Conference PaperPDF Available

Compact Antennas Pattern Measurement Setup at 240 GHz



Content may be subject to copyright.
Abstract—In this paper a compact radiation pattern
measurement setup at 240 GHz is investigated. It consists on a
millimeter-wave source as transmitter (Tx) and a Schottky diode
as receiver (Rx). Three different horn antennas fabricated with
different fabrication techniques are presented: Stereolithography
Apparatus (A
), Selective Laser Sintering (A
) and commercial
metallic (A
). Radiation patterns are discussed and compared, as
well as dynamic range. A good agreement between simulation
and measurement results was obtained.
N order to meet the growth of data traffic in wireless
transmissions, it is necessary to develop both active devices
(RF mixer, amplifier) and passive devices (diodes, antennas)
or sub-systems that work in mmw (millimeter-wave) to
increase the capacity of wireless links [1].
Antenna design, fabrication and measurement at mmw
frequencies is an important challenge for many mmw/sub-
mmw systems, and particularly for wireless communications
systems. Therefore, in recent years, several three-dimensional
(3D) printing technologies for antennas production have been
developed in order to simplify the manufacturing process,
reduce cost and achieve good efficiency antennas [2].
In this context, some antenna measurement systems have
been investigated [3] seeking greater accuracy and dynamic
range. Most setups use a VNA (vector network analyzer) in
radiation pattern measurement for its high sensitivity, however
the mechanical setup can be quite complex, at least more
complex than using a spectrum analyzer in Rx [4]–[6].
We propose to investigate the use of a mmw-source
combined with a synchronous detection associated with
Schottky diodes to reduce the complexity of the measurement
setup and achieve higher cost efficiency.
Three different antennas were analyzed in order to validate
the measurement setup. The measurement antenna A
is a
commercial horn antenna. The two other antennas are the
devices under test. A
is a corrugated horn antenna produced
by stereolithography apparatus (SLA) and A
is a corrugated
horn antenna produced by selective laser sintering.
The gain measurement in the antenna main direction of
radiation was done using a VNA in WR3.4 band, mmw
transmit/receive (T/R) modules and a known gain antenna
(Figure 2).
The following gains at 240 GHz were obtained:
22 dBi, A
11 dBi and A
9 dBi. A
has the highest
gain (full metallic structure and best conductivity/roughness),
lowest gain is obtained with A
antenna (which has a rough
surface, which affects the gain).
The measurement system is composed of a multiplication
chain (WR3.4 band), radiating in free space, and receiver is a
Schottky diode moving on a sphere. The signal is amplitude
modulated at low frequency, and a lock-in technique is used to
retrieve the modulated signal at reception.
The aperture sizes of measuring antenna and the antennas
under test (AUT) are approximatively A
= 6.5 mm,
= 1 mm, and A
= 1 mm. For characterization of an AUT
using the far-field (FF) techniques, we must check if the FF
condition (R
= 2D
/λ) is respected for all the AUT (in this
case, for 240 GHz, 90 mm). All measurements were done
using a distance R > 200 mm.
We decided to use A
for a validation between the
simulations and measurements at 240 GHz (the exact internal
dimensions of the commercial horn A
were not known). The
simulation of the radiation pattern was done using HFSS
software [7] and H and E planes are shown in figure 3.
C. Belem Goncalves
, E. Lacombe
, Carlos del Río
, F. Gianesello
, C. Luxey
, G. Ducournau
STMicroelectronics, Crolles, 38920 France
Laboratory of Polytech Nice-Sophia, Univ. Nice Sophia-Antipolis, Sophia Antipolis, 06903 France
Institute of Electronics, Microelectronics and Nanotechnology, Villeneuve d’Ascq, 59652 France
Electrical and Electronic Engineering Department, Public University of Navarre, Pamplona,
31006 Spain
Compact antennas pattern measurement setup at 240 GHz
Fig. 1. WR3.4 (220-325 GHz waveguide feed) Antennas A
, A
, A
for bench measurement validation.
Fig. 2. Measured gain for A1, A2 and A3.
