ArticlePDF Available

Exploring sustainable land use in forested tropical social-ecological systems: A case-study in the Wet Tropics

Authors:

Abstract and Figures

Tropical countries lie at the nexus of three pressing issues for global sustainability: agricultural production, climate change mitigation and biodiversity conservation. The forces that drive forest protection do not necessarily oppose those that drive forest clearance for development. This decoupling, enhanced by the stronger economic forces compared to conservation, is detrimental for the social-ecological sustainability of forested tropical landscapes. This paper presents an integrated, and spatially-explicit, Agent-Based Model that examines the future impacts of land-use change scenarios on the sustainability of the Wet Tropics region of tropical Queensland, Australia. In particular, the model integrates Bayesian Belief Networks, Geographical Information Systems, empirical data and expert knowledge, under a land-sharing/land-sparing analysis, to study the impact of different landscape configurations on trade-offs and synergies among biodiversity and two ecosystem services (sugarcane production and carbon sequestration). Contrary to most tropical regions, model simulations show that Business As Usual is helping to reconcile these contrasting goals in the forested landscape of the Wet Tropics. The paper analyses which combination of governance and socioeconomic factors is causing these positive results. This is an outstanding achievement for a tropical region, considering that most tropical areas are characterized for having stronger economic-land clearing forces compared to conservation forces, which reduce important ecosystem services for human wellbeing and the health of ecosystems.
Content may be subject to copyright.
UNCORRECTED PROOF
#DJGC6AD;CK>GDCB:CI6A&6C6<:B:CI MMM  MMMMMM
DCI:CIHA>HIH6K6>A67A:6I,8>:C8:>G:8I
#DJGC6AD;CK>GDCB:CI6A&6C6<:B:CI
?DJGC6A=DB:E6<:LLL:AH:K>:G8DB
MEADG>C< HJHI6>C67A: A6C9 JH: >C ;DG:HI:9 IGDE>86A HD8>6A:8DAD<>86A HNHI:BH 
86H:HIJ9N >C I=: 0:I -GDE>8H
#JA:C DCO6A:O+:9>CV6V V "6>C # DG9DCV7V V8 +DH:B6GN !>AAV7V V9 # 6GN )DA=>AAV6 -:G:C8: ) 6LHDCV:
6819<7,>498 ,8/ 97:?>,>498 '.408.0= ,70= ?>>98 8=>4>?>0  -0</008 '.9>6,8/ )
74@4=498 91 (<9:4.,6 8@4<98708>= ,8/ '9.40>40= ,70= 995 )84@0<=4>C ) ,4<8= ,8/ (9A8=@4660 %  ?=><,64,
80880< '.3996 91 8@4<98708>  '9.40>C ?=><,64,8 ",>498,6 )84@0<=4>C ") ,8-0<<, ( ?=><,64,
9 ,8/ ,8/ +,>0< 97798A0,6>3 '.408>4E. ,8/ 8/?=><4,6 &0=0,<.3 #<2,84=,>498 '&# ,4<8= %  ?=><,64,
:0:,<>708> 91 092<,:3C 482= 966020 98/98   '><,8/ 98/98 826,8/ )
+-"% "'(
0CA9</=
,JHI6>C67A: A6C9 JH:
,D8>6A:8DAD<>86A HNHI:B
%6C9H=6G>C< 6C9 A6C9HE6G>C<
8DHNHI:B H:GK>8:H
<:CI76H:9 BD9:A
6N:H>6C 7:A>:; C:ILDG@
,-+-
-GDE>86A 8DJCIG>:H A>: 6I I=: C:MJH D; I=G:: EG:HH>C< >HHJ:H ;DG <AD76A HJHI6>C67>A>IN 6<G>8JAIJG6A EGD9J8I>DC 8A>
B6I: 8=6C<: B>I><6I>DC 6C9 7>D9>K:GH>IN 8DCH:GK6I>DC -=: ;DG8:H I=6I 9G>K: ;DG:HI EGDI:8I>DC 9D CDI C:8:HH6G>AN
DEEDH: I=DH: I=6I 9G>K: ;DG:HI 8A:6G6C8: ;DG 9:K:ADEB:CI -=>H 9:8DJEA>C< :C=6C8:9 7N I=: HIGDC<:G :8DCDB>8
;DG8:H 8DBE6G:9 ID 8DCH:GK6I>DC >H 9:IG>B:CI6A ;DG I=: HD8>6A:8DAD<>86A HJHI6>C67>A>IN D; ;DG:HI:9 IGDE>86A A6C9
H86E:H -=>H E6E:G EG:H:CIH 6C >CI:<G6I:9 6C9 HE6I>6AAN:MEA>8>I <:CI6H:9 &D9:A I=6I :M6B>C:H I=: ;JIJG:
>BE68IH D; A6C9JH: 8=6C<: H8:C6G>DH DC I=: HJHI6>C67>A>IN D; I=: 0:I -GDE>8H G:<>DC D; IGDE>86A *J::CHA6C9
JHIG6A>6 "C E6GI>8JA6G I=: BD9:A >CI:<G6I:H 6N:H>6C :A>:; ':ILDG@H :D<G6E=>86A "C;DGB6I>DC ,NHI:BH :B
E>G>86A 96I6 6C9 :ME:GI @CDLA:9<: JC9:G 6 A6C9H=6G>C<A6C9HE6G>C< 6C6ANH>H ID HIJ9N I=: >BE68I D; 9>;;:G:CI
A6C9H86E: 8DCS<JG6I>DCH DC IG69:DUH 6C9 HNC:G<>:H 6BDC< 7>D9>K:GH>IN 6C9 ILD :8DHNHI:B H:GK>8:H HJ<6G86C:
EGD9J8I>DC 6C9 86G7DC H:FJ:HIG6I>DC DCIG6GN ID BDHI IGDE>86A G:<>DCH BD9:A H>BJA6I>DCH H=DL I=6I JH>C:HH
H .HJ6A >H =:AE>C< ID G:8DC8>A: I=:H: 8DCIG6HI>C< <D6AH >C I=: ;DG:HI:9 A6C9H86E: D; I=: 0:I -GDE>8H -=: E6E:G
6C6ANH:H L=>8= 8DB7>C6I>DC D; <DK:GC6C8: 6C9 HD8>D:8DCDB>8 ;68IDGH >H 86JH>C< I=:H: EDH>I>K: G:HJAIH -=>H >H
6C DJIHI6C9>C< 68=>:K:B:CI ;DG 6 IGDE>86A G:<>DC 8DCH>9:G>C< I=6I BDHI IGDE>86A 6G:6H 6G: 8=6G68I:G>O:9 ;DG =6K
>C< HIGDC<:G :8DCDB>8A6C9 8A:6G>C< ;DG8:H 8DBE6G:9 ID 8DCH:GK6I>DC ;DG8:H L=>8= G:9J8: >BEDGI6CI :8DHNHI:B
H:GK>8:H ;DG =JB6C L:AA7:>C< 6C9 I=: =:6AI= D; :8DHNHI:BH
1. Introduction
!JB6CH CDL B6C6<: I=: B6?DG>IN D; A6C9 DC :6GI= L>I= BDG: 6C9
BDG: A6C9 7:>C< 6AAD86I:9 ID 6<G>8JAIJG: :HE:8>6AAN >C IGDE>86A ;DG:HIH
L=>8= 6G: 9:8A>C>C< /:CI:G :I 6A  "I >H I=:G:;DG: CD HJGEG>H:
I=6I 6 9:76I: 67DJI =DL ID G:8DC8>A: I=: C::9H D; E:DEA: 6C9 C6IJG:
=6H G:HJG;68:9 :CC>C<  -=>H FJ:HI>DC >H E6GI>8JA6GAN >BEDG
I6CI >C IGDE>86A G:<>DCH L=>8= ;68: I=G:: B6>C >HHJ:H ;DG HJHI6>C67>A
>IN >GHI ;JIJG: ;DD9 9:B6C9 >H EGD?:8I:9 ID >C8G:6H: 7N 6I A:6HI 
7N  >C G:HEDCH: ID <GDL>C< A:K:AH D; E:G 86E>I6 8DCHJBEI>DC H=>;IH
ID 6C>B6A76H:9 9>:IH 6C9 >C8G:6H>C< EDEJA6I>DC ':AA:B6C  "B
EGDK>C< 6<G>8JAIJG6A EGD9J8I>K>IN >C I=: IGDE>8H L>AA 7: 8G>I>86A ID B::I
I=>H 9:B6C9 :9DGDU :I 6A  ,:8DC9 >H I=: C::9 ID G:9J8: 6I
BDHE=:G>8 8DC8:CIG6I>DCH D; G::C=DJH: 6H:H  !  ID 699G:HH 8A>
B6I: 8=6C<: .'  L=>8= ;D8JH:H >CI:GC6I>DC6A EDA>8N 9>H
8JHH>DCH DC G:9J8>C< :B>HH>DCH ;GDB IGDE>86A 9:;DG:HI6I>DC 6C9 9:<G6
96I>DC :< .'+ )GD<G6BB: C<:AH:C  -=>G9 >H 7>D9>K:G
H>IN ADHH I=: <AD76A 7>D9>K:GH>IN 8G>H>H =6H 7::C L:AA 9D8JB:CI:9 L>I=
DC:S;I= D; I=: LDGA9H @CDLC K:GI:7G6I:H 7:>C< 6I >BB>C:CI G>H@ D; :M
I>C8I>DC !DUB6CC :I 6A  6C9 B6CN BDG: A:HH HIJ9>:9 HE:8>:H
I=DJ<=I ID 7: JC9:G H>B>A6G I=G:6I -:9:H8D :I 6A  "C IGDE>86A
A6C9H86E:H A6C9JH: 8=6C<: %. 9G>K:C 7N I=: :ME6CH>DC 6C9 >CI:C
H>S86I>DC D; 6<G>8JAIJG: 6C9 EA6CI6I>DCH DA:N :I 6A  >H I=: B6>C
86JH: D; 7>D9>K:GH>IN 6C9 :8DHNHI:B H:GK>8:H , ADHH !6GG>HDC :I 6A

