results directly reveal the mechanisms of defect induced diffusion behavior change in the electrodes by the new equivalent 2D experiments, and the equivalent diffusivity would be useful for optimizing electrode designs in LIBs.