978-1-5386-3809-5/18/$31.00 ©2018 IEEE
The difference between simulations and measurement is
less than 2 dB for all points. The radiation patterns are also in
good agreement on H and E planes at 240 GHz, so we can
conclude that SLA is an efficient and good technique for 3D
printed antennas in WR3.4 band.
The theoretical dynamic range of the measurement setup
was calculated using (1).
   
In (1), the Rx sensitivity (
-62 dBm, input power of
) 0 dBm,
is the AUT gain, measurement
antenna gain (
) 24 dBi and free-space loss
factor (
69 dB to 300 mm distance between AUT and
. Therefore, the theoretical dynamic range for each setup
is A
≅ 41 dB, A
≅ 27 dB, and A
≅ 25 dB.
Figure 4 shows the radiation pattern of the antennas. A
more directive than the other two, which was expected
because its manufacturing process is more sophisticated. The
rough surface in A
is reducing its efficiency.
Taking into account the observed dynamic ranges of the
figure 4, theoretical dynamic range is in very good agreement
with measurements.
In this paper, a new compact measurement setup has been
presented using a multiplication chain and schottky receiver.
It is able to measure radiation pattern along spherical
surfaces around an AUT. A first validation of the system
comparing simulations with the measurements at 240 GHz
has been used to validate the system, with encouraging results.
Three antennas were measured and, as expected, A
the best performance in gain and directivity, but also has a
high manufacturing cost. For this reason, other
implementation techniques are analyzed, and SLA showed
better results when compared with metallic 3D printing.
This work has been supported by IEMN-ST common
laboratory. Part of the experimental work was also supported
by funding from Horizon 2020, the European Union’s
Framework Programme for Research and Innovation, under
grant agreement No. 814523. ThoR has also received funding
from the National Institute of Information and
Communications Technology in Japan (NICT).
[1] T. Nagatsuma, G. Ducournau, and C. C. Renaud, “Advances in terahertz
communications accelerated by photonics,” Nat. Photonics, vol. 10, no. 6, pp.
371–379, 2016.
[2] B. ZHANG, Y.-X. GUO, H. ZIRATH, and Y. P. ZHANG, “Investigation
on 3-D-Printing Technologies for Millimeter- Wave and Terahertz
Applications,” Proc. IEEE, vol. 105, no. 4, pp. 723–736, 2017.
[3] D. GULAN, Heiko, LUXEY, Cyril, TITZ, Handbook of Antenna
Technologies. 2014.
[4] L. Boehm, F. Boegelsack, M. Hitzler, and C. Waldschmidt, “An automated
millimeter-wave antenna measurement setup using a robotic arm,” IEEE
Antennas Propag. Soc. AP-S Int. Symp., vol. 2015–Octob, pp. 2109–2110, 20
[5] D. Novotny, J. Gordon, J. Coder, M. Francis, and J. Guerrieri,
“Performance Evaluation of a Robotically Controlled Millimeter-Wave Near-
Field Pattern Range At the NIST,” no. Eucap, pp. 4086–4089, 2013.
[6] D. Hou, Y. Z. Xiong, W. L. Goh, S. Hu, W. Hong, and M. Madihian,
“130-GHz on-chip meander slot antennas with stacked dielectric resonators in
standard CMOS technology,” IEEE Trans. Antennas Propag., vol. 60, no. 9,
pp. 4102–4109, 2012.
Fig. 3. A2 radiation pattern simulated and measured at 240 GHz.
Fig. 4. Radiation pattern measured at 240 GHz of antennas A1, A2 and A3.
Patterns where normalized to the antenna A
... Les mesures des prototypes d'antennes en bande H ont été réalisées sur deux bancs de mesure développés par l'Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN) de Lille en collaboration avec le laboratoire Polytech'Lab de l'université Côte d'Azur de Nice [131,132]. Ces bancs sont inspirés d'un banc de mesure sous pointes précédemment développé par le Polytech'Lab [133]. Le premier banc est : pertes d'apodisation ; 21 : pertes d'insertion des cellules ; 11 : pertes en réflexion des cellules ; : pertes de quantification de phase ; : efficacité totale : efficacité d'ouverture ; : gain de l'antenne ; −2 : bande passante (-2 dB) ; −3 : bande passante (-3 dB) L'antenne A0 de 32×32 éléments a également été mesurée en utilisant les mêmes bancs de mesure. ...