!DL 86C L: 68=>:K: I=: <G:6I:HI 8DCH:GK6I>DC 6C9 8A>B6I: 8=6C<:
B>I><6I>DC DJI8DB:H >C 6 A6C9H86E: <>K:C EGD9J8I>DC 9:B6C9H ;DG
;DD9 S7G: ;J:A 6C9 DI=:G , -=>H IG69:DU >H <:C:G6AAN 699G:HH:9 7N
DGG:HEDC9>C< 6JI=DG #6B:H !JIIDC "CHI>IJI: G6><>:7J8@A:G  *! 7:G9::C ,8DIA6C9 .$
7,46 ,//<0==0= ?JA:C<DCO6A:OG:9>C<B6>A8DB # DCO6A:O+:9>C >6>C<DG9DC?8J:9J6J "# DG9DC +D!>AA8H>GD6J + !>AA 6GN)DA=>AA=JIIDC68J@ # 6GN )DA=>AA
I:GGN96LHDC@8A68J@ -) 6LHDC
=IIEH9D>DG<??:CKB6C
+:8:>K:9 #JAN+:8:>K:9>CG:K>H:9;DGB (8ID7:G88:EI:9 (8ID7:G
K6>A67A:DCA>C: MMM
 R 
+:H:6G8= 6GI>8A:
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
ILD 7GD69 <DK:GC6C8: HIG6I:<>:H 6I I=: A6C9H86E: A:K:A DC: >CI:CH>
S:H ;6GB>C< ID 6AADL I=: DUH:I D; 6G:6H >C L=>8= C6IJG: >H EGDI:8I:9
A6C9HE6G>C< %,) L=>A: I=: DI=:G >CI:<G6I:H 6<G>8JAIJG6A EGD9J8I>DC
6C9 C6IJG: EGDI:8I>DC >C 6C 6<GD:8DAD<>86A B6IG>M A6C9H=6G>C< %,!
 G::C :I 6A  !JAB: :I 6A  )=6A6C :I 6A  -=JH 6
%,)%,! ;G6B:LDG@ 86C 7: JH:9 ID 9:I:GB>C: L=6I 76A6C8: D; A6C9JH:
>CI:CH>IN 6C9 8DCH:GK6I>DC >H C::9:9 >C DG9:G ID 7:C:SI 7DI= 7>D9>K:G
H>IN  DG9DC :I 6A  6C9 EGD9J8I>DC DJI8DB:H L=>A: 8DCH>9:G>C<
86G7DC :B>HH>DC B>I><6I>DC HIG6I:<>:H
-=>H E6E:G EG:H:CIH 6C >CI:<G6I:9 <:CI6H:9 &D9:A & ID :M
EADG: I=: >BE68I D; %. ;DG8:H DC IG69:DUH 6C9 HNC:G<>:H 6BDC< 6<G>
8JAIJG6A EGD9J8I>DC 8A>B6I: 8=6C<: B>I><6I>DC 6C9 7>D9>K:GH>IN 8DCH:G
K6I>DC >C I=: 0:I -GDE>8H '6IJG6A +:HDJG8: &6C6<:B:CI '+& G:<>DC
D; IGDE>86A *J::CHA6C9 JHIG6A>6 >: 0:I -GDE>8H =:G:6;I:GV "C E6G
I>8JA6G I=: BD9:A JH:H I=: %,)%,! ;G6B:LDG@ ID :M6B>C: I=: :BE>G>
86A 6C9 HE6I>6AAN :MEA>8>I >BE68IH D; I=G:: B6>C %. EGD8:HH:H >: A6C9
8A:6G>C< EGDI:8I>DC 6C9 G:HIDG6I>DC DC DC: EGDK>H>DC>C< , HJ<6G86C:
EGD9J8I>DC DC: G:<JA6I>C< , 86G7DC H:FJ:HIG6I>DC 6C9 7>D9>K:G
H>IN -=: BD9:A L=>8= 8DB7>C:H 6N:H>6C :A>:; ':ILDG@H ' :
D<G6E=>8 "C;DGB6I>DC ,NHI:BH  ", :BE>G>86A 96I6 6C9 :ME:GI @CDLA
:9<: >H JH:9 ID 699G:HH DC: B6>C G:H:6G8= FJ:HI>DC ;DG I=: 0:I -GDE
>8H L=>8= A6C9JH: 6C9 <DK:GC6C8: H8:C6G>DH JH>C:HH 6H .HJ6A .
%,) DG %,! =:AE G:8DC8>A: ;DD9 EGD9J8I>DC 8A>B6I: 8=6C<: B>I><6I>DC
6C9 7>D9>K:GH>IN 8DCH:GK6I>DC CDL 6C9 >CID I=: ;JIJG: 6C9 L=N
2. Material and Methods
 '>?/C ,<0, ,8/ :<9-607 19<7?6,>498
C :BE>G>86A 6C9 HE6I>6AAN :MEA>8>I & L6H 8DCHIGJ8I:9 ID :M
EADG: I=: :;;:8I D; I=G:: ;JIJG: %. H8:C6G>DH . %,) 6C9 %,! DC
IG69:DUH 6C9 HNC:G<>:H 6BDC< ILD 9>;;:G:CI , 86G7DC H:FJ:HIG6I>DC
HJ<6G86C: EGD9J8I>DC 6C9 7>D9>K:GH>IN >C I=: 0:I -GDE>8H D; CDGI=
:6HI *J::CHA6C9 ><  ;DG I=: E:G>D9  -=>H ;DJGI::CN:6G
DJIADD@ G:T:8IH 6 HJ>I67A: B>C>BJB E:G>D9 D; I>B: C::9:9 ID BD9:A
G:A:K6CI %. >C I=: 0:I -GDE>8H 6H H=DLC 7N I=: %6C9.H: ,JBB6GN
 ,"-" 
-=: H:A:8I>DC D; I=: 0:I -GDE>8H 6H 6 86H:HIJ9N >H 76H:9 DC >IH E6G
I>8JA6G HD8>D:8DCDB>8 6C9 <DK:GC6C8: 8DCI:MI L=>A: BDHI IGDE>86A G:
<>DCH <:C:G6AAN AD86I:9 >C 9:K:ADE>C< 8DJCIG>:H =6K: L:6@ 8DCH:GK6
I>DC <DK:GC6C8: 8DGGJEI>DC 6C9 G:A6I>K: HD8>D:8DCDB>8 9>H69K6CI6<:
L=>8= CDGB6AAN :C=6C8: A6C9 8A:6G>C< EGD8:HH:H DK:G 8DCH:GK6I>DC
I=: 0:I -GDE>8H H=DLH 6 HIGDC<AN >CHI>IJI>DC6A>O:9 :CK>GDCB:CI6A 8DC
H:GK6I>DC ID<:I=:G L>I= G:A6I>K: HD8>D:8DCDB>8 69K6CI6<: !>AA :I 6A
6 -=>H 6INE>86A 8DCI:MI >: =><=>C8DB: G:<>DC L>I= HIGDC< 8DC
H:GK6I>DC <DK:GC6C8: EG:H:CIH 6 G:H:6G8= DEEDGIJC>IN ID :MEADG: HJH
I6>C67>A>IN >C 6 IGDE>86A 6G:6 L>I= 6 9>;;:G:CI HD8>D:8DCDB>8 6C9 <DK
:GC6C8: G:6A>IN JGI=:GBDG: 7:>C< JHIG6A>6 6 9:K:ADE:9 =><=>C8DB:
8DJCIGN L=:G: HDB: D; I=: 8DBBDC HD8>D:8DCDB>8 >HHJ:H ;GDB IGDE
>86A 9:K:ADE>C< G:<>DCH 6G: G:A6I>K:AN A:HH >BEDGI6CI :< EDK:GIN JG
76C <GDLI= :C67A:9 6 ;D8JH DC I=: G:A6I>DCH=>E 7:IL::C %. , 6C9
7>D9>K:GH>IN L=>8= 6G: >BEDGI6CI IDE>8H >C I=: 8DCH:GK6I>DC 6C9 9:K:A
DEB:CI A>I:G6IJG:H  DG9DC :I 6A  ,:A:8I>DC D; I=: 0:I -GDE>8H
6H 6 86H: HIJ9N I=:G:;DG: G:EG:H:CIH 6C >C;DGB6I>DCDG>:CI:9 :MIG:B:
9:K>6CI H6BEA: ANK7?:G<  G:8D<C>O:9 6H 6 G><DGDJH 6EEGD68= ID
JC9:GHI6C9>C< 8DBEA:M E=:CDB:CDC HJ8= 6H HJHI6>C67A: 9:K:ADEB:CI
DEI>DCH 6C9 >BE68IH :B7:99:9 >C I=:>G G:6ALDGA9 8DCI:MI 1>C 
-=: 0:I -GDE>8H '6IJG6A +:HDJG8: &6C6<:B:CI '+& G:<>DC >H DC: D; 
69B>C>HIG6I>K: G:<>DCH I=6I I=: JHIG6A>6 DK:GCB:CI =6H G:8D<C>O:9 ;DG I=: EJGEDH:H D;
'+& EA6CC>C< 6C9 ;JC9>C< JGI>H :I 6A 
-=: 0:I -GDE>8H 8DK:GH 6C 6G:6 D;  @BV 6C9 >H I=: DCAN G:
<>DC ID >C8AJ9: ILD 8DCIG6HI>C< 0DGA9 !:G>I6<: G:6H H>9: 7N H>9:
I=: 0:I -GDE>8H 0DGA9 !:G>I6<: G:6 0-0! 6C9 I=: G:6I 6GG>:G
+::;  +V -=: 6G:6 >H =DB: ID 7DI= 6 G>8= 6C9 :C9JG>C< 7DG><>
C6A 8JAIJG6A =:G>I6<: 6C9 DC: D; I=: BDHI 7>DAD<>86AAN 9>K:GH: 6G:6H >C
I=: LDGA9 L>I= ;DG:HIH G:8D<C>O:9 6H E6GI D; DC: D; I=: I=>GINSK: >C
I:GC6I>DC6A <AD76A 7>D9>K:GH>IN =DIHEDIH 0>AA>6BH :I 6A   D;
8JGG:CI A6C9 >C I=: 0:I -GDE>8H >H EGDI:8I:9 6 8DCH>9:G67AN A6G<:G 6G:6
I=6C I=: B6>C >C9JHIGN HJ<6G86C: EGD9J8I>DC  6C9 I=: IDI6A
EGD9J8I>DC A6C9 >C8AJ9>C< 6<G>8JAIJG: EA6CI6I>DCH 6C9 DI=:G >CI:C
H>K: JH:H  ,"-"  !DL:K:G I=: HJ<6G86C: >C9JHIGN >H DC:
D; I=: BDHI >BEDGI6CI GJG6A >C9JHIG>:H >C JHIG6A>6 <G>JIJG:H 
6C9 >IH :ME6CH>DC LDJA9 I=G:6I:C I=: G>8= 7>D9>K:GH>IN D; I=: CDGI=:6HI
D; *J::CHA6C9 -=: 8JGG:CI . 8DCI:MI >C I=: 0:I -GDE>8H H=DLH 6C
>C8G:6H: >C EGDI:8I:9 6G:6H 7N 6GDJC9  H>C8:  L>I= I=: 6G:6
8DK:G:9 7N HJ<6G EA6CI6I>DCH G:B6>C>C< G:A6I>K:AN HI67A: ,"-" 
-=JH 6 . H8:C6G>D >C DJG BD9:A G:;:GH ID 6 8DCI:MI L=:G: EGDI:8I:9
6G:6H >C8G:6H: L=>A: HJ<6G86C: EGD9J8I>DC G:B6>CH HI67A:
 ':,>4,66C0B:64.4> 79/066482 91 >30 6,8/ =3,<4826,8/ =:,<482
1<,70A9<5
-=: 0:I -GDE>8H EGDK>9:H 6 96I6 G>8= 86H: ;DG >CK:HI><6I>DC D; %,)
%,! DEI>DCH JH>C< 6 HE6I>6AAN:MEA>8>I BD9:A 0>I= 6ABDHI  D; A6C9
EGDI:8I:9 6C9 6 HI67A:  D; 6<G>8JAIJG6A A6C9 6AAD86I:9 ;DG HJ<6G86C:
EGD9J8I>DC %. EGD8:HH:H 6G: A:HH ;G:FJ:CI I=6C >C BDHI DI=:G IGDE>
86A G:<>DCH D; I=: <AD7: H:: ,"-"  6C9 6H CDI:9 67DK: >IH G:A
6I>K: HD8>D:8DCDB>8 69K6CI6<: B:6CH I=6I 8DBEDJC9>C< ;68IDGH HJ8=
6H G6E>9 EDEJA6I>DC <GDLI= 6C9 EDK:GIN 6G: 67H:CI -=: 8=6G68I:G>HI>8
:CK>GDCB:CI6A 8DC9>I>DCH L>I= 6 =><= <G69>:CI 68GDHH I=: A6C9H86E: D;
G6>C;6AA 6C9 HD>A 8DC9>I>DCH ID <GDL HJ<6G86C: 6H L:AA 6H HIGDC< 8DC
H:GK6I>DC ;DG8:H L=>8= B6>CI6>C A6C9 8A:6G>C< EGD8:HH:H 6I 6 ADL G6I:
G:>C;DG8: 6 8A:6G H:<G:<6I>DC D; A6C9JH:H 67DJI L=>8= G:<JA6GAN JE96I:9
96I6 6G: EJ7A>86AAN 6K6>A67A: -=>H HE6I>6AAN:MEA>8>I 8DCI:MI EGDK>9:H 6
HJ>I67A: H8:C6G>D ID BD9:A I=: 8DCH:FJ:C8:H D; %,) DG %,! >C I=: 0:I
-GDE>8H
><  H=DLH 6 HE6I>6A H:<G:<6I>DC D; I=: I=G:: EG>B6GN 8A6HH:H D;
A6C9JH: INE:H >C I=: G:<>DC >: EGDI:8I:9 6G:6H ) HJ<6G86C: A6C9
,. 6C9 H:B>C6IJG6A 6G:6H ,' L=>8= 8G:6I:H 6 EA6I;DGB ID 6E
EAN I=>H ;G6B:LDG@ ;GDB 6 HE6I>6A E:GHE:8I>K: -=: :CK>GDCB:CI6A 6C9
A6C9JH: 8=6G68I:G>HI>8H D; H:B>C6IJG6A 6G:6H 6A><C L>I= I=: 8DC8:EI D;
%,! L=>A: 7DI= HJ<6G86C: EA6CI6I>DCH 6C9 EGDI:8I:9 6G:6H 8DB7>C:9
6A><C L>I= I=: DC: D; %,) &DG: HE:8>;>86AAN I=: A6C9JH: 8A6HH>S86I>DC
9:K:ADE:9 7N %.&)V  G:;:GH ID H:B>C6IJG6A 6G:6H 6H 6 EG>
B6GN 8A6HH 76H:9 DC EGD9J8I>DC ;GDB G:A6I>K:AN C6IJG6A :CK>GDCB:CIH
9:SC:9 6H A6C9 I=6I >H JH:9 B6>CAN ;DG EG>B6GN EGD9J8I>DC L>I= A>B
>I:9 8=6C<: ID I=: C6I>K: K:<:I6I>DC -=JH H:B>C6IJG6A 6G:6H L=>8= >C
8AJ9: C6I>K: ;DG:HIH 6C9 <G6HHA6C9H 6G: HJ7?:8I ID G:A6I>K:AN ADL A:K:AH
D; >CI:GK:CI>DC 6C9 I=: HIGJ8IJG: D; I=: C6I>K: K:<:I6I>DC <:C:G6AAN G:
B6>CH >CI68I %.&)  %,! 6AHD 86AA:9 L>A9A>;:;G>:C9AN ;6GB
>C< >H @CDLC 6H 6 A6C9JH: HNHI:B I=6I 8DB7>C:H ADL >CI:CH>IN 6<G>
8JAIJG6A EGD9J8I>DC L>I= EGDI:8I>DC >C 6C 6<GD:8DAD<>86A B6IG>M  G::C
:I 6A  !JAB: :I 6A  )=6A6C :I 6A  6C9 I=:G:;DG:
6A><CH L>I= I=: H:B>C6IJG6A 6G:6H >C DJG HIJ9N G:<>DC 6H 9:SC:9 >C
%.&)  ,>B>A6GAN EGDI:8I:9 6G:6H 6C9 HJ<6G86C: A6C9 6G: 9:
SC:9 7N %.&)  6H EG>B6GN 8A6HH:H 8DCH>HI>C< D; 8DCH:GK6I>DC
-=>H E6E:G DCAN ;D8JH:H DC I=: 0:I -GDE>8H 6C9 6C6ANH:H DC I=: + 6G: 7:NDC9 I=:
8JGG:CI H8DE: D; DJG BD9:A AI=DJ<= I=: >BE68IH D; A6C9JH: DC I=: :8DHNHI:BH 6G:
L:AA9D8JB:CI:9 06I:G=DJH: :I 6A 
%.&) HI6C9H ;DG JHIG6A>6C DAA67DG6I>K: %6C9JH: 6C9 &6C6<:B:CI )GD<G6B
)6GIC:GH -=>H C6I>DC6AAN 8DCH>HI:CI 9D8JB:CI EGDK>9:H 6 A6C9JH: CDB:C8A6IJG: 6C9
8A6HH>S86I>DC H8=:B: ;DG JHIG6A>6
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 1. :D<G6E=>8 AD86I>DC D; I=: 0:I -GDE>8H '6IJG6A +:HDJG8: &6C6<:B:CI G:<>DC CDGI=:6HI *J::CHA6C9 JHIG6A>6 -=>H 9><>I6A A6C9 JH: B6E >H 6 EGD9J8I D; I=: *J::CHA6C9 %6C9 .H:
&6EE>C< )GD<G6B *%.&) 6C9 L6H EGD9J8:9 7N I=: *J::CHA6C9 DK:GCB:CI -=: 96I6H:I 8DBEG>H:H 6C ,+" K:8IDG <:D96I676H: 6I 6 CDB>C6A H86A: D;  -=: EG>B6GN A6C9JH:H
9>HEA6N:9 6G: ;DG:HIGN 6G:6H  =DGI>8JAIJG: !( DI=:G 8GDEH ( EGDI:8I:9 6G:6H ) G:H>9:CI>6A 6C9 >C9JHIG>6A 6G:6H +", H:B>C6IJG6A 6G:6H ,' HJ<6G86C: A6C9H ,. 6C9 L6I:G
7D9>:H 0 >G8A:9 6G:6H H=DL I=: 9>;;:G:CI HJ<6G86C: B>AA6G:6H EG:H:CI >C I=: G:<>DC -=: E=DID<G6E=H DC I=: 7DIIDB H=DL AD86A :M6BEA:H D; I=: I=G:: EG>B6GN A6C9JH:H 8DCH>9:G:9
EGDI:8I:9 A:;I H:B>C6IJG6A 8:CIG: 6C9 HJ<6G86C: G><=I 6G:6H
6C9 C6IJG6A :CK>GDCB:CIH>C8AJ9>C< HIG>8I C6IJG: G:H:GK:H C6I>DC6A
E6G@H 6C9 DI=:G 8DCH:GK:9 6G:6HV 6C9 >CI:CH>K: HJ<6G86C: EGD9J8I>DC
;GDB >GG><6I:9 6C9 9GNA6C9 6<G>8JAIJG: G:HE:8I>K:AN -=JH I=: 8DB7>
C6I>DC D; 7DI= EGDI:8I:9 6G:6H 6C9 HJ<6G86C: 6<G>8JAIJG6A A6C9 6A><CH
L>I= I=: 8DC8:EI D; %,) L=>8= >H 76H:9 DC >CI:CH>;N>C< EGD9J8I>DC ID
B6M>B>O: 6<G>8JAIJG6A N>:A9 L>I=>C 6 SM:9 6G:6 L=>A: 9:9>86I>C< DI=:G
A6C9 ID 7>D9>K:GH>IN 8DCH:GK6I>DC  G::C :I 6A  !JAB: :I 6A 
)=6A6C :I 6A  -67A:  H=DLH 6 FJ6A>I6I>K: 9:H8G>EI>DC D; I=: G6
I>DC6A: ;DG I=: 9>;;:G:CI H8:C6G>DH BD9:AA:9
'DI: I=6I I=: %.&) A6C9 JH: 8DCH:GK6I>DC 6C9 C6IJG6A :CK>GDCB:CIH>H K>GIJ6AAN
>9:CI>86A >C I=: 0:I -GDE>8H L>I= EGDI:8I:9 6G:6H B6C6<:B:CI 86I:<DG>:H ""/ 6H 9:SC:9
7N I=: ".' ,DB: HB6AA 6G:6H D; =><=AN H><C>S86CI C6IJG6A :CK>GDCB:CIH C:6G I=:
8D6HIA>C: I=6I 6G: CDI ".' EGDI:8I:9 6G:6H 6G: 86I:<DG>H:9 7N %.&) 6H L:IA6C9H
6C9 6G: :M8AJ9:9 >C8AJ9:9 ;GDB DJG 6C6ANH>H %.&) 9>H6<<G:<6I:H 8DCH:GK6I>DC 6C9
C6IJG6A :CK>GDCB:CIH>CID 9>U:G:CI EGDI:8I>DC 86I:<DG>:H L=>8= 6G: 6AA >CI:<G6I:9 6H
EGDI:8I:9 6G:6H>C DJG BD9:A
"C H=DGI DJG BD9:A :MEADG:H %. 9NC6B>8H L>I= G:<6G9 ID H:B>C6I
JG6A 6G:6H %,! 6C9 I=: C:MJH D; EGDI:8I:9 6G:6HHJ<6G86C: A6C9 %,)
-=: %. H8:C6G>DH :MEADG:9 >C8AJ9: %,! L=:G: H:B>C6IJG6A 6G:6H >C
8G:6H:9:8G:6H: %,) L=:G: EGDI:8I:9 6C9 HJ<6G86C: 6G:6H >C8G:6H:
9:8G:6H: 6C9 . L=:G: EGDI:8I:9 6G:6H >C8G:6H: 6I I=: H6B: G6I: 6H
9JG>C< I=: E:G>D9  H:: ,"-"  (JG BD9:A :MEADG:H
I=: >BE68I DK:G I>B: D; I=:H: %. EGD8:HH:H DC HJ<6G86C: EGD9J8
I>DC 86G7DC H:FJ:HIG6I>DC 6C9 7>D9>K:GH>IN 8DCH:GK6I>DC "C I=>H G:<6G9
6AI=DJ<= %,) K:GHJH %,! HIJ9>:H 6G: JHJ6AAN ;D8JH:9 DC B>C>B>O>C<
IG69:DUH 7:IL::C 7>D9>K:GH>IN 6C9 6 EGD9J8I>DC <D6A HJ<6G86C: >C I=>H
86H: DJG G:H:6G8= 6AHD >CI:<G6I:H I=: HIJ9N D; DC: DI=:G , >: 86G7DC
H:FJ:HIG6I>DC 9J: ID I=: >BEDGI6C8: ;GDB 6C :CK>GDCB:CI6A E:GHE:8
I>K: D; 86G7DC :B>HH>DCH ;GDB 9:;DG:HI6I>DC >C IGDE>86A G:<>DCH JGI=:G
BDG: I=: HE6I>6AAN:MEA>8>I C6IJG: D; I=: BD9:A 6>BH ID 8DCIG>7JI: ID I=:
A68@ D; HE6I>6AAN:MEA>8>I %,)%,! HIJ9>:H >H8=:G :I 6A  %6L :I
6A 
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Table 1
'6GG6I>K:H D; I=: H8:C6G>DH BD9:AA:9 ;DG I=: E:G>D9 
,8:C6G>D
 :H8G>EI>DC
JH>C:HHH.HJ6A
.
0DGA9
!:G>I6<:
-=:CJB7:G6C9:MI:CID;EGDI:8I:96G:6H>CI=:0:I-GDE>8H
@::E>C8G:6H>C<>CDG9:GIDB::I8DCH:GK6I>DCI6G<:IH;DGG6G:
6C9:C96C<:G:9:8DHNHI:BH-=:IDI6A:MI:CID;H:B>C6IJG6A
6G:6H>C8G:6H:HHA><=IAN;DAADL>C<I=:IG:C9H;GDBI=:E:G>D9
)GD9J8I>DCB6>CANHJ<6G86C:G:B6>CHHI67A:
DK:GI>B:H>C8:DI=:GG:<>DCH>C*J::CHA6C9:<&68@6N
0=>IHJC96NH6G:G6I=:G;D8JH:9DCB::I>C<C6I>DC6A
EGD9J8I>DC9:B6C9H
%6C9,E6G>C<
%,)
0DGA9!:G>I6<:
6C9JHIG6A>6H
;DD97DLA
G:<>DC
-=:G:<>DC8DCI>CJ:HIDB::I8DCH:GK6I>DCI6G<:IH7N
>C8G:6H>C<I=:CJB7:G6C9:MI:CID;EGDI:8I:96G:6H
!DL:K:GI=>H>H8DB7>C:9L>I=>C8G:6H:H>CI=:6BDJCID;
A6C9;D8JH:9DC6<G>8JAIJG6AHJ<6G86C:EGD9J8I>DC
:C=6C8:97NEDA>8>:HD;I=:*J::CHA6C96C9JHIG6A>6C
<DK:GCB:CIH-=:<D6A>HI=:0:I-GDE>8ID>BEGDK:>IH
8DCIG>7JI>DCID;DD9EGD9J8I>DCE6GID;I=:K>H>DC;DG
JHIG6A>66H6 ;DD97DLA;DGDI=:G8DJCIG>:H
%6C9,=6G>C<
%,!
&JAI>;JC8I>DC6A
A6C9H86E:H
*J::CHA6C96C9JHIG6A>6C DK:GCB:CIHA:696IG6CH>I>DC
IDL6G9HBDG:BJAI>;JC8I>DC6A9>H8DJGH:H6C9<DK:GC6C8:
;G6B:LDG@L=:G:L>A9A>;:;G>:C9AN;6GB>C<EG68I>8:H6G:
:C=6C8:96II=::ME:CH:D;ADL:GHJ<6G86C:N>:A9H-=JHI=:
0:I-GDE>8H;DAADLHDEEDH>I:IG:C9HI=6C>CI=:%,)H8:C6G>D
L=:G:7DI=EGDI:8I:96G:6H6C9HJ<6G86C:A6C9H9:8G:6H:>C
:M8=6C<:;DGH:B>C6IJG6A6G:6HEGDK>9>C<;DGBJAI>EA:
8DBBJC>INK6AJ:H6C9A>;:HINA:H
 !9/066482 1<,70A9<5
&H 6G: 6G<J:9 ID 7: =:AE;JA ;DG HIJ9N>C< 8DBEA:M 9NC6B>8H >C
HD8>6A:8DAD<>86A HNHI:BH ,, 6H L:AA 6H <6>C>C< >CH><=IH I=6I HJE
EDGI I=: HJHI6>C67A: B6C6<:B:CI D; C6IJG6A G:HDJG8:H C :I 6A 
>A6IDK6 :I 6A  DCO6A:O+:9>C :I 6A  ,8=JAO: :I 6A 
-=: & EG:H:CI:9 >C I=>H E6E:G 86C 7: 8DCH>9:G:9 ID 7: 6C <:CI
6H:9 %6C9.H: &D9:A %.& H:: &6II=:LH :I 6A  )DA=>AA
:I 6A  L=>8= 8DB7>C:H ' ", :BE>G>86A 96I6 6C9 :ME:GI
@CDLA:9<: -=>H >CI:<G6I:9 BD9:AA>C< 6EEGD68= 6>BH ID 8DCIG>7JI: ID
DC: B6>C 9:B6C9 L>I=>C 7DI= I=: & 6C9 %.& 8DBBJC>I>:H
(,JAA>K6C :I 6A  ID 7J>A9 =N7G>9 &H I=6I >CI:<G6I: 9>;;:G:CI
I:8=C>FJ:H 6C9 I=JH 86EIJG: I=: 69K6CI6<:H D; 9>;;:G:CI BD9:AA>C< 6E
EGD68=:H
!:G: 'H 8DCHIGJ8I:9 JH>C< :'": 7J>A9:G IDDA  :'": 6C9
,&"%  6C9 ", A6N:GH JH>C< G8 ", 6C9 * ",  6H L:AA 6H
:BE>G>86A 96I6 6C9 :ME:GI DE>C>DC 6G: >CI:<G6I:9 >CID 6C & 8DC
HIGJ8I:9 JH>C< ':I%D<D 0>A:CH@N  ><  H=DLH I=: BD9:AA>C<
;G6B:LDG@ D; DJG BD9:A CDI: I=6I I=: >CI:<G6I:98=6G68I:G>HI>8 9D:H
CDI G:;:G ID I=: 68IJ6A >CI:<G6I>DC D; 6C & HD;IL6G: >CID 6 ",NHI:B
DG ' HD;IL6G: DG I=: DI=:G L6N 6GDJC9 7JI ID I=: JH: D; HE6I>6A
96I6 >: ", A6N:GH 6C9 'H >C 6 ':I%D<D BD9:A
-=: BD9:A 7J>A9>C< EGD8:HH HI6GI:9 7N >BEDGI>C< I=: EG>B6GN
A6C98DK:G B6E ;DG I=: 0:I -GDE>8H   6H 6 K:8IDG SA: >CID
':I%D<D -=>H EGD8:HH EGDK>9:9 6C >C>I>6A 9>HIG>7JI>DC D; A6C9JH:H ;DG
I=: 86H:HIJ9N 6G:6 L=:G: I=: A6C9JH: B6E H=DLC >C ><  L6H >B
EDGI:9 >CID ':I%D<D >: I=: B6E >C ><  H 6 G:HJAI :68= 8:AA >C
DJG ':I%D<D BD9:A 8DK:GH 6C 6G:6 D; =6 D; I=: 86H:HIJ9N 6G:6
H:: "BEDGI>C< ", A6N:GH >CID ':I%D<D ," 9D8JB:CI ;DG 9:I6>AH (JI
D; I=: I:C A6C9JH: INE:H EG:H:CI >C I=: 0:I -GDE>8H H:: ><  DCAN
I=G:: 6G: 8DCH>9:G:9 ;DG DJG G:H:6G8= 6C6ANH>H -=:H: >C8AJ9: G6>C;DG:HI
EGDI:8I:9 6G:6H C6I>K: E6HIJG:  EGD9J8I>DC ;DG:HIGN H:B>C6IJG6A 6G
:6H 6C9 HJ<6G86C: A6C9 9:K:ADE:9 6G:6H -=:H: I=G:: A6C9JH: INE:H
8DK:G  D; I=: IDI6A A6C9 >C I=: 0:I -GDE>8H JGI=:GBDG: I=: ;D8JH
DC I=:H: A6C9JH:H ;DAADLH I=: %,) K:GHJH %,! G6I>DC6A: :MEA6>C:9 6I I=:
7:<>CC>C< D; I=: &6I:G>6A 6C9 &:I=D9H H:8I>DC 6H L:AA 6H I=: 8DC8:E
IJ6A BD9:A 9:K:ADE:9 7N !>AA :I 6A 7 -=: %. ;DG I=: G:B6>C>C<
H:K:C A6C9JH:H =:G:6;I:G 86AA:9 DI=:G A6C9JH:H H:: .&% 9>6<G6B >C
><  6G: CDI 6C6ANH:9 >C I=: +:HJAIH  H:8I>DC 6AI=DJ<= I=:>G %.
EGD8:HH:H 6G: HI>AA 8DBEJI:9 ;DG I=: H6@: D; G:6A>HB
Fig. 2. &D9:AA>C< ;G6B:LDG@ L=:G: I=: 9>;;:G:CI BD9:AA>C< I:8=C>FJ:H 6C9 96I6 HDJG8:H >: & ' ", :BE>G>86A 96I6 6C9 :ME:GI @CDLA:9<: 6G: 8DB7>C:9 ID<:I=:G ID 7J>A9 I=:
>CI:<G6I:9 BD9:A EG:H:CI:9
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 3. "C>I>6A  EG>B6GN A6C9JH: 9>HIG>7JI>DC ;DG I=: 0:I -GDE>8H D7I6>C:9 7N >CI:<G6I>C< 6 EG>B6GN A6C9JH: B6E   >CID ':I%D<D 'DI: I=6I I=: 86H:HIJ9N 6G:6 >H AD86I:9
7:IL::C I=: )68>S8 (8:6C ID I=: G><=I >C 7AJ: 6C9 DI=:G I:GG:HIG>6A :8DHNHI:BH ID I=: A:;I >C A><=I DG6C<: L=>8= 6G: CDI 8DCH>9:G:9 ;DG I=>H G:H:6G8= -=: A:<:C9 ;GDB I=>H S<JG: >H
6AHD JH:9 ;DG ><  7:ADL DG >CI:GEG:I6I>DC D; I=: G:;:G:C8:H ID 8DADJG >C I=>H S<JG: A:<:C9 I=: G:69:G >H G:;:GG:9 ID I=: 0:7 K:GH>DC D; I=>H 6GI>8A:
,:8I>DCH  6C9  7:ADL :MEA6>C >C 9:I6>A I=: >CI:G68I>DCH 6BDC<
:CI>I>:H 6<:CIH >C I=: & 6C9 I=: H>BJA6I>DC EGD8:HH:H D; I=: BD9:A
,>BJAI6C:DJHAN 'H >C DJG BD9:A 6G: JH:9 ID 8DBEJI: %. AI=DJ<=
I=: JH: D; 'H ;DG BD9:AA>C< %. >H CDI C:L :A>D :I 6A  %NC6B
:I 6A  :M6BEA:H D; I=: >C8DGEDG6I>DC D; 'H >CID HE6I>6A &H
6G: H86G8: $D8676H 6C9 G6<>8:K>8  ,JC 6C9 &PAA:G  &DG:
DK:G 'H 86C =:AE >C 699G:HH>C< JC8:GI6>CI>:H  DCO6A:O+:9>C :I 6A
 ):G:O&>C6C6  ,B>I= :I 6A  HJ8= 6H I=DH: G:<6G9>C<
%. 9:8>H>DCB6@>C<
(JG ' 7J>A9>C< EGD8:HH ;DAADL:9 6 AD<>86A ;G6B:LDG@ 696EI:9
;GDB I=: JHIG6A>6C :E6GIB:CI D; I=: CK>GDCB:CI !:G>I6<: 6C9 I=:
GIH 0!  "C E6GI>8JA6G DJG 'H EGDK>9: >C;DGB6I>DC ID
& 6<:CIH >: 6<:CIH G:HEDCH>7A: ;DG 9G>K>C< %. DC L=6I INE: D;
%. 6C9 L=:G: :M68IAN C::9H ID 7: 8DBEJI:9 >C :68= I>B: HI:E -=JH
I=: 'H =:AE 6<:CIH 6CHL:G>C< FJ:HI>DCH HJ8= 6H 4= , 6,8/?=0 A4>3 3423
.98=0<@,>498 :9>08>4,6 ,8/ 69A :<9/?.>498 :9>08>4,6 =?4>,-60 >9 -0 :<9>0.>0/
?8/0< , ) =.08,<49 = , 6,8/?=0 A4>3 79/0<,>0 .,<-98 =0;?0=><,>498 :9
>08>4,6 ,8/ 69A .98=0<@,>498 :9>08>4,6 =?4>,-60 >9 -0 .98@0<>0/ 48>9 =?2,<.,80
:6,8>,>498= ?8/0< , '$ =.08,<49 -=: ' EGD767>A>I>:H L:G: :HI67A>H=:9
76H:9 DC ", 6C9 :BE>G>86A 96I6 6H L:AA 6H :ME:GI DE>C>DC -=: 'H
L:G: I=:C >BEDGI:9 ID ':I%D<D I=GDJ<= G:EDGI:GH I=6I 8DBEJI: I67A:H
>C8AJ9>C< I=: ' EGD767>A>I>:H -67A: , ," 9D8JB:CI H=DLH I=: 9>;
;:G:CI ", 96I6 JH:9 L=>A: I=: H:8I>DC  6N:H>6C :A>:; ':ILDG@H
6C9 ME:GI @CDLA:9<:7:ADL 9:H8G>7:H I=: >CI:<G6I>DC D; :ME:GI DE>C
>DC >C I=: 'H 6C9 EGDK>9:H BDG: 9:I6>AH DC I=: JH: 6C9 >CI:<G6I>DC D;
'H >C DJG &
I I=: H6B: I>B: :68= A6C9JH: 8DBEJI:H >IH DLC 7>D9>K:GH>IN 86G
7DC H:FJ:HIG6I>DC 6C9 HJ<6G86C: K6AJ:H L=>8= 6G: 6C6ANH:9 >C I=: +:
HJAIH H:8I>DC -=:H: >C9>86IDGH L=>8= 6G: 6;;:8I:9 7N I=: 67DK:CDI:9
%. EGD8:HH:H 6G: >C>I>6AAN >BEDGI:9 ID I=: BD9:A 76H:9 DC 7DI= 6K6>A
67A: EJ7A>H=:9 :BE>G>86A 96I6 :< HJ<6G86C: N>:A9 HJ<6G EG>8: 86G7DC
EG>8: H:: -67A:H , 6C9 ," 9D8JB:CI 6C9 ", A6N:GH H:: -67A:H ,
6C9 ," 9D8JB:CI
>C6AAN 6 H:CH>I>K>IN 6C6ANH>H L6H E:G;DGB:9 76H:9 DC 6C (-
(C:;68IDG6I6I>B: EGD8:HH I:C GD:@: :I 6A  ,:: ," 9D8J
B:CI ;DG 9:I6>AH
 8>4>40= =>,>0 @,<4,-60= ,8/ =.,60=
"C DJG BD9:A %. EGD8:HH:H 6G: 8DBEJI:9 7N 6<:CIH 86AA:9
$,208>=L=>8= G:EG:H:CI I=: EDL:G D; <DK:GC6C8: ;DG8:H 9G>K>C<
%. $,208>= 6G: 8A6HH>S:9 >CID I=G:: INE:H 76H:9 DC I=: EG:K>DJHAN
9:H8G>7:9 %,)%,! ;G6B:LDG@ $V/<DK:GC6C8: ;DG8:H 9G>K>C< 9:K:ADE
B:CI D; A6C9 ;DG HJ<6G86C: EGD9J8I>DC >: %,) $V:<DK:GC6C8: ;DG8:H
9G>K>C< I=: 8G:6I>DC D; C:L EGDI:8I:9 6G:6H >: %,) 6C9 $V7< <DK
:GC6C8: ;DG8:H 9G>K>C< G:HIDG6I>DC 6C9 B6>CI:C6C8: D; H:B>C6IJG6A 6G
:6H >: %,! %6C9JH:H 86AA:9  6G: 6AHD 8A6HH>S:9 >CID I=G:: INE:H V:
EGDI:8I:9 6G:6H V,H:B>C6IJG6A 6G:6H 6C9 V/HJ<6G86C: 6G:6H "C
699>I>DC H:B>C6IJG6A 6G:6H 6G: 9>K>9:9 >CID V,2 C6I>K: E6HIJG: 6C9 V,:
EGD9J8I>DC ;DG:HIGN I=>H HJ79>K>H>DC >H E:G;DGB:9 76H:9 DC I=: 9>;;:G
:CI %. EGD8:HH:H 8=6G68I:G>HI>8 D; V,2 6C9 V,: 6H L:AA 6H I=:>G 9>;;:G:CI
, 6C9 7>D9>K:GH>IN K6AJ:H >< , >C I=: ," 9D8JB:CI H=DLH 6 .C>S:9
&D9:AA>C< %6C<J6<: .&% 8A6HH 9>6<G6B D; I=: BD9:A :CI>I>:H 6C9 K6G>
67A:H 6H L:AA 6H I=:>G A>C@H -67A:H ,, H=DL 6 9:I6>A:9 9:H8G>EI>DC D;
I=: :CI>I>:H 6C9 HI6I: K6G>67A:H BD9:AA:9 L=>A: -67A:H , 6C9 , H=DL
I=: >C>I>6A K6AJ:H ;DG I=: E6G6B:I:GH BD9:AA:9 ;GDB 7DI= :BE>G>86A 6C9
", 96I6 G:HE:8I>K:AN
-=: HE6I>6AH86A: D; I=: BD9:A >H G:<>DC6A +:<>DC6A H86A:H 6G: 8DCH>9
:G:9 BDG: DE:G6I>DC6A >C EDA>8NB6@>C< 8DBE6G:9 ID A6G<:G DG HB6AA:G
HE6I>6A A:K:AH 0>  &DG: HE:8>;>86AAN I=: H86A: D; DJG BD9:A
>H 9>G:8IAN G:A:K6CI ID I=: B6C6<:B:CI D; I=: 0:I -GDE>8H 8DCH>9
:G>C< I=6I I=: G:<>DC >H B6C6<:9 6I I=: A:K:A D; I=: 0DGA9 !:G>I6<:
G:6 I=GDJ<= I=: 0:I -GDE>8H &6C6<:B:CI JI=DG>IN 0-& 
%>@:L>H: $,208>= G:EG:H:CI ;DG8:H 9G>K>C< %,! 6C9 %,) EGD8:HH:H 6I
I=: G:<>DC6A A:K:A DG >CHI6C8: $V/,208>= 6AI=DJ<= CDI BD9:AA:9 6H
68IJ6A ;6GB:GH DLC>C< A6C9 E6G8:AH  BDK: 6GDJC9 I=: A6C9H86E:
G:EG:H:CI>C< I=DH: EDA>8>:H >C8:CI>K:H 6C9 <DK:GC6C8: ;DG8:H 9G>K>C<
