Genetic diversity among breeding populations is key in plant breeding programs. This study aimed to determine the extent of genetic diversity among 37 diverse maize genotypes using simple sequence repeat (SSR) markers. The maize genotypes were selected based on their variable resistance to Striga asiatica. Maize genotypes were fingerprinted using 18 polymorphic SSR markers. Marker and population diversity parameters were computed. A total of 191 alleles were detected and the number of effective alleles varied from 2 to 21 per locus with a mean of 11. The polymorphic information content (PIC) of the SSR markers varied from 0.59 to 0.96, with a mean of 0.80. Significant differences were observed among populations, individuals and within individuals. Within and among individual variances accounted for 85% and 13% of the total gene diversity. The genotypes were grouped into three main genetic clusters, which were not influenced by genotype origin. Mean genetic distance (0.43) and low geneflow (0.18) were observed among the populations. High mean genetic identity (0.65) was recorded, indicating potential genetic 'bottleneck' among the selected germplasm. The following open pollinated varieties; Border King, Colorado, CIMMYT's ZM OPVs, Mac Pearl, Shesha, Nel Choice, Natal 8Lines, Nel Choice QPM, Hickory King, Kep Select, Obatanpa and the Striga resistant synthetic variety DSTR-YSYN15 were selected from different clusters for breeding.