L’émergence de plusieurs applications dans la gamme des fréquences millimétriques, telles que les communications point à point à très haut débit, les réseaux 5G et 6G, la télévision à haute définition, les radars automobiles et l’imagerie, ont encouragé la recherche sur les solutions d’antennes à fort gain, et plus particulièrement, les antennes intégrées, compactes, économiques et efficaces.Dans ce contexte, ces travaux de thèse présentent une nouvelle architecture d’antenne composée d’un réseau transmetteur et d’une source focale, tous deux imprimés sur un empilement unique de circuits imprimés. Cette architecture permet la réalisation d’un module front-end millimétrique, fort gain, monolithique et efficace. Elle est compatible avec les technologies de circuits imprimés faibles coûts utilisées pour la production de masse et permet de s’affranchir de contraintes techniques et de coût liées à l’assemblage de l’antenne.Les travaux de thèse sont divisés en trois grandes parties. La première est consacrée à la définition de l’architecture proposée, sa modélisation sous forme analytique et l’analyse des performances typiques.La deuxième partie porte sur la validation expérimentale de l’architecture d’antenne et de son modèle. Pour ce faire, quatre prototypes en bande V (60 GHz) ont été développés et caractérisés expérimentalement. Ces prototypes ont pour dimensions 40×40×13,2 mm3 et sont conçus avec des polarisations et des niveaux de quantification de phase différents. Les mesures ont démontré des gains allant de 17,8 à 22,1 dBi à 60 GHz, des efficacités d’ouverture allant de 15 à 35% et des bandes passantes à -3 dB allant de 14 à 18%. Les résultats obtenus ont permis d’envisager positivement l’adaptation de cette architecture d’antenne aux bandes millimétriques supérieures.La troisième partie est consacrée au développement d’antennes à réseau transmetteur intégré sur substrat diélectrique et fonctionnant dans les bandes D (140 GHz) et H (300 GHz). Pour cela, des cellules élémentaires composées d’un résonateur et de deux grilles polarisantes formant une cavité de Fabry-Perot ont été développées. Elles ont démontré d’excellentes performances à la fois en bande D et en bande H, et ce en termes de bande passante (environ 50% de bande à -1 dB pour la plupart des cellules), de pertes d’insertion (0,5 dB en moyenne) et de quantification de phase (3 bits). Elles ont également démontré une robustesse face aux dispersions de fabrication liées au substrat et à la gravure. A partir de ces cellules, des prototypes ont été conçus, fabriqués et caractérisés expérimentalement. Ils sont fabriqués sur un seul empilement PCB bas coût à cinq couches métalliques et de dimensions 20×20×4,52 mm3. En bande D, un gain d’environ 20 dBi, une efficacité d’ouverture proche 29% et une bande passante à -3 dB supérieure à 17,4% ont été mesurés. En bande H, des prototypes de tailles différentes, ont démontré en mesure, des gains allant de 20,5 à 23,1 dBi, des efficacités d’ouverture allant de 12 à 17,6% et des bandes passantes à -3 dB allant de 17 à 26,3%.Les résultats obtenus ont permis de valider l’architecture monolithique de l’antenne proposée et de démontrer son intérêt dans la conception de modules front-end millimétriques ou submillimétriques fortement intégrés, compacts, efficaces, présentant un fort gain d’antenne (>20 dBi) et fonctionnant sur une large bande passante. De plus, elle est compatible avec les technologies de fabrication bas coût et la production de masse. Ces conclusions démontrent que cette topologie d’antenne représente une solution intéressante et prometteuse pour les applications de communications sans fils à très hautes fréquences et à très haut débit.
... The antenna measurements were carried out on two benches developed at the Institute of Electronics, Microelectronics and Nanotechnology (IEMN, France) jointly with the Polytech'Lab from University Côte d'Azur [35,36]. They are inspired from a previous probe-fed measurement set-up developped at the Polytec'Lab for mm-wave frequencies 57-140 GHz [37]. ...