6<G>8JAIJG6A :ME6CH>DC 7N ;6GB:GH L=>8= >H I=: B6>C A6C9 8A:6G>C<
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 4. .&% 8I>K>IN >6<G6B ,IGJ8IJG: 9>6<G6B H=DL>C< I=: HI:E 7N HI:E EGD8:HH 8DBEJI:9 7N $,208>= 6C9 A6C9JH:H E6I8=:H8:AAH >C I=: BD9:A
EGD8:HH D88JGG>C< 6I I=: A6C9H86E:G:<>DC6A A:K:A >C I=: 0:I -GDE
>8H !>AA :I 6A 6 -=: H6B: >H I=: 86H: ;DG 7DI= $V:,208>= 6C9
$V7<,208>= L=>8= G:EG:H:CI EGDI:8I>DC 6C9 G:HIDG6I>DC HIG6I:<>:H >BEA:
B:CI:9 6I I=: 0DGA9 !:G>I6<: G:6 A:K:A >: G:<>DC6A H86A: 7N I=: 0:I
-GDE>8H &6C6<:B:CI JI=DG>IN !>AA :I 6A 6 !:C8: $,208>= 6G:
CDI H>BJA6I:9 6H 6<:CIH DLC>C< A6C9 E6G8:AH 7JI G6I=:G 6H ;DG8:H G:
HJAI>C< ;GDB <DK:GC6C8: 6GG6C<:B:CIH I=6I BDK: 6GDJC9 I=: A6C9H86E:
6C9 9G>K: %. >C E6II:GCH 76H:9 DC :BE>G>86A 96I6 6C9 :ME:GI @CDLA
:9<: :MEA6>C:9 7:ADL
-=: I>B:H86A: D; I=: BD9:A L6H 76H:9 DC :ME:GI @CDLA:9<: H::
ME:GI @CDLA:9<:7:ADL -D 9:8>9: =DL B6CN I>B: HI:EH 8DGG:
HEDC9H ID DC: N:6G >C I=: BD9:A :ME:GIH JH:9 =>HIDG>8 %. 96I6 ;GDB
I=: :E6GIB:CI D; ,8>:C8: "C;DGB6I>DC -:8=CDAD<N 6C9 "CCDK6I>DC
,"-"  D; *J::CHA6C9 >GHI I=: N:6GAN 6K:G6<: 8=6C<: >C E:G
8:CI K6AJ:H 6C9 =:8I6G:H G:<6G9>C< I=: I=G:: B6>C %. BD9:AA:9 L6H
86A8JA6I:9 ;DG I=: E:G>D9  ,:8DC9 EG:A>B>C6GN BD9:A DJI
EJIH ;GDB I=: . H8:C6G>D L:G: 6C6ANH:9 >C DG9:G ID :HI>B6I: =DL
B6CN BD9:A I>B: HI:EH L:G: C::9:9 ID H>BJA6I: I=: 67DK:CDI:9 N:6GAN
%. K6AJ:H H 6 G:HJAI %. EGD8:HH:H D88JGG>C< >C  I>B: HI:EH
>C I=: BD9:A 8DGG:HEDC9 ID DC: N:6G >C I=: G:6A LDGA9 I=JH 6;I:G
 I>B: HI:EH I=: BD9:A >H 8DCH>9:G:9 ID =6K: H>BJA6I:9  N:6GH L>I=
 6C9  6H >C>I>6A 6C9 SC6A N:6GH G:HE:8I>K:AN
 '47?6,>498 :<9.0== ,8/ 9@0<@40A
><  H=DLH 6 .&% 68I>K>IN 9>6<G6B G:EG:H:CI>C< I=: B6>C 9NC6B>8H
D; I=: HNHI:B 6C9 I=: TDL ;GDB DC: EGD8:HH ID I=: C:MI DC: -=: ;DAADL
>C< >H 6 A>HI D; I=: BD9:A EGD8:HH:H I6@>C< EA68: :K:GN I>B: HI:E L=>8=
6G: 9:H8G>7:9 >C 9:I6>A 7:ADL H:: ,J7BD9:AH>C ," 9D8JB:CI ;DG 6 9:
I6>A:9 9:H8G>EI>DC D; BD9:A ;JC8I>DCH 6C9 6A<DG>I=BH > H8:C6G>D H:A:8
I>DC >> DI=:G A6C9JH:HV 8DBEJI: %. >>> A6C9JH:HE6I8=:H8:AAH
8DBEJI: %.HJ>I67>A>IN '* K6AJ:H ;GDB 'H >K ) 6<:CIH 8DB
EJI: BDK:B:CI 76H:9 DC '*@,6?0= K ) 6<:CIH 8DBEJI: )+K6AJ:
6C9 E6I8=:H 8DBEJI: %. K> A6C9JH:H E6I8=:H8:AAH 8DBEJI: >C9>
86IDGH
-=:H: G:;:G ID 6AA A6C9JH:H :M8:EI HJ<6G86C: EGDI:8I:9 6C9 H:B>C6IJG6A L=>8= 6G:
BD9:AA:9 7JI CDI 6C6ANH:9 >C I=: +:HJAIH
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 5. 6N:H>6C :A>:; ':ILDG@ ' M6BEA: D; 6 ' 9:K:ADE:9 JH>C< :'":VQ L>I= 6 DC9>I>DC6A )GD767>A>IN -67A: )- DC I=: 7DIIDB DI= A><=I G:9 6C9 <G::C 7DM:H G:EG:H:CI
7>DE=NH>86A HE6I>6AAN :MEA>8>I >: ", CD9:H >: >CEJI CD9:H L=>A: 96G@ G:9 >: >CI:GB:9>6I: 6C9 N:AADL >: DJIEJI CD9:H 6G: 8DBEA:I:9 JH>C< :ME:GI @CDLA:9<: DADJG:9 76GH
G:EG:H:CI I=: 8DC9>I>DC6A EGD767>A>I>:H ;DG :68= )- 86I:<DGN -=>H E6GI>8JA6G ' :M6BEA: >H 8DBEJI:9 7N H:B>C6IJG6A A6C9JH:H JC9:G I=: . H8:C6G>D "C I=>H E6GI>8JA6G 86H: I=:
EGD767>A>IN ;DG DC: H:B>C6IJG6A A6C9JH: ID 7: EGDI:8I:9 =6K>C<  D; DCH:GK6I>DC )DI:CI>6A6C9  D; ,J<6G86C: )GD9J8I>DC )DI:CI>6A >H  7:>C< I=: EGD767>A>IN ID G:B6>C
6H H:B>C6IJG6A  6C9 ID 7:8DB: 9:K:ADE:9  J: ID  7:>C< =><=:G I=6C  I=: EG>DG LDJA9 8DBEJI:9 6H '*@,6?0 ;DG I=>H HE:8>S8 A6C9JH: DG >CI:GEG:I6I>DC D; I=: G:;:G:C8:H
ID 8DADJG >C I=>H S<JG: A:<:C9 I=: G:69:G >H G:;:GG:9 ID I=: 0:7 K:GH>DC D; I=>H 6GI>8A:
-=: :CK>GDCB:CI 8DCH>HIH D; 6 <G>9 D; A6C9JH:H L=:G: $,208>=
BDK: 6GDJC9 I=: A6C9H86E: G:EG:H:CI>C< ;DG8:H 9G>K>C< %. DBEJI6
I>DC D; %. ;DAADLH I=: ;DAADL>C< G6I>DC6A: ;DG :68= A6C9JH: 8:AA 6 ID
I6A D; I=G:: %. HJ>I67>A>IN K6AJ:H >: '*@,6?0= 6G: 8DBEJI:9 E:G I>B:
HI:E DC: ;DG :68= INE: D; %. EGDI:8I>DC G:HIDG6I>DC 6C9 A6C9 8A:6G
>C< ;DG HJ<6G86C: -=JH ;DG :68= A6C9JH: DC: K6AJ: ;DG '*V:HJ>I67>A
>IN D; I=: A6C9JH: >; JCEGDI:8I:9 ID 7:8DB: 6 EGDI:8I:9 6G:6 DG ID
G:B6>C 6H EGDI:8I:9 >; 6AG:69N EGDI:8I:9 6CDI=:G ;DG '*V7< HJ>I67>A>IN
D; I=: A6C9JH: ID 7: 8DCK:GI:9 ID H:B>C6IJG6A A6C9 DG ID G:B6>C 6H
H:B>C6IJG6A >; 6AG:69N H:B>C6IJG6A 6C9 '*V/HJ>I67>A>IN D; I=: A6C9JH:
ID 7: 8DCK:GI:9 ID HJ<6G86C: DG ID G:B6>C 6H HJ<6G86C: A6C9 >; 6AG:69N 6
8GDE >H 8DBEJI:9 -=JH '*@,6?0= HI6I: I=: EGD767>A>IN D; :68= A6C9JH:
ID 7: 8DCK:GI:9 ID 6CDI=:G A6C9JH:DG ID G:B6>C I=: H6B: '*@,6?0=
6G: D7I6>C:9 ;GDB ", 6C9 ' :MEA6>C:9 7:ADL 6C9 K6GN ;GDB DC:
H8:C6G>D ID 6CDI=:G
K:GN I>B: HI:E :68= $,208> H:A:8IH I=: A6C9JH: L>I= I=: =><=
:HI 8DBE6I>7A: ID I=>H $,208>'*@,6?0 -=JH $V:,208>= DCAN H:6G8=
;DG '*V:@,6?0=$V7<,208>= DCAN ;DG '*V7<@,6?0= 6C9 $V/,208>= DCAN ;DG
'*V/@,6?0= &DG:DK:G :68= INE: D; $,208> H:A:8IH I=: A6C9JH: L>I=
I=: A6G<:HI CJB7:G D; C:><=7DJG>C< A6C9JH:H 8DGG:HEDC9>C< ID I=6I
$,208> INE: I=>H >H 8DBEJI:9 ID :C=6C8: E6I8=8:AA 8DCC:8I>K>IN
DG >CHI6C8: $V:,208>= H::@ A6C9JH:H L>I= BDG: V:A6C9JH:H 6GDJC9
$V/,208>= ;DG V/ 6C9 ) VBG6<:CIH ;DG V7< "; I=:G: 6G: CD A6C9JH:H D;
I=: H6B: INE: >C C:><=7DJG>C< A6C9JH:H I=: H:6G8=>C< G69>JH>H >C
8G:6H:9 JCI>A A6C9JH:H D; I=: H6B: INE: 6G: ;DJC9
6H:9 DC I=:H: GJA:H :K:GN I>B: HI:E :68= $,208> L>AA H:A:8I DC:
H>C<A: SC6A A6C9JH: 86AA:9 >,<20>:,>.3$,208>= I=:C BDK: ID I=:>G
8DGG:HEDC9>C< I6G<:IE6I8= 6C9 8DBEJI: DC: G6C9DBTD6I CJB7:G 7:
IL::C  6C9  86AA:9 $&@,6?0 >; I=: K6AJ: A>:H 7:IL::C  6C9 I=:
'*K6AJ: >C I=: I6G<:IE6I8= %. >C I=>H A6C9JH: >H 8DBEJI:9 !:C8:
I=: =><=:G I=: '*@,6?0 >C DC: A6C9JH: I=: =><=:G >IH EGD767>A>IN ID
8DBEJI: %. "; I=: K6AJ: 9D:H CDI A>: 7:IL::C  6C9 I=: '*@,6?0 I=:
A6C9JH: G:B6>CH 6H >I >H
-=>H 8N8A: >H 8DBEJI:9 :K:GN I>B: HI:E ;DG :68= $,208> I=JH 9G>
K>C< BD9:A DJI8DB:H +:<6G9A:HH D; L=:I=:G %. I6@:H EA68: DG CDI
:68= A6C9JH: 8DBEJI:H 9>;;:G:CI HJ<6G86C: EGD9J8I>DC 86G7DC H:FJ:H
IG6I>DC 6C9 7>D9>K:GH>IN 6A<DG>I=BH :K:GN I>B: HI:E 'DI: I=6I I=:G: 6G:
CD 6HHD8>6I:9 8DHIH ID 6<:CIH BDK:B:CI H>C8: $V/,208>=$V:,208>=
6C9 $V7<,208>= G:EG:H:CI ;DG8:H G:T:8I>C< <DK:GC6C8: 6GG6C<:B:CIH
I=6I 9G>K: %. 6C9 CDI HE:8>S8 H8=:B:H DG EDA>8>:H I=6I 8DJA9 7: HE:8>;
>86AAN 688DJCI:9
 ;JAA (K:GK>:L :H><C 8DC8:EIH 6C9 :I6>AH ( EGDID8DA 9:
H8G>7>C< I=: BD9:A >C 9:I6>A >H 6K6>A67A: >C I=: ,JEEDGI>C< "C;DGB6I>DC
," 9D8JB:CI
 ,C0=4,8 06401 "0>A9<5= ,8/ 0B:0<> 589A60/20
 ' >H 6 <G6E=>86A G:EG:H:CI6I>DC D; 6 H:I D; K6G>67A:H CD9:H
6C9 I=:>G 86JH6A G:A6I>DCH=>EH A>C@H ;DGB>C< 6 9>G:8I:9 68N8A>8 <G6E=
=6GC>6@  'D9:H G:EG:H:CI HNHI:B K6G>67A:H HJ8= 6H 7>D9>K:G
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 6. ,E6I>6A H8:C6G>D DJIEJIH %6C9JH: K6G>6I>DCH 6G: H=DLC ;DG :68= H8:C6G>D . JH>C:HH H .HJ6A %,)  %6C9,E6G>C< %,!  %6C9,=6G>C< G:<6G9>C< I=: N:6GH  
6C9  'DI: I=6I I=: A:<:C9 ;GDB ><  =6H ID 7: JH:9 ;DG I=>H S<JG:
H>IN DG HJ<6G86C: N>:A9 L=>A: A>C@H G:EG:H:CI 86JH6A EGD767>A>HI>8 G:A6
I>DCH=>EH 7:IL::C ILD CD9:H 0>I=>C 6 ' :68= CD9: =6H 6 9:SC:9 H:I
D; HI6I:H86I:<DG>:H 6ADC< L>I= 6 DC9>I>DC6A )GD767>A>IN -67A: )-
L=>8= 9:SC:H ;DG :68= 86I:<DGN I=: EGD767>A>IN D; >I D88JGG>C< <>K:C
6AA EDHH>7A: 86I:<DGN 8DB7>C6I>DCH ;GDB I=: E6G:CI CD9:H
"C DJG BD9:A 'H 6G: >CI:<G6I:9 >C DJG & 6C9 JE96I:9 :K:GN
I>B: HI:E 76H:9 DC $,208>=%. 9:8>H>DCB6@>C< L=:G: DC: '
>H 8G:6I:9 ;DG :68= 6C6ANH:9 A6C9JH: INE: >: V: V, V/ '>C: IDI6A
'H 6G: 8DBEJI:9 >: DC: ' E:G INE: D; $,208>  JC9:G :68=
H8:C6G>D  L=:G: :68= ' =6H I=: H6B: HIGJ8IJG: 6C9 CD9:H 6H I=:
DC: H=DLC >C ><  -=: EGD767>A>I>:H >C :68= )- 8=6C<: :K:GN I>B:
HI:E L=:G: >C>I>6A K6AJ:H 6G: H:I 76H:9 DC 6 EGD9J8I 7:IL::C :ME:GI
DE>C>DC 6C9 ", 96I6 0=>A: I=: )- 86I:<DG>:H ;GDB I=: >CEJI CD9:H
:< <G>8JAIJG6A %6C9 A6HH>S86I>DC>C ><  G:EGD9J8: I=: 6IIG>7
JI:H ;GDB I=: ", A6N:GH I=JH CD :ME:GI76H:9 >CI:GEG:I6I>DC >H C::9:9
;DG I=:>G 8DBEA:I>DC I=: )-H ;GDB >CI:GB:9>6I: >: ,J<6G86C: )GD
9J8I>DC )DI:CI>6A 6C9 DJIEJI >: %. ,J>I67>A>IN CD9:H 6G: 8DB
EA:I:9 JH>C< :ME:GI DE>C>DC >C6AAN I=: %. ,J>I67>A>INDJIEJI CD9:
=6H I=G:: 9>;;:G:CI 86I:<DG>:H DC: ;DG :68= INE: D; %. EGD8:HH EGDI:8
I>DC G:HIDG6I>DC 6C9 EGD9J8I>DC9:K:ADEB:CI 0>I= 6 K6AJ: 7:IL::C
 6C9  :68= 86I:<DGN ;GDB I=>H DJIEJI CD9: :HI>B6I:H I=: EGD767>A>IN
;DG :68= %. INE: ID I6@: EA68: >C :68= A6C9JH: :K:GN I>B: HI:E >:
'*@,6?0=
-=: EGD767>A>I>:H D; I=DH: )-H ;GDB >CI:GB:9>6I: 6C9 DJIEJI '
CD9:H ><  L:G: 8DBEJI:9 JH>C< :ME:GI DE>C>DC "C DG9:G ID <6I=:G
:ME:GI76H:9 FJ6A>I6I>K: 96I6 I=: ;D8JH <GDJEHB:I=D9 L6H JH:9
$>IO>C<:G  &DG<6C  >AA :I 6A  JGI=:GBDG: I6G
<:I K6AJ:H :68= H8:C6G>D 6C9 I=: BD9:AH I>B:H86A: L:G: :HI67A>H=:9
I=GDJ<= :ME:GI @CDLA:9<: 6C9 9>H8JHH:9 9JG>C< I=: ;D8JH <GDJE B::I
>C<H ,:: "CI:<G6I>C< :ME:GI @CDLA:9<: >C I=: BD9:AH:8I>DC >C I=: ,"
9D8JB:CI ;DG BDG: 9:I6>AH
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
3. Results
+:HJAIH G:<6G9>C< I=: >C9>86IDGH H:A:8I:9 L:G: D7I6>C:9 ;DG :68= D;
I=: I=G:: H8:C6G>DH . %,) %,! 6C9 <GDJE:9 >CID I=:>G HE6I>6A 6C9
:BE>G>86A >BE68IH  FJ6A>I6I>K: 6C6ANH>H L6H E:G;DGB:9 7:86JH: D; DJG
B6>C >CI:G:HI >C :MEADG>C< I=: DK:G6AA 9>;;:G:C8:H >C IG:C9H 6BDC< I=:
>C9>86IDGH 6C9 H8:C6G>DH I:HI:9
 =>47,>0/ =:,>4,6 47:,.>=
><  H=DLH I=: HE6I>6A :MEA>8>I DJIEJIH D7I6>C:9 L>I= ':I%D<D
CDI: I=6I I=: A:<:C9 ;GDB ><  >H JH:9 ID 9:H8G>7: ><  -=G:: DJIEJI
B6EH L:G: D7I6>C:9 ;DG :68= H8:C6G>D DC: ;DG :68= I>B: HI:E N:6G
  6C9  G:HJAI>C< >C C>C: B6EH >C IDI6A -=: ;DAADL>C<
H:8I>DCH  9:H8G>7: I=: HE6I>6A G:HJAIH D7I6>C:9 ;DG :68= D;
I=: I=G:: H8:C6G>DH . %,) %,!
 ?=480== = ?=?,6 )
-=: IDE GDL D; ><  H=DLH I=: HE6I>6A 9>HIG>7JI>DC D; A6C9JH:H
;DG I=: . H8:C6G>D "C I=>H H8:C6G>D EGDI:8I:9 6G:6H >C8G:6H: 7N 
>C DG9:G ID B::I I=: 8DCH:GK6I>DC I6G<:IH D; I=: 0DGA9 !:G>I6<: A>HI
>C< L=>A: EGD9J8I>DC B6>CAN HJ<6G86C: G:B6>CH HI67A: DK:G I>B: -=:
BDHI HE6I>6A CDI:LDGI=N IG:C9 >H 76H:9 DC I=DH: H:B>C6IJG6A 6G:6H >:
C6I>K: E6HIJG: 6C9 EGD9J8I>DC ;DG:HIGN L>I= ADL HJ<6G86C: EGD9J8I>DC
EDI:CI>6A 6C9 =><= 8DCH:GK6I>DC EDI:CI>6A K6AJ:H 7:>C< 8DCK:GI:9 >CID
EGDI:8I:9 6G:6H B6>CAN AD86I:9 ID I=: L:HI D; 8JGG:CIAN EGDI:8I:9 G6>C
;DG:HIH (I=:G EDI:CI>6A H>I:H ;DG C:L EGDI:8I:9 6G:6H 6G: AD86I:9 >C I=:
CDGI=L:HI &DHHB6C 6C9 HDJI=L:HI !:G7:GI +>K:G 6G:6H H:: >< 
;DG I=: HE:8>S8 AD86I>DC D; I=:H: 6G:6H H :HI>B6I:9 7:ADL I=>H H8:
C6G>D =6H EDH>I>K: >BE68IH DC 7>D9>K:GH>IN 6C9 86G7DC H:FJ:HIG6I>DC 7JI
C:<6I>K: >BE68IH DC HJ<6G86C: EGD9J8I>DC
 ,8/ =:,<482  '$
-=: 0:I -GDE>8H 8DCI>CJ:H ID B::I 8DCH:GK6I>DC I6G<:IH 7N >C8G:6H
>C< EGDI:8I:9 6G:6H 7N  8DB7>C:9 L>I= >C8G:6H:H >C HJ<6G86C: EGD
9J8I>DC 7N  ><  >C I=: B>99A: GDL H=DLH I=: HE6I>6A 9>HIG>7J
I>DC D; C:L EGDI:8I:9 6G:6H 6C9 C:L HJ<6G86C: A6C9H 8DCK:GI:9 ;GDB
H:B>C6IJG6A 6G:6H ,:B>C6IJG6A 6G:6H L>I= =><= 8DCH:GK6I>DC EDI:CI>6A
6C9 ADL HJ<6G86C: EGD9J8I>DC EDI:CI>6A K6AJ:H =6K: 6 =><=:G EGD76
7>A>IN D; 7:>C< EGDI:8I:9 L=>A: I=DH: L>I= =><= EGD9J8I>DC EDI:CI>6A
6C9 ADL 8DCH:GK6I>DC K6AJ:H =6K: 6 =><=:G EGD767>A>IN D; 7:>C< 9:K:A
DE:9 ;DG HJ<6G86C: EGD9J8I>DC ':L EGDI:8I:9 6G:6H ;DAADL 6 H>B>
A6G HE6I>6A 9>HIG>7JI>DC E6II:GC 6H >C . H8:C6G>D =DL:K:G I=:>G :M
I:CI >H ADL:G 9J: ID C:L HJ<6G86C: A6C9 D88JEN>C< H:B>C6IJG6A 6G:6H
I=6I 8DJA9 =6K: 7:8DB: EGDI:8I:9 DI=:GL>H: ':L HJ<6G86C: 6G:6H 6G:
B6>CAN AD86I:9 ID I=: :6HI D; I=: -67A:A6C9H L>I= HB6AA:G 6G:6H >C "CC>H
;6>A -JAAN 6C9 !:G7:GI +>K:G H :HI>B6I:9 7:ADL I=>H H8:C6G>D =6H EDH>
I>K: >BE68IH DC HJ<6G86C: EGD9J8I>DC 6C9 C:<6I>K: DG G:A6I>K:AN HI67A:
>BE68IH DC 7>D9>K:GH>IN 6C9 86G7DC H:FJ:HIG6I>DC
 ,8/ =3,<482  '
-=: *J::CHA6C9 6C9 JHIG6A>6C DK:GCB:CIH A:69 6 IG6CH>I>DC ID
L6G9H 6 BDG: BJAI>;JC8I>DC6A 9>H8DJGH: >: %,! L=:G:
L>A9A>;:;G>:C9AN ;6GB>C< EG68I>8:H >: H:B>C6IJG6A 6G:6H 6G: :C=6C8:9
 6I I=: :ME:CH: D; HJ<6G86C: N>:A9H 6C9 EGDI:8I:9 6G:6H "C ><
 I=: B6EH >C I=: 7DIIDB GDL H=DL C:L H:B>C6IJG6A 6G:6H >: C6
I>K: E6HIJG: 6C9 EGD9J8I>DC ;DG:HIGN 8DCK:GI:9 ;GDB EG:K>DJHAN EGD
I:8I:9 6C9 HJ<6G86C: A6C9H 0=>A: C:L C6I>K: E6HIJG: 6G:6H 6G: B6>CAN
8DCK:GI:9 ;GDB EG:K>DJHAN EGDI:8I:9 G6>C;DG:HIH L>I= ADL 8DCH:GK6I>DC
K6AJ: -67A:A6C9H C:L EGD9J8I>DC ;DG:HIGN 6G:6H 6G: 8DCK:GI:9 ;GDB
7DI= EG:K>DJHAN EGDI:8I:9 6G:6H 6C9 HJ<6G86C: A6C9H L>I= ADL 8DC
H:GK6I>DC 6C9 EGD9J8I>DC EDI:CI>6A K6AJ:H G:HE:8I>K:AN AD86I:9 ID I=:
8:CIG::6HI D; I=: HIJ9N 6G:6 >: "CC>H;6>A -JAAN 6C9 !:G7:GI +>K:G
-=>H HE:8>S8
9>HIG>7JI>DC >: ADL K:<:I6I:9 C6I>K: E6HIJG: ID I=: L:HI 6C9 =><=AN
K:<:I6I:9 ;DG:HIGN 6G:6H <D>C< ;GDB I=: 8:CIG: ID I=: :6HI >H 9J: ID G6>C
;6AA K6AJ:H +6>C;6AA >H 6C >BEDGI6CI ;68IDG >C I=: IGDE>8H A>B>I>C< I=: :M
I:CI ID L=>8= =><=AN K:<:I6I:9 6C9 ;DG:HI:9 6G:6H <GDL L>I= G6>C;6AA K6A
J:H ADL:G I=6C  BB "C I=: 0:I -GDE>8H I=DH: 6G:6H L>I= G6>C;6AA
K6AJ:H 67DK:  BB 6G: AD86I:9 ;GDB I=: 8:CIG: ID I=: :6HI >: 6AA 6G
:6H 7JI I=: -67A:A6C9 H:: ><  -=JH 6G:6H AD86I:9 ID I=: L:HI =6K:
6 =><=:G EGD767>A>IN ID 7: 8DCK:GI:9 >CID EGD9J8I>DC ;DG:HIGN L=>A: 6G
:6H ID I=: :6HI >: -67A:A6C9 6G: BDG: A>@:AN ID H=DL C6I>K: E6HIJG:
H :HI>B6I:9 7:ADL I=: %,! H8:C6G>D =6H G:A6I>K:AN HI67A: DG EDH>I>K:
>BE68IH DC 7>D9>K:GH>IN 6C9 86G7DC H:FJ:HIG6I>DC N:I C:<6I>K: >BE68IH
DC HJ<6G86C: EGD9J8I>DC
 =>47,>0/ 47:,.>=
><  H=DLH I=: :BE>G>86A <G6E=>86A G:HJAIH ;GDB I=: >C9>86IDGH H:
A:8I:9
>D9>K:GH>IN 6C9 :MI>C8I>DC 9:7I >C9>86IDGH H=DL I=: K6G>6I>DC D;
8JGG:CI 7>D9>K:GH>IN K6AJ:H 6C9 I=: ;JIJG: :MI>C8I>DC D; HE:8>:H 9J: ID
:K:CIH >C I=: E6HI G:HE:8I>K:AN L=:G: I=: A6II:G D88JGH 7:86JH: D; I>B:
9:A6NH 7:IL::C >BE68IH DC HE:8>:H 6C9 I=: HE:8>:H JAI>B6I: 9>H6EE:6G
6C8: #68@HDC 6C9 ,6M  "C H=DGI 7>D9>K:GH>IN H=DLH I=: <GDHH
7>D9>K:GH>IN L=:G:6H :MI>C8I>DC 9:7I H=DLH I=: C:I;JIJG: 7>D9>K:G
H>IN -=: . H8:C6G>D ><  H=DLH EDH>I>K: IG:C9H ;DG 7>D9>K:GH>IN
6C9 HA><=IAN 9:8G:6H>C< ;DG :MI>C8I>DC 9:7I L=>A: %,! H=DLH HA><=IAN
EDH>I>K: IG:C9H ;DG 7DI= >C9>86IDGH 6C9 %,) H=DLH 6 HI:69N HI67A: IG:C9
;DG 7>D9>K:GH>IN 6C9 6 9:8G:6H: ;DAADL:9 7N 6C :MEDC:CI>6A >C8G:6H: ;DG
:MI>C8I>DC 9:7I DI= 7>D9>K:GH>IN 6C9 :MI>C8I>DC 9:7I K6GN 76H:9 DC I=:
EGDEDGI>DC D; =67>I6I G:HIDG:9 6C9 9:HIGDN:9 6H L:AA 6H =67>I6I 8DCC:8
I>K>IN >: I=: =><=:G I=: 8DCC:8I>K>IN 6C9 =67>I6IH G:HIDG:9 I=: =><=:G
7>D9>K:GH>IN 6C9 ADL:G :MI>C8I>DC 9:7I K6AJ:H -=JH L=>A: . B6N 7:
6 HJHI6>C67A: H8:C6G>D ;DG 7>D9>K:GH>IN >C I=: H=DGII:GB H:: 7>D9>K:G
H>IN . I=>H H8:C6G>D 8DJA9 :C9 JE 9>B>C>H=>C< I=: 7>D9>K:GH>IN >C
I=: ADC<I:GB H:: :MI>C8I>DC 9:7I . ,>B>A6GAN N:I ID 6 =><=:G :M
I:CI I=: :MEDC:CI>6AAN >C8G:6H>C< :MI>C8I>DC 9:7I K6AJ:H D7I6>C:9 ;DG
%,) 6;I:G  8DJA9 6AHD B:6C I=6I 7>D9>K:GH>IN LDJA9 :C9 JE 9GDEE>C<
JC9:G %,) EG68I>8:H >C I=: ADC<I:GB H:: :MI>C8I>DC 9:7I %,) G:<6G9
A:HH D; I=: 8JGG:CI G:A6I>K:AN EDH>I>K: 7>D9>K:GH>IN G:HJAIH H:: 7>D9>K:G
H>IN %,) -=: >H8JHH>DC  H:8I>DC 6C6ANH:H I=: >BEDGI6C8: D; :MI>C8
I>DC 9:7I 6C9 C:I 7>D9>K:GH>IN K6AJ:H >C I=: 0:I -GDE>8H
+:<6G9>C< HJ<6G86C: EGD9J8I>DC . H=DLH HI:69N HI6I: HJ<6G86C:
K6AJ:H 7DI= >C IDCH 6C9 BDC:I6GN K6AJ: L=:G:6H %,! H=DLH 9:8G:6H
>C< K6AJ:H 6C9 %,) >C8G:6H>C< ,J<6G86C: K6AJ:H >C8G:6H: L>I= BDG:
A6C9 8A:6G:9 ;DG 6<G>8JAIJG: HJ8= 6H E6GI>6AAN >C %,) L=>A: EGD9J8I>DC
9:8G:6H:H L>I= 6G:6 EGDI:8I>DC . 6C9 G:HIDG6I>DC EGD8:HH:H %,!
-=: G:6HDC L=N HJ<6G86C: EGD9J8I>DC 9D:H CDI 9:8G:6H: JC9:G .
L=:G: BDG: 6C9 BDG: 6G:6H 6G: EGDI:8I:9 >H 7:86JH: HJ8= EGDI:8I>DC
D88JGH >C 8JGG:CI H:B>C6IJG6A 6G:6H >CHI:69 D; HJ<6G86C: A6C9 6G7DC
H:FJ:HIG6I>DC K6AJ:H A>@:L>H: HJ<6G86C: EGD9J8I>DC 8=6C<: DK:G I>B:
76H:9 DC %. L=>8= 6;;:8IH K:<:I6I>DC 8DK:G 6C9 <GDLI= !:G: .
H=DLH 6C :MEDC:CI>6A >C8G:6H: >C I=: 6BDJCI D; 86G7DC H:FJ:HI:G:9 6C9
%,! H=DLH 6 G:A6I>K:AN A>C:6G >C8G:6H: %,) >C 8DCIG6HI >H I=: DCAN H8:
C6G>D H=DL>C< C:<6I>K: K6AJ:H ;DG 86G7DC H:FJ:HIG6I>DC 7DI= >C IDCH
6C9 BDC:I6GN K6AJ:
><  H=DLH I=: EDL:G 6C9 >CTJ:C8: D; EGDI:8I>DC 6C9 9:K:ADE
B:CI ;DG8:H DC 7>D9>K:GH>IN 6I I=: A6C9H86E: A:K:A "C E6GI>8JA6G >I
H=DLH I=: >BE68I DC 7>D9>K:GH>IN D; ILD H:IH D; 86H:H L>I= 9>;;:G:CI
>C>I>6A 6BDJCI D; EGDI:8I>DC ;DG8:H 9G>K>C< A6C9 EGDI:8I>DC $V:,208>=
6C9 9:K:ADEB:CI ;DG8:H 9G>K>C< A6C9 8A:6G>C< ;DG HJ<6G86C: EGD9J8
I>DC $V/,208>= -=: =:6IB6E DC IDE D; ><  H=DLH 7>D9>K:GH>IN G:
HJAIH L>I= DC: H>C<A: >C>I>6A $V:,208> 6C9 9>;;:G:CI >C>I>6A CJB7:G D;
$V/,208>= L=>A: I=: 7DIIDB =:6IB6E H=DLH G:HJAIH ;DG DC: H>C<A: >C>
I>6A $V/,208> 6C9 9>;;:G:CI >C>I>6A CJB7:G D; $V:,208>= -=: =><=:G
K6G>67>A>IN D; 7>D9>K:GH>IN >C I=: IDE =:6IB6E 8DBE6G:9 ID I=: 7DIIDB
UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 7. G6E=>86A H8:C6G>D DJIEJIH +:HJAIH 6G: H=DLC 6H I=: I:BEDG6A K6G>6I>DC >C C:I <6>CH ADHH:H D; 9>;;:G:CI HD8>D:8DCDB>8 6C9 :CK>GDCB:CI6A >C9>86IDGH ;DG :68= H8:C6G>D
.  <G::C %,)  G:9 %,!  7AJ: H:: A:<:C9 DI= HJ<6G86C: EGD9J8I>DC 6C9 86G7DC H:FJ:HIG6I>DC 6G: H=DLC >C IDCH 6C9 JHIG6A>6C DAA6GH . DADJG 76C9H G:EG:H:CI I=: HI6C
96G9 :GGDG 76C9H G:<6G9>C< 6AA I=: GJCH 8DBEJI:9 ;DG :68= >C9>86IDG JC9:G :K:GN H8:C6G>D -=: 7A68@ 8DADJG:9 A>C:H H=DL I=: B:6C K6AJ:H DG >CI:GEG:I6I>DC D; I=: G:;:G:C8:H ID 8DADJG
>C I=>H S<JG: A:<:C9 I=: G:69:G >H G:;:GG:9 ID I=: 0:7 K:GH>DC D; I=>H 6GI>8A:
=:6IB6E H=DLH I=6I 6H :ME:8I:9 7>D9>K:GH>IN >C I=: 0:I -GDE>8H >C
8G:6H:H 8DCH>9:G67AN L>I= HIGDC<:G EGDI:8I>DC ;DG8:H >: =><=:G CJB7:G
D; $V:,208>= "C 8DCIG6HI 9:K:ADEB:CI ;DG8:H $V/,208>= =6K: 6 A>B
>I:9 >CTJ:C8: DC 7>D9>K:GH>IN 7DIIDB =:6IB6E :K:C >C I=DH: H8:C6G
>DH L>I= HIGDC< 9:K:ADEB:CI ;DG8:H 9G>K>C< A6C9 8A:6G>C< ;DG 6<G>8JAIJG:
>: =><=:G CJB7:G D; $V/,208>= -=:H: G:HJAIH EGDK>9: 6 76H:A>C: ;DG
<DK:GC6C8: 9>H8JHH>DC 699G:HH:9 >C I=: >H8JHH>DC  H:8I>DC
4. Discussion
0=6I HD8>D:8DCDB>8 <DK:GC6C8: 6C9 :CK>GDCB:CI6A ;68IDGH 6G:
=:AE>C< ID G:8DC8>A: ;DD9 EGD9J8I>DC 8A>B6I: 8=6C<: B>I><6I>DC 6C9
7>D9>K:GH>IN 8DCH:GK6I>DC >C I=: 0:I -GDE>8H
.C9:G I=: ;G6B:LDG@ 6C9 BD9:AA>C< 6EEGD68= 8DCH>9:G:9 G:HJAIH
H=DL I=6I I=: . H8:C6G>D >C I=: ;DG:HI:9 A6C9H86E: D; I=: 0:I -GDE
>8H >H =:AE>C< ID EGDK>9: ;DD9 8DCH:GK: 7>D9>K:GH>IN 6C9 H:FJ:HI:G 6I
BDHE=:G>8 86G7DC -=:H: G:HJAIH 6G: D; BDG: >BEDGI6C8: 8DCH>9:G>C<
I=6I I=>H IGDE>86A 6G:6 6H L>I= DI=:G IGDE>86A G:<>DCH >H B6C6<:9 JC
9:G <AD76A 6C9 C6I>DC6A B6G@:I :8DCDB>:H I=6I <:C:G6AAN ;6KDJG A6C9
8A:6G>C< ;DG 6<G>8JAIJG: DK:G 8DCH:GK6I>DC 6AAH  JGI=:GBDG:
IG6CHA6I>C< I=: G:HJAIH ;GDB ><  >CID 6 <DK:GC6C8: 8DCI:MI I=: 8JG
G:CI HIG:C<I= D; I=: EDL:G D; <DK:GC6C8: >C I=: 0:I -GDE>8H ;D8JH:9 DC
EGDI:8I>C< G6>C;DG:HIH B6>CI6>C>C< =><= 7>D9>K:GH>IN 6C9 A>B>I>C< A6C9
;DG 9:K:ADEB:CI >H G:A6I>K:AN =><= ,>B>A6GAN I=: HIG:C<I= D; I=: EDL:G
D; <DK:GC6C8: 9G>K>C< A6C9 8A:6G>C< ;DG HJ<6G86C: EGD9J8I>DC >C I=: 0:I
-GDE>8H >H CDI HJ;S8>:CIAN HIGDC< ID 9:8G:6H: 7>D9>K:GH>IN :K:C >C I=DH:
H8:C6G>DH L=:G: 9:K:ADEB:CI ;DG8:H 6G: 8DCH>9:G67AN HIGDC<:G I=6C EGD
I:8I>DC ;DG8:H -=:G:;DG: I=:H: G:HJAIH ID<:I=:G L>I= I=: 7>D9>K:GH>IN
DJI8DB:H D7I6>C:9 JC9:G . H8:C6G>D ><  H=DL I=6I I=: 0:I
-GDE>8H LDJA9 CDI C::9 :M8:HH>K: 699>I>DC6A 8DCH:GK6I>DC <DK:GC6C8:
EDL:G >C DG9:G ID B6>CI6>C I=: 8JGG:CI >C8G:6H>C< 7>D9>K:GH>IN 6C9 86G
7DC H:FJ:HIG6I>DC IG:C9H
H H=DLC 7N DJG BD9:A I=: EDH>I>K: 7>D9>K:GH>IN 6C9 86G7DC H:
FJ:HIG6I>DC G:HJAIH JC9:G . L>I= HI67A: HJ<6G86C: EGD9J8I>DC K6A
J:H =6K: I=:>G DG><>C >C I=: HIGDC<:G 8DCH:GK6I>DC ;DG8:H 8DBE6G:9 ID
:8DCDB>8 A6C9 8A:6G>C< ;DG8:H >C I=: 0:I -GDE>8H AI=DJ<= CDI :B
E>G>86AAN 699G:HH:9 >C DJG BD9:A N:I >CI:<G6I:9 >C I=: 8DC8:EIJ6A C6
IJG: D; $V:,208>= L: 6G<J: I=6I I=: 8DB7>C6I>DC D; 7DI= HIGDC< 7DI
IDBJE 6C9 IDE9DLC 8DCH:GK6I>DC ;DG8:H =6H 7::C I=: B6>C 9G>K:G D;
HJ8= DJI8DB:H DK:G I=: E6HI 9:869:H DIIDBJE ;DG8:H HI6GI:9 ID DG><
>C6I: >C I=: H I=GDJ<= I=: <GDL>C< EJ7A>8 @CDLA:9<: 6C9 6L6G:
C:HH D; I=: :CK>GDCB:CI6A HD8>6A 6C9 :8DCDB>8 H><C>;>86C8: D; L>A9:G
C:HH 6G:6H >C I=>H G:<>DC JG<  -=JH I=: A68@ D; HJ7HI6CI>6A :CK>
GDCB:CI6A BDK:B:CI I=6I =69 9DB>C6I:9 I=: 'DGI= *J::CHA6C9 HD8>:IN

UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
Fig. 8. "BE68I D; <DK:GC6C8: 6C9 EDA>I>86A EDA>8N ;DG8:H DC 7>D9>K:GH>IN $V:,208>= 6C9 $V/,208>= G:;:G ID 8DCH:GK6I>DC 6C9 9:K:ADEB:CI ;DG8:H G:HE:8I>K:AN -=: =:6IB6E DC IDE H=DLH
7>D9>K:GH>IN K6G>6I>DC DK:G I>B: 8DCH>9:G>C< I=: B>C>BJB CJB7:G D; >C>I>6A $V/,208>= >: SK: ;DG 9>;;:G:CI >C>I>6A $V:,208>= >: K6AJ:H DC 16M>H -=: 7DIIDB =:6IB6E H=DLH 7>D9>
K:GH>IN K6G>6I>DC DK:G I>B: 8DCH>9:G>C< I=: B>C>BJB CJB7:G D; >C>I>6A $V:,208>= >: SK: ;DG 9>;;:G:CI >C>I>6A $V/,208>= (CAN G:HJAIH ;DG I=: %,) H8:C6G>D 6G: H=DLC 9J: ID I=>H H8:C6G>D
>C8AJ9>C< 9:K:ADEB:CI 6C9 EGDI:8I>DC ;DG8:H 8DBE:I>C< ;DG A6C9
H>C8: H:IIA:B:CI >C I=: H HI6GI:9 ID 8=6C<: DCH:GK6I>DC <GDJEH
AD86A 8>I>O:CH 6C9 EGDB>C:CI C6I>DC6A 6C9 >CI:GC6I>DC6A H8>:CI>HIH >C>I>
6I:9 6 9G>K: 76H:9 DC AD77N>C< 9>G:8I 68I>DC B6HH BD7>A>H6I>DC 6C9
EDA>I>86A :C9DGH:B:CIH 6<6>CHI I=: :8DCDB>8 ;DG8:H 9G>K>C< A6C9 8A:6G
>C< -=>H 7DIIDBJE BDK:B:CI L6H 67A: ID 8=6C<: EJ7A>8 6C9 <DK:GC
B:CI 6II>IJ9:H IDL6G9H EG:H:GK>C< I=: C6IJG6A :CK>GDCB:CI I=JH H=>;I
>C< 8DCH:GK6I>DC HIG6I:<>:H ;GDB 6 G:<>DC6AID 6 C6I>DC6A 6C9 6I I>B:H
6 <AD76A6G:C6 JG<  K:CIJ6AAN I=: JHIG6A>6C DK:GCB:CI 7:
86B: >CKDAK:9 >C I=: 9:8>H>DCB6@>C< EGD8:HH 6C9 I=: 86BE6><C 8JAB>
C6I:9 >C I=: A>HI>C< D; I=: 0:I -GDE>8H G6>C;DG:HIH DC I=: 0DGA9 !:G>I6<:
+:<>HI:G >C :8:B7:G  6H L:AA 6H I=: ;DGB6I>DC D; I=: 0:I -GDE>8H
&6C6<:B:CI JI=DG>IN -=>H A:69 ID I=: 7:<>CC>C< D; 6 L>9: HIGDC< 6C9
BJAI>A6N:G EDA>8N C:ILDG@ ;DG I=: EGDI:8I>DC D; G6>C;DG:HI 7>D9>K:GH>IN >C
I=: G:<>DC >: IDE9DLC 8DCH:GK6I>DC ;DG8: JGG:CIAN I=>H BJAI>A6N:G
EDA>8N C:ILDG@ :C67A:H T:M>7A: I6G<:I:9 G:HEDCH:H ID BJAI>EA: 6C9 DK:G
A6EE>C< I=G:6IH ID 7>D9>K:GH>IN !>AA :I 6A  !>AA :I 6A 67
-=: G:HJAI 8JGG:CIAN 6ABDHI  D; I=: 0:I -GDE>8H >H EGDI:8I:9 ,"-"
 B6>CAN G6>C;DG:HI =:AE>C< ID EGDI:8I 7>D9>K:GH>IN 6C9 :C=6C8:
I=: HJEEAN D; BJAI>EA: , HJ8= 6H <AD76A 8A>B6I: G:<JA6I>DC 6>G FJ6A>IN
G:<JA6I>DC 6C9 8N8ADC: EGDI:8I>DC A6B<>G :I 6A 
"C 699>I>DC ID I=: 8DB7>C6I>DC D; 7DIIDBJE 6C9 IDE9DLC ;DG8:H
L: 6G<J: I=6I 8DCH:GK6I>DC >C I=: 0:I -GDE>8H =6H 6AHD 7::C HIG:C<I=
:C:9 9J: ID 9>;;:G:CI ;68IDGH  =9.4,6:964>4.,6 I>B7:G =6GK:HI>C<
;GDB I=: IGDE>86A G6>C;DG:HIH D; CDGI= *J::CHA6C9 8:6H:9 ;DAADL>C<
I=:>G >CH8G>EI>DC DC I=: 0DGA9 !:G>I6<: %>HI >C  /6C8A6N 
-=>H =:AE:9 G::A:8I>C< 6 C6I>DC6A <DK:GCB:CI I=6I IDD@ 69K6CI6<: D;
I=: 67DK:CDI:9 7DIIDBJE 69KD868N >: :CK>GDCB:CI6A 6L6G:C:HH
ID B6@: G:BDK>C< AD<<>C< ;GDB I=: 0:I -GDE>8H 6 KDI:L>CC:G C6
I>DC6AAN +:9S:A9  -=>H 9:8>H>DC L6H 8DCIGDK:GH>6A >C I=: H:CH:
I=6I I=: *J::CHA6C9 DK:GCB:CI L=>8= L6H G:HEDCH>7A: ;DG B6C6<
>C< AD<<>C< >C HI6I: DLC:9 G6>C;DG:HIH 6G<J:9 I=6I AD<<>C< >C I=>H G:
<>DC L6H =><=AN :;S8>:CI H:A:8I>K: 6C9 >CI:GB>II:CI 8DBE6G:9 ID IGDE>
86A ;DG:HIGN :AH:L=:G: L>I= ADL H86A: 9>HIJG76C8:H H>B>A6G ID 8N8ADC:
96B6<:H ID L=>8= I=: :8DHNHI:B >H =>HIDG>86AAN 696EI:9 '>8=DAHDC :I
6A  +:<6G9A:HH D; L=:I=:G >BEDH>I>DC D; G6>C;DG:HI 8DCH:GK6I>DC
7N I=: JHIG6A>6C DK:GCB:CI L6H EDH>I>K: DG C:<6I>K: HJEEDGI ;DG
8DCH:GK6I>DC 7N EDA>I>8>6CH :K:C >; >I L6H ;DG I=:>G DLC EDA>I>86A 7:C
:SI L6H 6C >BEDGI6CI ;68IDG :C=6C8>C< :CK>GDCB:CI6A HJHI6>C67>A>IN
>C I=: 0:I -GDE>8H  02,6 JC9:G I=: JHIG6A>6C DCHI>IJI>DC I=:
C6I>DC6A <DK:GCB:CI 86C DK:GG>9: I=: ,I6I: DK:GCB:CIH DK:G B6I
I:GH I>:9 ID >CI:GC6I>DC6A IG:6I>:H HJ8= 6H I=: 0DGA9 !:G>I6<: DCK:C
I>DC AI=DJ<= I=: B6C6<:B:CI D; I=: G:<>DC >IH:A; >H 6 B6II:G ;DG I=:
*J::CHA6C9 DK:GCB:CI I=: JHIG6A>6C DK:GCB:CI 86C HIDE :CK>GDC
B:CI6AAN JCHJHI6>C67A: 68I>K>I>:H HJ8= 6H I=: AD<<>C< D; I=: 0:I -GDE
>8H ;DG:HIH  8@4<98708>,6=.408>4E. I=: G:<>DC >H I=: C9 BDHI >G
G:EA68:67A: 0DGA9 !:G>I6<: 6G:6 <AD76AAN >C I:GBH D; >IH 7>DI6 >C8AJ9
>C< G:BC6CIH D; DC9L6C6 I=6I 6G: CDI ;DJC9 :AH:L=:G: *J::CHA6C9
DK:GCB:CI  :86JH: I=: 0:I -GDE>8H >H 6 0DGA9 !:G>I6<: ,>I:
>C 8DCIG6HI ID BDHI IGDE>86A 6G:6H AD86I:9 >C 9:K:ADE>C< 8DJCIG>:H 6C9
6 8DCH:GK6I>DC =DIHEDI >I >H :6H>:G ID ?JHI>;N 6C9 G:8:>K: HJEEDGI L>I=
G:<6G9 ID 8DCH:GK6I>DC  .98974. I=: IGDE>86A ;DG:HIH 6G: 6GDJC9
IL:CIN I>B:H A:HH EGD9J8I>K: D; I>B7:G I=6C I:BE:G6I: ;DG:HIH L=:G:
I=: A6II:G EGDK>9:H I=: K6HI B6?DG>IN D; I=: LDGA9H >C9JHIG>6A LDD9
>:  (  ,:9?D 6C9 ,>BEHDC  JGI=:GBDG: L>I=
I=: 0DGA9 !:G>I6<: EGDI:8I>DC >C  86B: I=: 76CC>C< D; AD<<>C<
L>I=>C I=: CDL EGDI:8I:9 ;DG:HIH /6C8A6N  L=:G: ID96N DCAN
G:9J8:9 ;DG:HI 8A:6G>C< 6C9 H:A:8I>K: =6GK:HI>C< 8DCI>CJ:H DC EG>K6I:
A6C9 -=JH I>B7:G EGD9J8I>DC ;GDB ;DG:HIH >C I=: 0:I -GDE>8H >H 6 G:A6
I>K:AN JC8DBE:I>I>K: :8DCDB>8 JH: /6A:CI>C: 6C9 !>AA  :H>9:H
I=>H I=: :8DIDJG>HB >C9JHIGN >C I=: 0:I -GDE>8H L=>8= >H B6@>C<
6 A6G<: 8DCIG>7JI>DC ID I=: C6I>DC6A :8DCDBN 0--  >H 8JG
G:CIAN =:AE>C< ID 9>B>C>H= I=: >CTJ:C8: 6C9 C::9 D; 6<G>8JAIJG: 6C9
I>B7:G >C9JHIG>:H 6H :8DCDB>8 9G>K:GH D; I=: 0:I -GDE>8H :H>9:H I=>H
JHIG6A>6 >H 6 G>8= 9:K:ADE:9 8DJCIGN L=>8= IG6CHA6I:H >CID BDG: ;JC9
>C< 6AAD86I:9 ;DG 8DCH:GK6I>DC EGD<G6BB:H 8DBE6G:9 ID 9:K:ADE>C<
8DJCIG>:H L=>8= 6G: BDG: ;D8JH:9 DC HDAK>C< EDK:GIN 6C9 HD8>6A >HHJ:H
:99>6 :I 6A  !>AA :I 6A   9@0<8,8.0 EJ7A>8 <DK:G
C6C8: >C JHIG6A>6 8DBE6G:9 ID DI=:G 8DJCIG>:H >C ,DJI=:6HI H>6 >H
8JGG:CIAN 9D>C< 7:II:G L>I= G:<6G9 ID 9>;;:G:CI >C9>86IDGH HJ8= 6H 8DG
GJEI>DC 6C9 EDDG <DK:GC6C8: ,D9=> :I 6A  DJCIG>:H L>I= <DK
:GCB:CIH I=6I =6K: ADL K6AJ:H ;DG 8DCK:CI>DC6A >C9>86IDGH :< 8DGGJE

UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
I>DC 8DCIGDA FJ6A>IN EJ7A>8 H:GK>8:H 6G: BDG: A>@:AN ID :ME:G>:C8: I=:
HE6I>6A :ME6CH>DC D; 6<G>8JAIJG: L=>A: I=DH: <DK:GCB:CIH L>I= =><=
FJ6A>IN :CK>GDCB:CI6A <DK:GC6C8: :< G:9J8: :CK>GDCB:CI6A HIG:HH >C
8G:6H: :8DHNHI:B K>I6A>IN <:C:G6AAN H=DL 6<G>8JAIJG6A HE6I>6A 8DCIG68
I>DC :99>6 :I 6A  JGI=:GBDG: EJ7A>8 <DK:GC6C8: >C JHIG6A>6
>H BDG: G:HEDCH>K: ID EJ7A>8 DE>C>DC L=>8= 8JGG:CIAN HJEEDGIH 6C9 G:
FJ>G:H I=: HJHI6>C67A: JH: D; C6IJG6A 86E>I6A >C I=: 0:I -GDE>8H  09
2<,:34.,6 JHIG6A>6 =6H CD HE6I>6A 8DCT>8IH L>I= C:><=7DJG>C< 8DJCIG>:H
>C I:GBH D; A6C9H86E: B6C6<:B:CI 6C9 EGDI:8I:9 6G:6 8G:6I>DC -=JH
I=: *J::CHA6C9 DK:GCB:CI 86C B6C6<: I=: 0:I -GDE>8H L>I=DJI =6K
>C< ID 9:6A L>I= EDI:CI>6A 8GDHHC6I>DC6A DG >CI:GC6I>DC6A 8DCT>8IH
-=:H: ;68IDGH =6K: 8G:6I:9 6 8DCI:MI >C I=: 0:I -GDE>8H L=:G: 8DC
H:GK6I>DC >H EG>DG>I>O:9 DK:G A6C9 8A:6G>C< ;DG 6<G>8JAIJG: 1:I G:<6G9A:HH
D; I=: EDH>I>K: H=DGI 6C9 B:9>JBI:GB G:HJAIH D7I6>C:9 ;DG 7>D9>K:G
H>IN 6C9 8DCH:GK6I>DC ><H  6C9  CD 6HHJBEI>DCH H=DJA9 7: B69:
6H ;DG ADC<I:GB H8:C6G>DH -=>H >H HJEEDGI:9 7N I=: E6G6AA:A G:HJAIH ID
7>D9>K:GH>IN D7I6>C:9 >C DJG BD9:A ;DG :MI>C8I>DC 9:7I ><  0=>A:
I=: 7>D9>K:GH>IN S<JG: H=DLH I=: K6G>6I>DC D; 8JGG:CI <GDHH 7>D9>K:G
H>IN K6AJ:H :MI>C8I>DC 9:7I H=DLH I=: ;JIJG: :MI>C8I>DC D; HE:8>:H 9J:
ID :K:CIH >C I=: E6HI L=>8= D88JGH 7:86JH: D; I>B: 9:A6NH 7:IL::C
>BE68IH DC HE:8>:H 6C9 I=: HE:8>:H JAI>B6I: 9>H6EE:6G6C8: #68@HDC
6C9 ,6M  -=JH :MI>C8I>DC 9:7I EGDK>9:H @:N >C;DGB6I>DC 67DJI
I=: :FJ>A>7G>JB 7>D9>K:GH>IN >C I=: 0:I -GDE>8H L=>8= G:;:GH ID I=: ;J
IJG: ADC<I:GB C:I 7>D9>K:GH>IN K6AJ:H DC8: :MI>C8I>DC 9:7I G:68=:H
O:GD 6C9 I=: HNHI:B 8DB:H >CID :FJ>A>7G>JB#68@HDC 6C9 ,6M 
-=: 9>;;:G:C8: 7:IL::C I=: 8JGG:CI <GDHH 7>D9>K:GH>IN 6C9 I=: :FJ>
A>7G>JB C:I 7>D9>K:GH>IN >H E6GI>8JA6GAN >BEDGI6CI JC9:G I=: %,) H8:
C6G>D L=:G: I=: H=DGI I:GB EDH>I>K:HI:69N 7>D9>K:GH>IN G:HJAIH 8DJA9
7:8DB: C:<6I>K: >C I=: ADC<I:GB 9J: ID I=: >C8G:6H>C< :MI>C8I>DC 9:7I
H:: ><  H 6 G:HJAI L: 6G<J: I=6I 6CN H=DGI 6C9 B:9>JBI:GB EDH
>I>K: 7>D9>K:GH>IN K6AJ:H >C I=: 0:I -GDE>8H C::9 ID 7: 8DCH>9:G:9 L>I=
86JI>DC 9J: ID EDI:CI>6A C:<6I>K: ADC<I:GB 8DC8AJH>DCH JGI=:GBDG:
I=: 8G:6I>DC D; C:L EGDI:8I:9 6G:6H >C I=: 0:I -GDE>8H 8DJA9 7: 8JG
G:CIAN L:6@:C>C< EGDI:8I>DC ;DG8:H :AH:L=:G: >C JHIG6A>6 :HE:8>6AAN >C
*J::CHA6C9 L=:G: DCAN  D; A6C9 >H 8JGG:CIAN EGDI:8I:9 ;6G 7:
ADL I=:  HI6I:9 >C I=: >8=> >D9>K:GH>IN -6G<:I  -=>H 8DJA9 7:
G:A6I:9 ID I=: HD86AA:9 EJ7A>8 7>D9>K:GH>IN 9>H8DJGH: >BE68IH :MEADG:9
7N !>AA :I 6A 7 -=>H 8DC8:EI H6NH I=6I HD8>:IN 6HHD8>6I:H >C8G:6H:H
>C EGDI:8I:9 6G:6H L>I= >C8G:6H>C< EGD8DCH:GK6I>DC 8DBBJC>IN H:CI>
B:CIH I=JH A:69>C< ID 6 EJ7A>8 E:G8:EI>DC I=6I BDG: 7>D9>K:GH>IN >H 7:
>C< EGDI:8I:9 :< >C I=: 0:I -GDE>8H 6C9 I=:G:7N G:9J8>C< EJ7A>8 9>H
8DJGH: 67DJI I=: G>H@H D; 7>D9>K:GH>IN ADHH :AH:L=:G: :< >C I=: G:HI
D; *J::CHA6C9JHIG6A>6 -=JH G6I=:G I=6C :C=6C8>C< EGD8DCH:GK6I>DC
8DBBJC>IN H:CI>B:CIH >C I=: G:HI D; I=: 8DJCIGN 8G:6I>DC D; EGDI:8I:9
6G:6H >C I=: 0:I -GDE>8H 8DJA9 7: 9>B>C>H=>C< I=:B !>AA :I 6A 7
(K:G6AA L: 6G<J: I=6I I=: EDH>I>K: G:HJAIH D7I6>C:9 JC9:G DJG .
H8:C6G>D ;DG I=: 0:I -GDE>8H 86CCDI 7: 8DBE6G:9 ID . H8:C6G>DH >C
DI=:G IGDE>86A 6G:6H -=>H >H 7:86JH: I=: 0:I -GDE>8H EDHH:HH:H >IH DLC
E6GI>8JA6G HD8>D:8DCDB>8 :CK>GDCB:CI6A 8JAIJG6A 6C9 EDA>I>86A 8=6G
68I:G>HI>8H JGI=:GBDG: . H8:C6G>DH JC9:G<D E:G>D9H D; CDCA>C:6G
6C9 67GJEI 8=6C<:H I=JH 9>;;:G>C< ;GDB EA68: ID EA68: &JAA:G 
6C9 A>B>I>C< I=: EG:9>8I67>A>IN 6C9 :MIG6EDA6I>DC D; A6C9HNHI:BH J:
ID I=>H 9:8>9>C< L=>8= 6EEGD68= %,) DG %,! >H BDG: HJHI6>C67A: ;DG 6
IGDE>86A ,, >H 9>;S8JAI 8DCH>9:G>C< I=: 8=6AA:C<>C< <D6A D; B::I>C< 9>;
;:G:CI I6G<:IH JC9:G H>C<A: %,) 6C9 %,! H8:C6G>DH %6L :I 6A  "C
;68I I=: 9:76I: DK:G %,) DG %,! 8DJA9 7: 7AJGG:9 7N I=: 9>;;:G>C< HE6
I>6A H86A:H 8DCH>9:G:9 @GDDH :I 6A  !:C8: HDB: H8=DA6GH HJ<
<:HI DI=:G 6EEGD68=:H HJ8= 6H 6 B>MIJG: D; %,! L>I= %,)  DG9DC :I
6A  +:CL>8@ 6C9 ,8=:AA=DGC  DG BJAI>EA:H86A: A6C9 HE6G>C<
@GDDH :I 6A  6H EDI:CI>6A E6I=L6NH ID DK:G8DB: I=: %,) K:GHJH
%,! 9>8=DIDBN +:CL>8@ 6C9 ,8=:AA=DGC 
5. Conclusions
-=: I6@: =DB:B:HH6<: D; I=>H 6GI>8A: >H ILD;DA9
 -=: 8JGG:CI . 8DCI:MI >C I=: ;DG:HI:9 ,, D; I=: 0:I -GDE
>8H G:<>DC >H =:AE>C< ID G:8DC8>A: 7>D9>K:GH>IN 8DCH:GK6I>DC 8A>B6I:
8=6C<: B>I><6I>DC 6C9 HJ<6G86C: EGD9J8I>DC -=>H >H 9J: ID I=:
HIGDC<:G 8DCH:GK6I>DC ;DG8:H 8DBE6G:9 ID :8DCDB>8 DC:H L=>8=
8DJA9 =6K: >IH DG><>C >C I=: 8DB7>C6I>DC 6C9 >CI:<G6I>DC D; 7DI
IDBJE 6C9 IDE9DLC 8DCH:GK6I>DC ;DG8:H DK:G I=: A6HI 9:869:H 6H
L:AA 6H ;JGI=:G HD8>DEDA>I>86A A:<6A :CK>GDCB:CI6AH8>:CI>S8 :8D
CDB>8 <DK:GC6C8: 6C9 <:D<G6E=>86A ;68IDGH -=>H >H 6C DJIHI6C9>C<
68=>:K:B:CI ;DG 6 IGDE>86A G:<>DC 8DCH>9:G>C< I=6I BDHI D; I=:B
6G: 8=6G68I:G>O:9 ;DG =6K>C< HIGDC<:G :8DCDB>8 A6C9 8A:6G>C< ;DG8:H
8DBE6G:9 ID 8DCH:GK6I>DC I=JH :C=6C8>C< 7>D9>K:GH>IN ADHH =67>I6I
9:HIGJ8I>DC 8A>B6I: 8=6C<: 6C9 DI=:G :CK>GDCB:CI6A >HHJ:H
 :8>9>C< 7:IL::C %,) DG %,! 6EEGD68=:H 86CCDI 7: 6C :>I=:GDG
EGDEDH>I>DC -=JH 6 B>MIJG: D; H=6G>C< 6C9 HE6G>C< L>AA 7: >C DG9:G
ID B::I 8DCH:GK6I>DC <D6AH >C 6 LDGA9 L>I= 6 <GDL>C< 9:B6C9 ;DG
9>;;:G:CI , -GDE>86A ,, 6G: 8DBEA:M 9NC6B>8 6C9 CDCA>C:6G HNH
I:BH I=:G:;DG: I=: 6INE>86A . 8DCI:MI >C I=: 0:I -GDE>8H 86CCDI
7: :MIG6EDA6I:9 CDG 8DBE6G:9 ID . H8:C6G>DH ;GDB DI=:G IGDE>
86A 6G:6H 6H I=: 0:I -GDE>8H EDHH:HH:H >IH DLC E6GI>8JA6G HD8>D:8D
CDB>8 :CK>GDCB:CI6A 8JAIJG6A 6C9 EDA>I>86A 8DCI:MI -=JH :68= <:
D<G6E=>8 8DCI:MI 6C9 H:I D; HI6@:=DA9:GH L>AA C::9 ID :MEADG: 6AI:G
C6I>K: HJHI6>C67A: HDAJI>DCH 76H:9 DC I=:>G DLC AD86A 6C9 G:<>DC6A
8=6G68I:G>HI>8H 'DC:I=:A:HH I=: %,) K:GHJH %,! ;G6B:LDG@ =6H I=:
EDI:CI>6A ID B::I BJAI>EA: <D6AH I=6I L=:C >CI:<G6I:9 L>I=>C HE6
I>6AAN :MEA>8>I BD9:AH 86C 7: JH:9 ID :MEADG: HJHI6>C67A: HDAJI>DCH
;DG 8DBEA:M ,,
Funding
-=>H G:H:6G8= 9>9 CDI G:8:>K: 6CN HE:8>S8 <G6CI ;GDB ;JC9>C< 6<:C
8>:H >C I=: EJ7A>8 8DBB:G8>6A DG CDI;DGEGDSI H:8IDGH
Declarations of interest
'DC:
Appendix A. Supplementary data
,JEEA:B:CI6GN 96I6 ID I=>H 6GI>8A: 86C 7: ;DJC9 DCA>C: 6I =IIEH
9D>DG<??:CKB6C
References
%.&) JHIG6A>6C DAA67DG6I>K: %6C9JH: 6C9 &6C6<:B:CI )GD<G6B )6GIC:GH 
-=: JHIG6A>6C %6C9JH: 6C9 &6C6<:B:CI A6HH>S86I>DC 3DCA>C:4 K6>A67A: 6I =IIE
LLL6<G>8JAIJG:<DK6J676G:H68AJBED8JB:CIH%.&K5
!6C97DD@:9C)6GI5.E96I:(8ID7:GE9; 88:HH:9  &6G8= 
<G>JIJG:H  ,J<6G86C:DK:GK>:L 3(CA>C:4 K6>A67A: 6I =IIELLL6<G>;JIJG:H
8DB6J;6GB9>K:GH>INHJ<6G86C:88:HH:9  &6G8= 
A6B<>G & :I 6A  HH:HH>C< G:<JA6I>C< 6C9 EGDK>H>DC>C< :8DHNHI:B H:GK>8:H >C 6
8DCIG6HI>C< IGDE>86A ;DG:HI A6C9H86E: 8DA "C9>86I  
C<:AH:C  9  &DK>C< =:69 L>I= + "HHJ:H (EI>DCH 6C9 "BEA>86I>DCH
"(+ D<DG "C9DC:H>6
C % :I 6A  <:CI 76H:9 BD9:AA>C< >C 8DJEA:9 =JB6C 6C9 C6IJG6A HNHI:BH
!', A:HHDCH ;GDB 6 8DBE6G6I>K: 6C6ANH>H CC HHD8 B :D<G  

