Article
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

Sleep medicine is a multidisciplinary field with growth potential. Sleep and psychiatric disorders are comorbid. Many psychiatrists were at the forefront during the earlier years of the field and played significant roles during critical developments of the field. Today there is a shortage of psychiatrists trained in sleep medicine in the United States, with many psychiatry residents not knowing that subspecialty training in sleep medicine is an option. Psychiatrists trained in sleep medicine can bridge the gap between nonpsy-chiatric and mental health providers to increase awareness of the impact sleep disorders have on mental health and improve care of the patients.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
To promote optimal health and well-being, adults aged 18-60 years are recommended to sleep at least 7 hours each night (1). Sleeping <7 hours per night is associated with increased risk for obesity, diabetes, high blood pressure, coronary heart disease, stroke, frequent mental distress, and all-cause mortality (2-4). Insufficient sleep impairs cognitive performance, which can increase the likelihood of motor vehicle and other transportation accidents, industrial accidents, medical errors, and loss of work productivity that could affect the wider community (5). CDC analyzed data from the 2014 Behavioral Risk Factor Surveillance System (BRFSS) to determine the prevalence of a healthy sleep duration (≥7 hours) among 444,306 adult respondents in all 50 states and the District of Columbia. A total of 65.2% of respondents reported a healthy sleep duration; the age-adjusted prevalence of healthy sleep was lower among non-Hispanic blacks, American Indians/Alaska Natives, Native Hawaiians/Pacific Islanders, and multiracial respondents, compared with non-Hispanic whites, Hispanics, and Asians. State-based estimates of healthy sleep duration prevalence ranged from 56.1% in Hawaii to 71.6% in South Dakota. Geographic clustering of the lowest prevalence of healthy sleep duration was observed in the southeastern United States and in states along the Appalachian Mountains, and the highest prevalence was observed in the Great Plains states. More than one third of U.S. respondents reported typically sleeping <7 hours in a 24-hour period, suggesting an ongoing need for public awareness and public education about sleep health; worksite shift policies that ensure healthy sleep duration for shift workers, particularly medical professionals, emergency response personnel, and transportation industry personnel; and opportunities for health care providers to discuss the importance of healthy sleep duration with patients and address reasons for poor sleep health.
Article
Full-text available
Untreated sleep apnea is a prevalent but treatable condition of breathing pauses during sleep. With approximately 15% of the US population affected, understanding of the total health burden is necessary to guide policy, population initiatives, and clinical practice to reduce the prevalence of this condition. To outline the history and need for a population approach to understanding sleep apnea and provide a review of the first longitudinal population study of this disorder. The results of cross-sectional and longitudinal data from 1500 participants in the Wisconsin Sleep Cohort, initiated 2 decades ago, illustrate the population burden of sleep apnea. The prevalence of sleep apnea is increasing with trends of increased obesity. Prospective findings from 4- to 15-year follow-up data indicate untreated sleep apnea predicts increased blood pressure, hypertension, stroke, depression, and mortality. The high prevalence of untreated sleep apnea and links to serious morbidity and mortality underscore the population burden of this condition and the need for greater clinical recognition and strategies to reduce prevalence.
Article
Full-text available
Sleep Medicine has only recently been recognized as a specialty of medicine. Its development is based on an increasing amount of knowledge concerning the physiology of sleep, circadian biology and the pathophysiology of sleep disorders. This review chronicles the major advances in sleep science over the past 70 years and the development of the primary organizations responsible for the emergence of Sleep Medicine as a specialty, sleep disorders as a public health concern and sleep science as an important area of research.
Article
Full-text available
Obstructive sleep apnea is a common disorder whose prevalence is linked to an epidemic of obesity in Western society. Sleep apnea is due to recurrent episodes of upper airway obstruction during sleep that are caused by elevations in upper airway collapsibility during sleep. Collapsibility can be increased by underlying anatomic alterations and/or disturbances in upper airway neuromuscular control, both of which play key roles in the pathogenesis of obstructive sleep apnea. Obesity and particularly central adiposity are potent risk factors for sleep apnea. They can increase pharyngeal collapsibility through mechanical effects on pharyngeal soft tissues and lung volume, and through central nervous system-acting signaling proteins (adipokines) that may affect airway neuromuscular control. Specific molecular signaling pathways encode differences in the distribution and metabolic activity of adipose tissue. These differences can produce alterations in the mechanical and neural control of upper airway collapsibility, which determine sleep apnea susceptibility. Although weight loss reduces upper airway collapsibility during sleep, it is not known whether its effects are mediated primarily by improvement in upper airway mechanical properties or neuromuscular control. A variety of behavioral, pharmacologic, and surgical approaches to weight loss may be of benefit to patients with sleep apnea, through distinct effects on the mass and activity of regional adipose stores. Examining responses to specific weight loss strategies will provide critical insight into mechanisms linking obesity and sleep apnea, and will help to elucidate the humoral and molecular predictors of weight loss responses.
