Cerebral plasticity induced by visual loss represents a poorly understood field of neuroscience, with numerous questions that don’t yet have an answer. Central and peripheral vision, the evolutionary compromise between spatial resolution and the sampled space volume, are processed in distinct areas of the brain. Understanding the impact of vision loss in theses regions, is of utmost interest for the study of visual brain. Herein, in two models of retinal disorders affecting central and peripheral vision (namely Stargardt macular dystrophy and retinitis pigmentosa), we specifically investigated the effects of the central and peripheral visual loss on brain morphology and its functional connectivity. 1. Morphological plastic changes induced by central and peripheral visual loss. We explored the effects of visual loss on cortical thickness (CoTks) and cortical entropy (CoEn, marker of synaptic complexity) in the cytoarchytectonic regions of the occipital lobe. Central visual loss associated thinning in dorsal stream regions, while peripheral visual loss in early visual cortex (EVC) and regions belonging both to dorsal and ventral stream. Theses effects were unpredicted by the canonical view “central vision – ventral stream”, “peripheral vision – dorsal stream”. Normal CoEn in theses areas suggests that synaptic complexity is preserved in the remaining networks. Only central visual field loss presented CoEn alterations, namely an increase in areas involved in object recognition, that likely reflects a synaptic complexity enhancement in response to the loss of the high spatial resolution of central vision. The gain in synaptic complexity could mask neuronal loss due to deafferentation and may account for the CoTks normality. 2. Plastic changes in the functional connectivity of central and peripheral EVC. We explored and compared to normally afferented EVC, the functional connectivity of afferented and deafferented parts of EVC and found that central and peripheral visual loss induce different patterns of reorganization. Residually afferented early visual cortex reinforce local connections presumably to enhance the processing of altered visual input, while deafferented EVC strengthen long-range connections presumably to assist high-order functions. Combined structural and functional data indicate that areas with reduced CoTks superpose with several areas presenting reduced functional connectivity with the peripheral EVC and that areas with increased CoEn superpose with several areas presenting increased functional connectivity with afferented peripheral EVC. These data point that alterations of the sensory input to the peripheral field are more prone to induce plastic changes. Overview : Data in the current work provide an interesting perspective about the plasticity following central or peripheral visual field loss and show that it is more complex than the canonical model would have let to presume.
A major goal of neuroimaging studies is to develop predictive models to analyze the relationship between whole brain functional connectivity patterns and behavioural traits. However, there is no single widely-accepted standard pipeline for analyzing functional connectivity. The common procedure for designing functional connectivity based predictive models entails three main steps: parcellating the brain, estimating the interaction between defined parcels, and lastly, using these integrated associations between brain parcels as features fed to a classifier for predicting non-imaging variables e.g., behavioural traits, demographics, emotional measures, etc. There are also additional considerations when using correlation-based measures of functional connectivity, resulting in three supplementary steps: utilising Riemannian geometry tangent space parameterization to preserve the geometry of functional connectivity; penalizing the connectivity estimates with shrinkage approaches to handle challenges related to short time-series (and noisy) data; and removing confounding variables from brain-behaviour data. These six steps are contingent on each-other, and to optimise a general framework one should ideally examine these various methods simultaneously. In this paper, we investigated strengths and short-comings, both independently and jointly, of the following measures: parcellation techniques of four kinds (categorized further depending upon number of parcels), five measures of functional connectivity, the decision of staying in the ambient space of connectivity matrices or in tangent space, the choice of applying shrinkage estimators, six alternative techniques for handling confounds and finally four novel classifiers/predictors. For performance evaluation, we have selected two of the largest datasets, UK Biobank and the Human Connectome Project resting state fMRI data, and have run more than 9000 different pipeline variants on a total of ∼14000 individuals to determine the optimum pipeline. For independent performance validation, we have run some best-performing pipeline variants on ABIDE and ACPI datasets (∼1000 subjects) to evaluate the generalisability of proposed network modelling methods.