6AAH   0=N -GDE>86A DJCIG>:H G: .C9:G9:K:ADE:9 -=: '6I>DC6A JG:6J D; 8D
CDB>8 +:H:6G8= 3DCA>C:4 K6>A67A: 6I =IIELLLC7:GDG<9><:HI?JCL
=IBA88:HH:9  #JAN 
JG< &   6>GCH 6C9 6G 'DGI= CK>GDCB:CI :CI:G  !DL I=: 0:I -GDE
>8H 06H 0DC ' 3DCA>C:4 K6>A67A: 6I =IIE86;C:8DG<6J67DJI86;C:8
=DLI=:L:IIGDE>8HL6HLDC88:HH:9  #6CJ6GN 
:99>6 &  :I 6A  DK:GC6C8: 6<G>8JAIJG6A >CI:CH>S86I>DC 6C9 A6C9 HE6G>C< >C
IGDE>86A HDJI= B:G>86 )GD8 '6IA 869 ,8> . ,    

UNCORRECTED PROOF
98D,60D&0/480>,6 9?<8,6918@4<98708>,6!,8,20708> BBB  BBBBBB
:A>D  :I 6A  &D9:A>C< A6C9 JH: 9:8>H>DCH L>I= 6N:H>6C C:ILDG@H HE6I>6AAN
:MEA>8>I 6C6ANH>H D; 9G>K>C< ;DG8:H DC A6C9 JH: 8=6C<: CK>GDC &D9:A ,D;IL 

=6GC>6@   6N:H>6C C:ILDG@H L>I=DJI I:6GH " &6<   
JGI>H  :I 6A  -=: <G:6I :ME:G>B:CI L>I= 9:KDAK:9 '+& <DK:GC6C8: A:HHDCH ;GDB
8DBBJC>IN :C<6<:B:CI >C JHIG6A>6 6C9 ':L 2:6A6C9 H>C8: I=: H JHIG6A6H #
CK>GDC &6C6<   
  :E6GIB:CI D; <G>8JAIJG: 6C9 >H=:G>:H ,I6I: D; *J::CHA6C9  %6C9JH: &6E
E>C< 0:I -GDE>8H 3B6E4 ,86A: D;  K6>A67A: 6I *J::CHA6C9 ,E6I>6A 6I
6AD<J: *,E6I>6A %6HI JE96I:9 'DK:B7:G  =IIEFA9HE6I>6A>C;DGB6I>DCFA9
<DK6J86I6AD<J: 88:HH:9 (8I 
0!  6N:H>6C ':ILDG@H 6 J>9: ;DG -=:>G EEA>86I>DC >C '6IJG6A +:HDJG8:
&6C6<:B:CI 6C9 )DA>8N -:8=C>86A +:EDGI CD  :E6GIB:CI D; I=: CK>GDCB:CI
06I:G !:G>I6<: 6C9 I=: GIH JHIG6A>6C DK:GCB:CI
,"-"  %6C9JH: ,JBB6GN  0:I -GDE>8H :E6GIB:CI D; ,8>:C8: "C
;DGB6I>DC -:8=CDAD<N 6C9 "CCDK6I>DC *J::CHA6C9 DK:GCB:CI 3DCA>C:4 K6>A67A:
6I =IIEHEJ7A>86I>DCHFA9<DK6J96I6H:IA6C9JH:HJBB6GNG:HDJG8:
7;9::8;:88:HH:9  (8ID7:G 
@GDDH # :I 6A  ,E6G>C< A6C9 ;DG 7>D9>K:GH>IN 6I BJAI>EA: HE6I>6A H86A:H GDCI 8DA
KDA 3
( DD9 6C9 <G>8JAIJG: (G<6C>O6I>DC D; I=: .C>I:9 '6I>DCH  -=: ,I6I: D; DD9
6C9 <G>8JAIJG: <G>8JAIJG: ,:G>:H 
:9DGDU '/ :I 6A  +69>86AAN G:I=>C@>C< 6<G>8JAIJG: ;DG I=: HI 8:CIJGN ,8>:C8:
  
:CC>C< -  =6AA:C<:H 6C9 (EEDGIJC>I>:H ;DG I=: 0DGA9H DG:HIH >C I=: ,I :C
IJGN SGHI :9H ,EG>C<:G DG9G:8=I ':I=:GA6C9H
>A6IDK6 - /:G7JG< )! )6G@:G  ,I6CC6G9   ,E6I>6A 6<:CI76H:9 BD9:AH
;DG HD8>D:8DAD<>86A HNHI:BH 8=6AA:C<:H 6C9 EGDHE:8IH CK>GDC &D9:A ,D;IL  