Full-text available
substrate-integrated discrete-lens antenna manufactured in standard printed-circuit-board (PCB) techno-logy is demonstrated in H-band (225–325 GHz). The arrays composed of phase-shifting unit-cells and a waveguide-fed planar focal source are designed on a single PCB stack with five metal layers and multiple low-loss dielectric substrates in a monolithic module of 20×20×4.52 mm3. The linearly-polarized unit-cells are based on arc-shaped resonators placed between two perpendicular polarizing grids. They achieve eight transmission phase states with less than 1 dB average insertion loss and 27% 1-dB bandwidth. Two antenna prototypes with radiating apertures of 6.6×6.6 mm2 and 10.56×10.56 mm2 are designed, fabricated and measured. They demonstrate linearly-polarized pencil-beam radiation patterns with low side-lobes, low cross-polarization, an experi-mental gain of 20.6/23.1 dBi at 327/332 GHz and 3-dB gain bandwidth of 26.3/17.2%. The impact of manufacturing tolerances is detailed both at unit-cell level and antenna level.
Conference Paper
In order to measure antenna properties precisely at frequencies above 100 GHz, elaborate measurement techniques are required. This is especially challenging for integrated antennas, as probes require a steady, rigid measurement setup to avoid damage. This paper introduces an antenna measurement setup that allows fast and reliable 3-dimensional antenna pattern measurements in a frequency range of 60 GHz to 330 GHz. The system consists of a probe station, a vector network analyzer (VNA) and an industrial robotic arm with six axes. The robot ensures highly repeatable and accurate measurements and allows high flexibility in terms of scan geometry and resolution. Using a probe station, this setup not only supports measurements of waveguide-fed antennas, but also integrated antennas. After explaining the basic setup, measurement results are shown to demonstrate the capability of the system.
Almost 15 years have passed since the initial demonstrations of terahertz (THz) wireless communications were made using both pulsed and continuous waves. THz technologies are attracting great interest and are expected to meet the ever-increasing demand for high-capacity wireless communications. Here, we review the latest trends in THz communications research, focusing on how photonics technologies have played a key role in the development of first-age THz communication systems. We also provide a comparison with other competitive technologies, such as THz transceivers enabled by electronic devices as well as free-space lightwave communications.
Conference Paper
The Antenna Metrology Laboratory at the National Institute of Standards and Technology (NIST) is developing a robotically controlled near-field pattern range for measuring antennas and components from 50 GHz to 500 GHz. This new range is intended to address the need for accurate antenna pattern measurements for a variety of applications including remote sensing and imaging. This system incorporates a precision industrial six-axes robot, six-axes parallel kinematic hexapod, and high precision rotation stage. A laser tracker is used to determine position and to calibrate the robot. The robotic positioning arm is programmable and allows scanning in a variety of geometries including spherical, planar, cylindrical, and perform in-situ extrapolation measurements, as well as, other user defined geometries. For the planar geometry, the coverage is a rectangle 1.25 m × 2 m. For spherical, radii from 2 cm to 2 m are possible, while the coverage in θ is ±120° and in φ is ±180°. Robot positioning repeatability has been evaluated and determined to be about 30 μm, and absolute positioning determination via the laser tracker is ~15 μm. Specifics regarding the range evaluation are presented.
This work discusses the design methodologies of 130-GHz high gain and high efficiency on-chip meander slot antennas in a standard CMOS technology. In the proposed structure, stacked dielectric resonators (DRs) are placed on the top of the on-chip feeding element to form series-fed antenna array for antenna gain and efficiency improvement. The integrated antenna with double stacked DRs achieved a measured gain of 4.7 dBi at 130 GHz with a bandwidth of 11%. The antenna size is 0.8 ×0.9 mm2 and the simulation results indicate a radiation efficiency of 43%. To the best of our knowledge, this is the first demonstration of an on-chip antenna gain and efficiency enhancement through stacked DRs.
Heiko, LUXEY, Cyril, TITZ, Handbook of Antenna Technologies.
  • D Gulan
Handbook of Antenna Technologies
  • D Gulan
  • Heiko
  • Cyril Luxey
  • Titz
D. GULAN, Heiko, LUXEY, Cyril, TITZ, Handbook of Antenna Technologies. 2014.