We investigated grapheme--colour synaesthesia and found that: (1) The induced colours led to perceptual grouping and pop-out, (2) a grapheme rendered invisible through `crowding' or lateral masking induced synaesthetic colours --- a form of blindsight --- and (3) peripherally presented graphemes did not induce colours even when they were clearly visible. Taken collectively, these and other experiments prove conclusively that synaesthesia is a genuine perceptual phenomenon, not an effect based on memory associations from childhood or on vague metaphorical speech. We identify different subtypes of number--colour synaesthesia and propose that they are caused by hyperconnectivity between colour and number areas at different stages in processing; lower synaesthetes may have cross-wiring (or cross-activation) within the fusiform gyrus, whereas higher synaesthetes may have cross-activation in the angular gyrus. This hyperconnectivity might be caused by a genetic mutation that causes defective pruning of connections between brain maps. The mutation may further be expressed selectively (due to transcription factors) in the fusiform or angular gyri, and this may explain the existence of different forms of synaesthesia. If expressed very diffusely, there may be extensive cross-wiring between brain regions that represent abstract concepts, which would explain the link between creativity, metaphor and synaesthesia (and the higher incidence of synaesthesia among artists and poets). Also, hyperconnectivity between the sensory cortex and amygdala would explain the heightened aversion synaesthetes experience when seeing numbers printed in the `wrong' colour. Lastly, kindling (induced hyperconnectivity in the temporal lobes of temporal lobe epilepsy [TLE] patients) may explain the purp...
Neurobiological aspects of synaesthesia are discussed from the perspective of the broader philosophical topic of “syn-aisthesis” and the basic fundamentals of a neuropsychological understanding of perceptual inter-modal integration. Herein, the predominance of conceptualization processes in regard to top-down functions of the brain appears as a prerequisite for perception. Functional Magnet Resonance Imaging (fMRI) data of synaesthetes compared to controls are discussed, providing evidence for the theory that prefrontal and parietal conceptualization processes by themselves exert transmodal functions and thus contain properties of “binding”. A partial hyperactivity of such processes in synaesthesia may thus be a causal factor of this condition.
Behavioral alterations emerging after central or peripheral vision loss suggest that cerebral reorganization occurs for both the afferented and deafferented early visual cortex (EVC). We explored the functional reorganization of the central and peripheral EVC following visual field defects specifically affecting central or peripheral vision. Compared to normally sighted, afferented central and peripheral EVC enhance their functional connectivity with areas involved in visual processing, whereas deafferented central and peripheral EVC increase their functional connectivity with more remote regions. The connectivity pattern of afferented EVC suggests adaptive changes that might enhance the visual processing capacity whereas the connectivity pattern of deafferented EVC may reflect the involvement of these regions in high-order mechanisms. Characterizing and understanding the plastic changes induced by these visual defects is essential for any attempt to develop efficient rehabilitation strategies.
Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data.
Owing to its bizarre nature and its implications for understanding how brains work, synesthesia has recently received a lot of attention in the popular press and motivated a great deal of research and discussion among scientists. The questions generated by these two communities are intriguing: Does the synesthetic phenomenon require awareness and attention? How does a feature that is not present become bound to one that is? Does synesthesia develop or is it hard wired? Should it change our way of thinking about perceptual experience in general? What is its value in understanding perceptual systems as a whole? This volume brings together a distinguished group of investigators from diverse backgrounds--among them neuroscientists, novelists, and synesthetes themselves--who provide fascinating answers to these questions. Although each approaches synesthesia from a very different perspective, and each was curious about and investigated synesthesia for very different reasons, the similarities between their work cannot be ignored. The research presented in this volume demonstrates that it is no longer reasonable to ask whether or not synesthesia is real--we must now ask how we can account for it from cognitive, neurobiological, developmental, and evolutionary perspectives. This book will be important reading for any scientist interested in brain and mind, not to mention synesthetes themselves, and others who might be wondering what all the fuss is about.
A biologically oriented introduction to synesthesia by the leading authority on the subject.
For decades, scientists who heard about synesthesia hearing colors, tasting words, seeing colored pain just shrugged their shoulders or rolled their eyes. Now, as irrefutable evidence mounts that some healthy brains really do this, we are forced to ask how this squares with some cherished conceptions of neuroscience. These include binding, modularity, functionalism, blindsight, and consciousness. The good news is that when old theoretical structures fall, new light may flood in. Far from a mere curiosity, synesthesia illuminates a wide swath of mental life.
In this classic text, Richard Cytowic quickly disposes of earlier criticisms that the phenomenon cannot be "real," demonstrating that it is indeed brain-based. Following a historical introduction, he lays out the phenomenology of synesthesia in detail and gives criteria for clinical diagnosis and an objective "test of genuineness." He reviews theories and experimental procedures to localize the plausible level of the neuraxis at which synesthesia operates. In a discussion of brain development and neural plasticity, he addresses the possible ubiquity of neonatal synesthesia, the construction of metaphor, and whether everyone is unconsciously synesthetic. In the closing chapters, Cytowic considers synesthetes' personalities, the apparent frequency of the trait among artists, and the subjective and illusory nature of what we take to be objective reality, particularly in the visual realm.
The second edition has been extensively revised, reflecting the recent flood of interest in synesthesia and new knowledge of human brain function and development. More than two-thirds of the material is new.
Bradford Books imprint