>H8=:G # :I 6A  %6C9 HE6G>C< K:GHJH A6C9 H=6G>C< BDK>C< ;DGL6G9 DCH:GK %:II
  
ANK7?:G<   >K: B>HJC9:GHI6C9>C<H 67DJI 86H:HIJ9N G:H:6G8= *J6A "CF  

DA:N # :I 6A  AD76A 8DCH:FJ:C8:H D; A6C9JH: ,8>:C8:   
:'": ,&"%  G6E=>86A ':ILDG@ "CI:G;68: :'": ,&"% 3DCA>C:4K6>A67A: 6I
=IIELLL76N:H;JH>DC8DB 88:HH:9 #JA 
>AA ) :I 6A  &:I=D9H D; 96I6 8DAA:8I>DC >C FJ6A>I6I>K: G:H:6G8= >CI:GK>:LH 6C9 ;D
8JH <GDJEH G :CI #  
DCO6A:O+:9>C # :I 6A  ,E6I>6A 6N:H>6C 7:A>:; C:ILDG@H 6H 6 EA6CC>C< 9:8>H>DC
IDDA ;DG B6EE>C< :8DHNHI:B H:GK>8:H IG69:DUH DC ;DG:HI:9 A6C9H86E:H CK>GDC +:H
  
DCO6A:O+:9>C # :I 6A  "IH CDI I=: L=6I 7JI I=: =DL :MEADG>C< I=: GDA: D; 9:7I
>C C6IJG6A G:HDJG8: JCHJHI6>C67>A>IN )AD, (C:   :
DG9DC "# :I 6A  DD9 )GD9J8I>DC 6C9 '6IJG: DCH:GK6I>DC =6AA:C<:H 6C9 ,DAJ
I>DCH SGHI :9 -6NADG 6C9 G6C8>H ADG:C8:
G::C + :I 6A  6GB>C< 6C9 I=: ;6I: D; L>A9 C6IJG: ,8>:C8:  
!6GG>HDC ) :I 6A  %>C@6<:H 7:IL::C 7>D9>K:GH>IN 6IIG>7JI:H 6C9 :8DHNHI:B H:G
K>8:H 6 HNHI:B6I>8 G:K>:L 8DHNHI ,:GK  
!>AA + :I 6A  96EI>K: 8DBBJC>IN76H:9 7>D9>K:GH>IN 8DCH:GK6I>DC >C JHIG6A>6H
IGDE>86A G6>C;DG:HIH CK>GDC DCH:GK   
!>AA + :I 6A  -=: B6IJG6I>DC D; 7>D9>K:GH>IN 6H 6 <AD76A HD8>6A:8DAD<>86A >HHJ: 6C9
>BEA>86I>DCH ;DG ;JIJG: 7>D9>K:GH>IN H8>:C8: 6C9 EDA>8N JIJG:H  
!>AA + :I 6A 6 DAA67DG6I>DC BD7>A>H:H >CHI>IJI>DCH L>I= H86A:9:E:C9:CI 8DBE6G6
I>K: 69K6CI6<: >C A6C9H86E:H86A: 8DCH:GK6I>DC CK>GDC ,8> )DA  
!>AA + :I 6A 7 0=N 7>D9>K:GH>IN 9:8A>C:H 6H EGDI:8I:9 6G:6H >C8G:6H: I=: :;;:8I
D; I=: EDL:G D; <DK:GC6C8: G:<>B:H DC HJHI6>C67A: A6C9H86E:H ,JHI6>C ,8>  

!DUB6CC & :I 6A  -=: >BE68I D; 8DCH:GK6I>DC DC I=: HI6IJH D; I=: LDGA9H K:GI:
7G6I:H ,8>:C8:   
!JAB: & :I 6A  DCH:GK>C< I=: 7>G9H D; .<6C96H 76C6C68D;;:: 6G8 A6C9 HE6G
>C< 6C9 A6C9 H=6G>C< 8DBE6G:9 )AD, (C:  
#68@HDC ,- ,6M   6A6C8>C< 7>D9>K:GH>IN >C 6 8=6C<>C< :CK>GDCB:CI :MI>C8
I>DC 9:7I >BB><G6I>DC 8G:9>I 6C9 HE:8>:H IJGCDK:G -G:C9H 8DA KDA  
$>IO>C<:G #  -=: B:I=D9DAD<N D; ;D8JH <GDJEH I=: >BEDGI6C8: D; >CI:G68I>DC 7:
IL::C G:H:6G8= E6GI>8>E6CIH ,D8 !:6AI= "AAC  
$D8676H / G6<>8:K>8 ,  6N:H>6C C:ILDG@H 6C9 6<:CI76H:9 BD9:A>C< 6EEGD68=
;DG JG76C A6C9JH: 6C9 EDEJA6I>DC 9:CH>IN 8=6C<: 6 ', BD9:A # :D<G ,NHI 
 
%6L  :I 6A  :II:G A6C9JH: 6AAD86I>DC DJIE:G;DGBH A6C9 HE6G>C< 6C9 A6C9 H=6G
>C< 6EEGD68=:H ID 8DCH:GK6I>DC >C :CIG6A $6A>B6CI6C "C9DC:H>6 >DA DCH:GK 

%NC6B - :I 6A  96EI>C< H8>:C8: ID 696EI>K: B6C6<:GH HE>9:G<G6BH 7:A>:; BD9
:AH 6C9 BJAI>6<:CI HNHI:BH BD9:A>C< DCH:GK 8DA   
&6II=:LH + :I 6A  <:CI76H:9 A6C9JH: BD9:AH 6 G:K>:L D; 6EEA>86I>DCH
%6C9H8 8DA   
&DG<6C %  -=: D8JH GDJE J>9: DD@ ,6<: )J7A>86I>DCH %DC9DC
&JAA:G   +:<>B: H=>;IH A>B>I I=: EG:9>8I67>A>IN D; A6C9HNHI:B 8=6C<: AD76A CK
>GDC =6C<:   
':AA:B6C  :I 6A  -=: CK>GDCB:CI6A DD9 G>H>H I=: CK>GDCB:CIH +DA: >C
K:GI>C< JIJG: DD9 G>H:H  .') +6E>9 +:HEDCH: HH:HHB:CI .C>I:9 '6I>DCH C
K>GDCB:CI )GD<G6B +"G:C96A G:C96A 'DGL6N
'>8=DAHDC " :I 6A  >HIJG76C8: G:<>B:H >C 'DGI= *J::CHA6C9 G6>C ;DG:HIH 6
G::K6AJ6I>DC D; I=:>G G:A6I>DCH=>E ID HE:8>:H G>8=C:HH 6C9 9>K:GH>IN JHI # 8DA 

(,JAA>K6C  :I 6A  ,IG6I:<>8 9>G:8I>DCH ;DG 6<:CI76H:9 BD9:AA>C< 6KD>9>C< I=:
10' HNC9GDB: # %6C9 .H: ,8>   
):G:O&>C6C6   "BEGDK>C< :8DHNHI:B H:GK>8:H BD9:AA>C< >CH><=IH ;GDB 6 6N:H>6C
C:ILDG@ IDDAH G:K>:L CK>GDC &D9:A ,D;IL  
)=6A6C  :I 6A  +:8DC8>A>C< ;DD9 EGD9J8I>DC 6C9 7>D9>K:GH>IN 8DCH:GK6I>DC A6C9
H=6G>C< 6C9 A6C9 HE6G>C< 8DBE6G:9 ,8>:C8:  
)DA=>AA #  :I 6A  <:CI76H:9 BD9:AA>C< D; A6C9JH: :;;:8IH DC :8DHNHI:B EGD8:HH:H
6C9 H:GK>8:H # %6C9 .H: ,8>   
*J::CHA6C9 DK:GCB:CI ,I6I: D; I=: CK>GDCB:CI  0:I -GDE>8H D; *J::CHA6C9
0DGA9 !:G>I6<: '6IJG6A G>I:G>6 3DCA>C:4 K6>A67A: 6I =IIEHLLL:=EFA9<DK6J
HI6I:D;I=::CK>GDCB:CISC9>C<>988:HH:9  &6G8= 
+:9S:A9   CDGI= *J::CHA6C9H IGDE>86A G6>C;DG:HIH I=: LDGA9 =:G>I6<: 8DCIGDK:GHN
"C "C )6AD & &:GN 9H ,JHI6>C67A: DG:HIGN =6AA:C<:H ;DG :K:ADE>C< DJC
IG>:H CK>GDCB:CI6A ,8>:C8: 6C9 -:8=CDAD<N %>7G6GN KDA  ,EG>C<:G DG9G:8=I
+:CL>8@  ,8=:AA=DGC '   E:GHE:8I>K: DC A6C9 HE6G>C< K:GHJH A6C9 H=6G>C< "C
CH:AA  >7HDC  ,6AI  9H %:6GC>C< ;GDB <G>:CK>GDCB:CI ,8=:B:H >C JH
IG6A>6 "CK:HI>C< >C >D9>K:GH>IN 6C9 (I=:G 8DHNHI:B ,:GK>8:H DC 6GBH '1 )G:HH
6C7:GG6 - JHIG6A>6
,8=JAO: # :I 6A  <:CI76H:9 BD9:AA>C< D; HD8>6A:8DAD<>86A HNHI:BH 68=>:K:B:CI
8=6AA:C<:H 6C9 6 L6N ;DGL6G9 #,,,   
,:9?D + ,>BEHDC +  -6G>U %>7:G6A>O6I>DC 0DD9 -G69: ADLH 6C9 AD76A
DG:HIH >H8JHH>DC )6E:G  +:HDJG8:H ;DG I=: JIJG: 06H=>C<IDC 
,B>I= +" :I 6A  (E:G6I>DC6A>H>C< :8DHNHI:B H:GK>8: 6HH:HHB:CI >C 6N:H>6C 7:A>:;
C:ILDG@H ME:G>:C8:H L>I=>C I=: (E:C', EGD?:8I 8DHNHI ,:GK   
,D9=> ', :I 6A  -=: HI6I: 6C9 8DCH:GK6I>DC D; ,DJI=:6HI H>6C 7>D9>K:GH>IN >D
9>K:GH DCH:GK  
,JC 2 &PAA:G    ;G6B:LDG@ ;DG BD9:AA>C< E6NB:CIH ;DG :8DHNHI:B H:GK>8:H
L>I= 6<:CI76H:9 BD9:AH 6N:H>6C 7:A>:; C:ILDG@H 6C9 DE>C>DC 9NC6B>8H BD9:AH C
K>GDC &D9:A ,D;IL CK>GDC &D9:A ,D;IL  
-:9:H8D ) :I 6A  HI>B6I>C< =DL B6CN JC9:H8G>7:9 HE:8>:H =6K: <DC: :MI>C8I
DCH:GK >DA   
I:C GD:@:  :I 6A  0=>8= H:CH>I>K>IN 6C6ANH>H B:I=D9 H=DJA9 " JH: ;DG BN
6<:CI76H:9 BD9:A # GI>; ,D8 ,D8 ,>BJA6I   
.'  .C>I:9 C6I>DCH ;G6B:LDG@ 8DCK:CI>DC DC 8A>B6I: 8=6C<: 9G6;I 9:8>H>DC
)  "C DC;:G:C8: D; I=: )6GI>:H I= ,:HH>DC  :8:B7:G DE:C=6<:C
/6A:CI>C: ), !>AA +  -=: :HI67A>H=B:CI D; 6 LDGA9 =:G>I6<: 6G:6 "C ,IDG@ '
-JGIDC ,& 9H %>K>C< >C 6 NC6B>8 -GDE>86A DG:HI %6C9H86E: A68@L:AA )J7
A>H=>C< (M;DG9 EE 
/6C8A6N #$  -GDE>86A G6>C;DG:HI AD<<>C< >C CDGI= *J::CHA6C9 L6H >I HJHI6>C67A:
CC DG   
/6C8A6N #$  DCIG6HIH 7:IL::C 7>DAD<>86AAN76H:9 EGD8:HH BD9:AH 6C9 B6C6<:
B:CIDG>:CI:9 <GDLI= 6C9 N>:A9 BD9:AH ,JHI6>C67A: I>B7:G =6GK:HI>C< H>BJA6I>DC
HIJ9>:H >C I=: IGDE>86A G6>C;DG:HIH D; CDGI= *J::CHA6C9 DG 8DA &6C6<  
/:CI:G ( :I 6A  ,>MI::C N:6GH D; 8=6C<: >C I=: <AD76A I:GG:HIG>6A =JB6C ;DDIEG>CI
6C9 >BEA>86I>DCH ;DG 7>D9>K:GH>IN 8DCH:GK6I>DC '6I DBBJC  
06I:G=DJH: # :I 6A   ,8>:CI>S8 DCH:CHJH ,I6I:B:CI %6C9 .H: "BE68IH DC
G:6I 6GG>:G +::; 06I:G *J6A>IN 6C9 8DHNHI:B DC9>I>DC G>H76C: JHIG6A>6 -=:
,I6I: D; *J::CHA6C9
0> #  %6C9H86E: HJHI6>C67>A>IN H8>:C8: :8DHNHI:B H:GK>8:H 6C9 =JB6C L:AA7:>C<
>C 8=6C<>C< A6C9H86E:H %6C9H8 8DA   
0>A:CH@N .  ':IAD<D :CI:G ;DG DCC:8I:9 %:6GC>C< 6C9 DBEJI:G76H:9 &D9:A
>C< 'DGI=L:HI:GC .C>K:GH>IN K6CHIDC =IIE88ACDGI=L:HI:GC:9JC:IAD<D
0>AA>6BH $# :I 6A  DG:HIH D; :6HI JHIG6A>6 I=: I= 7>D9>K:GH>IN =DIHEDI "C
268=DH G6C@  =G>HI>6C !67:A #6C 9H >D9>K:GH>IN !DIHEDIH >HIG>7JI>DC 6C9
)GDI:8I>DC D; DCH:GK6I>DC )G>DG>IN G:6H ,EG>C<:G :GA>C !:>9:A7:G< :GA>C !:>9:A
7:G< EE 
0-& 0:I -GDE>8H &6C6<:B:CI JI=DG>IN  3DCA>C:4 K6>A67A: 6I =IIEHLLL
L:IIGDE>8H<DK6J 88:HH:9  #JAN 
0-- 0DGA9 -G6K:A  -DJG>HB DJC8>A  -G6K:A  -DJG>HB 8DCDB>8 "BE68I
 JHIG6A>6 3DCA>C:4 K6>A67A: 6I =IIEHLLLLII8DG<B:9>6SA:HG:EDGIH
:8DCDB>8>BE68IG:H:6G8=8DJCIG>:H6JHIG6A>6E9;88:HH:9  &6G8=

1>C +$  /6A>9>IN 6C9 <:C:G6A>O6I>DC >C ;JIJG: 86H: HIJ9N :K6AJ6I>DCH K6AJ6I>DC
  

... Afforestation along waterways not only reduces sediment accumulation, but also enhances water quality. Additionally, cultivating crops within tropical woodlands supports the maintenance of biodiversity [2,3]. In 2020, global carbon emissions resulting model, that under the scenario of urban expansion in the Miaodao Islands, the areas of forest land, grassland, and cultivated land all show a decreasing trend, carbon storage generally decreases, and ecosystem services depend on the synergistic effect of internal functions [39]. ...
... The relationships between each component are mainly divided into three categories: (1) Carbon elements flow into the system, including the natural inflow process and the anthropogenic inflow process. The natural inflow process is manifested as CO 2 being fixed in the plant body through photosynthesis under the action of solar energy, while the artificial inflow process is manifested as carbon being input into the apple orchard system in the form of fertilizers, pesticides, etc. (2) The flow of carbon between components, including the absorption and utilization of carbon elements in soil by vegetation, as well as the flow of carbon elements into the soil in the form of litter. (3) Carbon elements flow out of the system, including carbon elements entering the market in the form of crops, soil respiration emitting CO 2 , soil erosion causing carbon outflow from the system, and carbon loss of the ecosystem caused by land transfer behavior. ...
... anthropogenic inflow process. The natural inflow process is manifested as CO2 being fixed in the plant body through photosynthesis under the action of solar energy, while the artificial inflow process is manifested as carbon being input into the apple orchard system in the form of fertilizers, pesticides, etc. (2) The flow of carbon between components, including the absorption and utilization of carbon elements in soil by vegetation, as well as the flow of carbon elements into the soil in the form of li@er. (3) Carbon elements flow out of the system, including carbon elements entering the market in the form of crops, soil respiration emi@ing CO2, soil erosion causing carbon outflow from the system, and carbon loss of the ecosystem caused by land transfer behavior. ...
Article
Full-text available
Land transfer is a key issue affecting ecosystem services and carbon storage. Land use change can promote or inhibit carbon emission. To study these impacts, a carbon flow model for Lvzenong Park, Yi County, Taihang Mountains, China, was developed using Odum’s energy systems language. The model simulates carbon flow and storage changes from 2015 to 2115 and analyzes changes in ecosystem service values using the equivalent factor method. Finally, two scenarios of economic development and carbon sink protection are set, and the evolution characteristics of carbon storage and ecosystem service under different scenarios are discussed. The key findings include the following: (1) From 2015 to 2115, carbon storage in apple orchards, forests, and grassland systems initially increase then decrease, while soil carbon storage declines steadily and the overall atmospheric CO2 carbon pool increases. Ecosystem service value decreases by 71.30%. (2) Economic development positively affects apple orchards and atmospheric CO2 carbon storage but negatively impacts grassland carbon storage. Conversely, carbon sink protection benefits grassland and soil carbon storage but harms the atmospheric CO2 carbon pool. (3) Under economic development, ecosystem service values initially increase then decline, while under carbon sink protection, they generally rise. These findings provide scientific guidance for formulating land transfer policies and promoting low-carbon development in mountainous regions.
... Consequently, these changes affect the land's capacity to provide different ESS, as well as the socio-economic setting of the system, referring to the beneficiaries of ESS along with the financial resources of users. [46,49,50]. This article summarizes the main modelling outcomes and provides new SES insights on the following question: what drives (un)sustainable development in SESs? ...
... A detailed description of the ABMs can be found both in the following three articles, each corresponding to one of the three ABMs: Gonzalez-Redin et al. (2018) [46]; and Gonzalez-Redin et al., 2019 [49,50]. ...
... The positive outcomes in the SF scenario can be attributed to a combination of the following factors: (i) the utilization of technology by companies to enhance production efficiency in existing cultivations, leading to a substantial reduction in land requirements for CPO production; (ii) the exclusive establishment of new plantations in degraded lands, thereby avoiding expansion into areas with high biodiversity and carbon stocks; (iii) the increase in the extent of degraded land restored; and (iv) the augmentation in both the number and size of protected areas. Table 3 describes the three scenarios modelled under ABM 3, while Figure 6 shows the modelling results of ABM 3. Like ABM 2, only the results concerning the two ESS-i.e., sugarcane production and carbon sequestration-and biodiversity are presented here, while other indicators are included in the corresponding published article-Gonzalez-Redin et al. (2019) [50]. Table 3. Description of the four scenarios modelled under ABM 3. ...
Article
Full-text available
During the 1992 Rio Conference, the sustainable development agenda envisioned a transformative change for the management of natural resources, where the well-being of human society would be enhanced through the sustainable use of natural capital. Several decades on, relentless economic growth persists at the expense of natural capital, as demonstrated by biodiversity decline, climate change and other environmental challenges. Why is this happening and what can be done about it? We present three agent-based models that explore the social, economic and governance factors driving (un)sustainability in complex social–ecological systems. Our modelling results reinforce the idea that the current economic system fails to safeguard the natural capital upon which it relies, leading to the prevailing decoupling between the economic and natural systems. In attempting to find solutions for such disjunction, our research shows that social–ecological systems are complex, dynamic and non-linear. Interestingly, results also reveal that there are common factors to most social–ecological systems that have the potential to improve or diminish sustainability: the role of financial entities and monetary debt; economic speculation; technological development and efficiency; long-term views, tipping point management and government interventions; and top-down and bottom-up conservation forces. These factors can play a dual role, as they can either undermine or enhance sustainability depending on their specific context and particular conditions. Therefore, the current economic system may not be inherently unsustainable, but rather specific economic mechanisms, decision-making processes and the complex links between economic and natural systems could be at the root of the problem. We argue that short- and medium-term sustainability can be achieved by implementing mechanisms that shift capitalist forces to support environmental conservation. Long-term sustainability, in contrast, requires a more profound paradigm shift: the full integration and accounting of externalities and natural capital into the economy.
... Medium -contributed to regulatory assessments. Policy changes in regulatory agency, financial constraints, short-term planning horizons and lack of collaborative governance framework affected implementation of findings [48] Agent based modelling (ABM)computer simulation that explicitly represents the interactions of heterogeneous individuals [49] Local [50] to global [51] scale; wide range of disciplines [52]; past [53] to future [54] High levels of ontological realism, ease with which knowledge can be integrated from diverse sources [55], spatially-explicit [56], temporally dynamic, low requirement for unrealistic assumptions needed for the sake of simplicity and/or analytical tractability [ Social network mapping (SNM)-an approach to build a network of social (actors) and ecological elements (ecosystem services) by deliberation [67,68] Social network structure has gained popularity in several fields such as biology [69], physics [70], and public health, with frequent applications to environmental resources and ecosystems management and climate change. ...
... • Complementarity of approaches can be seen and explained by the way different approaches cover different requirements, helping to overcome the limitations of individual tools. Most approaches applied in our work are capable of integration, however sMCA often relies on the results of other tools for a real system understanding, for example coupling with BBN to inform spatial planning in forested landscapes, while considering trade-offs in ecosystem services [50]. BBN can be used as meta-models, integrating results from other modelling approaches, such as process-based models and climate projections to understand future catchment resilience to phosphorus pollution [45] and future pesticide pollution risk in agricultural landscapes [46,110]. ...
Article
Full-text available
The evolving ‘permacrisis’ of compounding environmental and social challenges calls for transformative approaches to understanding and intervening in socio-ecological systems. Approaches to support systems thinking and understanding can be vital to achieving this goal. However, applying such systems thinking is often challenging, and we need to better reflect on the pros and cons of different approaches for building systems understanding and informing changes. In this paper, we first identify key attributes of systems thinking approaches from literature. We then use these as a framework for comparing and evaluating seven different systems thinking approaches, selected on the basis of our experience in applying them in support of the management and governance of various types of land systems. The seven approaches are: agent-based modelling, Bayesian belief networks, causal loop modelling, spatial multicriteria analysis, societal metabolic analyses, social network mapping and quantitative story telling. This framework has allowed us to appraise and reflect on our own experiences to identify the respective strengths and weaknesses of these different methodologies. We note that some of the ability to inform change depends as much on the context within which specific tools are used as the particular features of the tools themselves. Based on our appraisal, we conclude by suggesting six key recommendations that should be followed by others seeking to commission and use systems approaches, in order to enable them to support transformative change. We hope this may be useful to those working with systems approaches, since there is an urgent need for analytic efforts that can inform and enable transformative change. We also reiterate the call for sustained funding for long-term, standards-based evaluation of systems thinking approaches with respect to whether their use can demonstrate instrumental impacts leading to the kind of transformation the IPCC has called for, i.e. fundamental system change that goes beyond capacity development impacts such as network-building.
... Urbanization is one of the most critical human-caused changes to land use and land cover (LULC) on the earth (Gallo and Owen 1999;Guo 2015;Zhao et al. 2020). Land use and land cover changes are essential when studying global dynamics and how they respond to thermal environments and socio-economic factors (Zhao et al. 2020). ...
... Vegetation on a landscape increases its socio-economic value, and land-use changes collectively affect the environment and economy (Riaz et al. 2017;Fu et al. 2018). Sustainable development in a compact city is also related to the price of land, and many researchers have used three dimensions of sustainability (social, economic, and environmental) during land-use studies (Gonzalez-Redin et al. 2019;Parveen et al. 2019). ...
Article
Full-text available
Land use changes significantly threaten urban areas, especially in developing countries such as Pakistan, impacting the thermal environment and comfort of human life. The ongoing transformations in cities such as Lahore, the second largest and rapidly expanding urban center in Pakistan, are alarming due to the removal of green cover and the disruption of ecological structures. In response to these concerns, this study was conducted to assess and predict the implications of observed land use changes in Lahore. The analysis employed three Landsat images from 1990, 2005, and 2020, using ArcGIS and Idrisi Selva software. The results show that the built-up area increased almost 100% (16.44% to 32.48%) during the last three decades. Consequently, a substantial shift from low to medium and medium to high degrees of LST was observed. The projections indicate a further 50% expansion of the built-up area, encroaching upon green cover until 2050, shifting more areas under a higher LST spectrum. So, the study concludes that Lahore is facing imminent threats from rapid land use changes caused by higher land surface temperature in the study area, necessitating prompt attention and decisive action. The study area is at risk of losing its conducive environment and the desirable uniformity of the thermal environment. Therefore, it is recommended that green cover be strategically enhanced to offset the rise in built-up areas and ensure a sustainable thermal environment.
... Concerning spatial scale, most studies (60%) focused on the regional scale, primarily addressing the management of natural resources [30,[56][57][58][59][60][61][62][63][64][65][66][67], regional development [68][69][70], and environmental resilience [71][72][73][74][75]. Local-scale investigations constituted the second most common focus (31%), with an emphasis on enhancing local sustainability in response to high vulnerability arising from both natural [76,77] and anthropogenic threats [27,[78][79][80][81][82][83][84][85]. Case studies on a national scale were less prevalent (9%), and no studies were conducted on an international scale. ...
... Most ABMs with a high level of applicability focus extensively on the well-being and development dimensions within the social component. Its unique capacity to capture individual-level interactions and decision-making processes enables the simulation of agents' strategies for optimizing yields and income [57][58][59]69,86]. This granularity extends to the ecological component, where ABMs excel in depicting organic carbon and water dynamics. ...
Article
Full-text available
Social–ecological system (SES) modeling involves developing and/or applying models to investigate complex problems arising from the interactions between humans and natural systems. Among the different types, agent-based models (ABM) and system dynamics (SD) are prominent approaches in SES modeling. However, few SES models influence decision-making support and policymaking. The objectives of this study were to explore the application of ABM and SD in SES studies through a systematic review of published real-world case studies and determine the extent to which existing SES models inform policymaking processes. We identified 35 case studies using ABM, SD, or a hybrid of the two and found that each modeling approach shared commonalities that collectively contributed to the policymaking process, offering a comprehensive understanding of the intricate dynamics within SES, facilitating scenario exploration and policy testing, and fostering effective communication and stakeholder engagement. This study also suggests several improvements to chart a more effective trajectory for research in this field, including fostering interdisciplinary collaboration, developing hybrid models, adopting transparent model reporting, and implementing machine-learning algorithms.
... In general, goal-oriented landscape planning initiatives such as REDD + and BECCS increased land uses with high carbon storage potential in regional landscapes (Stickler et al. 2009;Bryan et al. 2016;West et al. 2018;Nyamari and Cabral 2021). Land conservation policies designed to preserve endangered and important ecosystems increased natural land within regional landscapes (Harmáčková and Vačkář 2015;Gaglio et al. 2019;Gonzalez-Redin et al. 2019), whereas population and economic growth increased urban and agricultural land (Bryan et al. 2016;Liu et al. 2017a). Market forces had strong but context-dependent effects on agricultural and forest land use/land cover (Briner et al. 2012;Bryan et al. 2014). ...
... Landscape governance effects on landscape pattern were linked to ecosystem services interactions in at least 26 case studies (Fig. S3). One trend that emerged from these case studies was a focus on tradeoffs between market (e.g., food, fiber, fuel) and non-market-based ecosystem services (e.g., climate regulation, biodiversity, recreation) (Goldstein et al. 2012;Bateman et al. 2013;Bremer et al. 2018;Gonzalez-Redin et al. 2019). The expansion of bioenergy cropland and carbon plantings to boost biogeochemical regulating services can potentially decrease water regulating services, biogeophysical climate regulation, and habitat (Goldstein et al. 2012;Bryan et al. 2016;Dolan et al. 2020). ...
Article
Full-text available
Landscape pattern and climate change impact ecosystem services and consequently the sustainability of regions and the entire earth system. Yet, we lack an adequate understanding of the interactions among landscape pattern, climate change, and ecosystem services, or the landscape-climate-ecosystems (LCE) nexus. Improving our understanding of the LCE nexus can help create multifunctional landscapes that are resilient to environmental and socioeconomic perturbations. Thus, the main objectives of this study were as follows: (1) to review and synthesize the existing studies of the LCE nexus and (2) to identify research gaps and discuss future research directions to better understand the LCE nexus. Using the SCOPUS database, we followed the procedure of a systematic review to search and review articles that simultaneously addressed multiple links in the LCE nexus. Our review revealed that landscape governance and planning play an important role in determining the composition and configuration of regional landscapes. In addition, changes in landscape pattern and climate can variably impact provisioning, regulating, and cultural ecosystem services. Although many studies have addressed individual links in the LCE nexus, multiple-step linkages have been rarely addressed. Moving forward, therefore, we should focus more on multi-step linkages and the entire LCE nexus to better understand the feedback loops within the nexus. Doing so is necessary for improving landscape and regional sustainability. In addition, future research needs transdisciplinary approaches that integrate the social and ecological systems in regional landscapes to understand not only how landscape pattern and climate change influence ecosystem services, but also how changes in ecosystem services feedback to affect landscape pattern.
... Patterns emerge from bottom-up interactions of individuals with each other and their environment [195]. In landscape ecology individual-based models are increasingly used to model social-ecological systems [196][197][198], but also disturbances [199][200][201], or connectivity [202]. They can also incorporate a range of socio-economic, political, and governance information to influence how individuals, such as farmers, interact within a landscape [203]. ...
Article
Full-text available
Purpose of Review Landscapes can be defined as mosaics of different land covers, habitats, ecosystems, or land-use systems. The link between spatial heterogeneous patterns and ecological processes is the core concept in the research field of landscape ecology. Nowadays, advanced computational methods are essential to the field due to its cross-disciplinary nature, the increasing availability of data, and the complexity of landscape systems. Recent Findings This review provides an overview of recent developments in computational methods that have advanced the research field of landscape ecology. We focus on key topics such as spatial patterns, connectivity, landscape genetics, sampling, simulations and modeling, and spatial planning. Summary The review highlights key innovations, challenges, and potential future directions in the field, emphasizing the role of computational methods in addressing complex ecological questions.
Preprint
Full-text available
At the Rio Conference in 1992, the sustainable development agenda promised a new era for natural resource management, where the well-being of human society would be enhanced through the sustainable use of natural capital. Several decades on, economic growth continues unabated at the expense of natural capital, as evidenced by biodiversity loss, climate change and further environmental issues. Why is this happening and what can be done about it? In this research, we present three Agent-Based Models that explore the social, economic and governance factors driving (un)sustainability in complex social-ecological systems. Our modelling results reinforce the idea that the current economic system does not protect the natural capital on which it depends. This is due to a disjunction between the economic and environmental elements upon which the sustainable development paradigm is founded. Additionally, various factors appear to enhance social-ecological system unsustainability: the role of financial entities and monetary debt; economic speculation; technological development and efficiency; lack of long-term views and late government interventions; inefficient tipping point management; and the absence of strong top-down and bottom-up conservation forces. Interestingly, alternative scenarios showed that these same factors could be redirected to enhance sustainable development. The current economic system may, therefore, not be inherently unsustainable, but rather specific economic mechanisms, agents’ decision-making, and the kinds of links between economic and natural systems could be at the root of the problem. We argue that short- and medium-term sustainability can be enhanced by implementing mechanisms that shift capitalist forces to support environmental conservation. Long-term sustainability, however, requires further paradigm change: where the economy integrates, and fully accounts for, externalities and recognises the actual value of natural capital.
Article
Full-text available
According to many experts, the water crisis will be one of the most important challenges in the coming years on the planet. Watershed management is one of the most effective ways to conserve rainwater and develop water resources. The purpose of the study was to obtain a model of critical land management in the Welang watershed area. This study uses a dynamic systems approach based on a causal philosophy (cause and effect) through a deep understanding of how a system works. The parameters used are based on sustainable agriculture in terms of physical sustainability aspects/critical land from erosion factor indicators. Model validation is done by comparing the behaviour of the model with a natural system (quantitive behaviour pattern comparison), namely the Mean Absolute Percentage Error (MAPE) Middle-Value Test. Modelling is supported by Powersim Studio Express Software ver. 10. The results show that the physical sustainability model/critical land using a simulation scenario of 25% erosion control funds shows a trend of increasing production land area and tackled land area followed by a decrease in annual erosion weight. The economic sustainability model obtained results at the end of the projected year showing farm revenues IDR 63,591,396 (USD1 ≈ IDR14.27 thous. in average in 2021). This means that the higher the acceptance value, the farming can provide economic welfare for farmers.
Article
While agent-based modeling (ABM) has become one of the most powerful tools in quantitative social sciences, it remains difficult to explain their structure and performance. We propose to use artificial intelligence both to build the models from data, and to improve the way we communicate models to stakeholders. We use machine learning to facilitate model development directly from data. As a result, beside the development of a behavioral ABM, we open the ‘blackbox’ of purely empirical models. With our approach, artificial intelligence in the simulation field can open a new stream in modeling practices and provide insights for future applications.
Article
Full-text available
A debt-based economy cannot survive without economic growth. However, if private debt consistently grows faster than GDP, the consequences are financial crises and the current unprecedented level of global debt. This policy dilemma is aggravated by the lack of analyses factoring the impact of debt-growth cycles on the environment. What is really the relationship between debt and natural resource sustainability, and what is the role of debt in decoupling economic growth from natural resource availability? Here we present a conceptual Agent-Based Model (ABM) that integrates an environmental system into an ABM representation of Steve Keen’s debt-based economic models. Our model explores the extent to which debt-driven processes, within debt-based economies, enhance the decoupling between economic growth and the availability of natural resources. Interestingly, environmental and economic collapse in our model are not caused by debt growth, or the debt-based nature of the economic system itself (i.e. the ‘what’), but rather, these are due to the inappropriate use of debt by private actors (i.e. the ‘how’). Firms inappropriately use bank credits for speculative goals–rather than production-oriented ones–and for exponentially increasing rates of technological development. This context creates temporal mismatches between natural resource growth and firms’ resource extraction rates, as well as between economic growth and the capacity of the government to effectively implement natural resource conservation policies. This paper discusses the extent to which economic growth and the availability of natural resources can be re-coupled through a more sustainable use of debt, for instance by shifting mainstream banking forces to partially support environmental conservation as well as economic growth.
Article
Full-text available
Understanding social-ecological systems (SES) is crucial to supporting the sustainable management of resources. Agent-based modelling is a valuable tool to achieve this because it can represent the behaviour and interactions of organisms, human actors and institutions. Agent-based models (ABMs) have therefore already been widely used to study SES. However, ABMs of SES are by their very nature complex. They are therefore difficult to parameterize and analyse, which can limit their usefulness. It is time to critically reflect upon the current state-of-the-art to evaluate to what degree the potential of agent-based modelling for gaining general insights and supporting specific decision-making has already been utilized. We reviewed achievements and challenges by building upon developments in good modelling practice in the field of ecological modelling with its longer history. As a reference, we used the TRACE framework, which encompasses elements of model development, testing and analysis. We firstly reviewed achievements and challenges with regard to the elements of the TRACE framework addressed in reviews and method papers of social-ecological ABMs. Secondly, in a mini-review, we evaluated whether and to what degree the elements of the TRACE framework were addressed in publications on specific ABMs. We identified substantial gaps with regard to (1) communicating whether the models represented real systems well enough for their intended purpose and (2) analysing the models in a systematic and transparent way so that model output is not only observed but also understood. To fill these gaps, a joint effort of the modelling community is needed to foster the advancement and use of strategies such as participatory approaches, standard protocols for communication, sharing of source code, and tools and strategies for model design and analysis. Throughout our analyses,we provide specific recommendations and references for improving the state-of-the-art. We thereby hope to contribute to the establishment of a new advanced culture of agent-based modelling of SES that will allowus to better develop general theory and practical solutions.
Book
Full-text available
Feeding the world's growing human population is increasingly challenging, especially as more people adopt a western diet and lifestyle. Doing so without causing damage to nature poses an even greater challenge. This book argues that in order to create a sustainable food supply whilst conserving nature, agriculture and nature must be reconnected and approached together. The authors demonstrate that while the links between nature and food production have, to some extent, already been recognized, until now the focus has been to protect one from the impacts of the other. Instead, it is argued that nature and agriculture can, and should, work together and ultimately benefit from one another. Chapters describe efforts to protect nature through globally connected protected area systems and illustrate how farming methods are being shaped to protect nature within agricultural systems. The authors also point to many ways in which nature benefits agriculture through the ecosystem services it provides. Overall, the book shows that nature conservation and food production must be considered as equally important components of future solutions to meet the global demand for food in a manner that is sustainable for both the human population and the planet as a whole.
Article
Full-text available
Human pressures on the environment are changing spatially and temporally, with profound implications for the planet's biodiversity and human economies. Here we use recently available data on infrastructure, land cover and human access into natural areas to construct a globally standardized measure of the cumulative human footprint on the terrestrial environment at 1 km(2) resolution from 1993 to 2009. We note that while the human population has increased by 23% and the world economy has grown 153%, the human footprint has increased by just 9%. Still, 75% the planet's land surface is experiencing measurable human pressures. Moreover, pressures are perversely intense, widespread and rapidly intensifying in places with high biodiversity. Encouragingly, we discover decreases in environmental pressures in the wealthiest countries and those with strong control of corruption. Clearly the human footprint on Earth is changing, yet there are still opportunities for conservation gains.
Article
Full-text available
A common approach to the conservation of farmland biodiversity and the promotion of multifunctional landscapes, particularly in landscapes containing only small remnants of non-crop habitats, has been to maintain landscape heterogeneity and reduce land-use intensity. In contrast, it has recently been shown that devoting specific areas of non-crop habitats to conservation, segregated from high-yielding farmland (“land sparing”), can more effectively conserve biodiversity than promoting low-yielding, less intensively managed farmland occupying larger areas (“land sharing”). In the present paper we suggest that the debate over the relative merits of land sparing or land sharing is partly blurred by the differing spatial scales at which it is suggested that land sparing should be applied. We argue that there is no single correct spatial scale for segregating biodiversity protection and commodity production in multifunctional landscapes. Instead we propose an alternative conceptual construct, which we call “multiple-scale land sparing,” targeting biodiversity and ecosystem services in transformed landscapes. We discuss how multiple-scale land sparing may overcome the apparent dichotomy between land sharing and land sparing and help to find acceptable compromises that conserve biodiversity and landscape multifunctionality.
Article
Nine Bayesian Belief Networks (BBNs) were developed within the OpenNESS project specifically for modelling ecosystem services for case study applications. The novelty of the method, its ability to explore problems, to address uncertainty, and to facilitate stakeholder interaction in the process were all reasons for choosing BBNs. Most case studies had some local expertise on BBNs to assist them, and all used expert opinion as well as data to help develop the dependences in the BBNs. In terms of the decision scope of the work, all case studies were moving from explorative and informative uses towards decisive, but none were yet being used for decision-making. Three applications incorporated BBNs with GIS where the spatial component of the management was critical, but several concerns about estimating uncertainty with spatial modelling approaches are discussed. The tool proved to be very flexible and, particularly with its web interface, was an asset when working with stakeholders to facilitate exploration of outcomes, knowledge elicitation and social learning. BBNs were rated as very useful and widely applicable by the case studies that used them, but further improvements in software and more training were also deemed necessary.
Article
Numerous studies attempt to unravel the role played by Biodiversity in ecosystems and ES reliance on Biodiversity. Achieving this aim is difficult given: the multi-layered Biodiversity-ES relationship; the temporal and spatial heterogeneity of ES; and, the interactions between biotic and abiotic components in ecosystems influencing processes and services. Bayesian networks have recently gained importance in ecological modelling. The integration of empirical data with expert knowledge and the explicit treatment of uncertainties, demonstrate their usefulness. Publications describing network-based Biodiversity-ES models, demonstrate their application is still limited. A watershed's environmental risk management network modelled from a Biodiversity-ES perspective is discussed. It demonstrates an improvement on conventional approaches, expressing risk in terms of the underlying causal relations between environmental risk events, triggers, controls and consequences. The model is developed in AgenaRisk and two other tools, Netica and Hugin. A comparison between them highlights the dependence on the tool of choice.
Article
Existing methodologies of sensitivity analysis may be insufficient for a proper analysis of Agent-based Models (ABMs). Most ABMs consist of multiple levels, contain various nonlinear interactions, and display emergent behaviour. This limits the information content that follows from the classical sensitivity analysis methodologies that link model output to model input. In this paper we evaluate the performance of three well-known methodologies for sensitivity analysis. The three methodologies are extended OFAT (one-factor-at-a-time), and proportional assigning of output variance by means of model fitting and by means of Sobol’ decomposition. The methodologies are applied to a case study of limited complexity consisting of free-roaming and procreating agents that make harvest decisions with regard to a diffusing renewable resource. We find that each methodology has its own merits and exposes useful information, yet none of them provide a complete picture of model behaviour. We recommend extended OAT as the starting point for sensitivity analysis of an ABM, for its use in uncovering the mechanisms and patterns that the ABM produces.