Article
Objective: To assess the current state of sleep medicine educational resources and training offered by North American psychiatry residency programs. Methods: In June 2013, a 9-item peer-reviewed Sleep Medicine Training Survey was administered to 39 chief residents of psychiatry residency training programs during a meeting in New York. Results: Thirty-four percent of the participating programs offered an elective rotation in sleep medicine. A variety of innovative approaches for teaching sleep medicine were noted. The majority of the chief residents felt comfortable screening patients for obstructive sleep apnea (72%), half felt comfortable screening for restless legs syndrome (53%), and fewer than half were comfortable screening for other sleep disorders (47%). Conclusions: This is the first report in the last decade to provide any analysis of current sleep medicine training in North American psychiatry residency training programs. These data indicate that sleep medicine education in psychiatry residency programs is possibly in decline.
Article
Article
The field of sleep medicine has gone through tremendous growth and development over a short period of time, culminating in recognition of the field as an independent medical subspecialty by the Accreditation Council for Graduate Medical Education (ACGME) and the American Board of Medical Specialties (ABMS). However, the fellowship training requirement that is now mandatory for sleep medicine board certification eligibility has had the unintended consequence of restricting the influx of young physicians to the field. In response to the potential workforce shortage confronting the field of sleep medicine, the American Academy of Sleep Medicine (AASM) board of directors has developed a comprehensive plan to strengthen the field by growing sleep fellowship programs, exploring novel sleep medicine training opportunities, creating and fostering the sleep team (with special emphasis on engagement of primary care providers), embracing the role of consumer sleep technologies, and expanding the reach of sleep specialists through telemedicine. The AASM plans summarized in this special article represent efforts to confront serious workforce challenges and turn them into opportunities that will improve the health of both our patients and our field.
Article
For centuries the scope of sleep disorders in medical writings was limited to those disturbances which were either perceived by the sleeper him- or herself as troublesome, such as insomnia, or which were recognized by an observer as strange behavioral acts during sleep, such as sleepwalking or sleep terrors. Awareness of other sleep disorders, which are caused by malfunction of a physiological system during sleep, such as sleep-related respiratory disorders, were widely unknown or ignored before sleep monitoring techniques became available, mainly in the second half of the 20th century. Finally, circadian sleep-wake disorders were recognized as a group of disturbances by its own only when chronobiology and sleep research began to interact extensively in the last two decades of the 20th century. Sleep medicine as a medical specialty with its own diagnostic procedures and therapeutic strategies could be established only when key findings in neurophysiology and basic sleep research allowed a breakthrough in the understanding of the sleeping brain, mainly since the second half of the last century.
Article
Pharmacologically induced/exacerbated restless legs syndrome (RLS), periodic limb movements in sleep (PLMS), and REM behavior disorder/REM sleep without atonia (RSWA) are increasingly recognized in clinical sleep medicine. A scoring system to evaluate the literature was created and implemented. The aim was to identify the evidence with the least amount of confound, allowing for more reliable determinations of iatrogenic etiology. Points were provided for the following criteria: manuscript type (abstract, peer-reviewed paper); population size studied (large retrospective study, small case series, case report); explicitly stated dosage timing; identification of peak symptoms related to time of medication administration (i.e., medication was ingested in the evening or at bedtime); initiation of a treatment plan; symptoms subsided or ceased with decreased dosage or drug discontinuation (for RLS articles only); negative personal history for RLS prior to use of the medication; exclusion of tobacco/alcohol/excessive caffeine use; exclusion of sleep disordered breathing by polysomnography (PSG); and PSG documentation of presence or absence of PLMS. For RLS and PLMS articles were also given points for the following criteria: each 2003 National Institutes of Health (NIH) RLS criteria met; exclusion of low serum ferritin; and exclusion of peripheral neuropathy by neurological examination. Thirty-two articles on drug-induced RLS, 6 articles on drug-induced PLMS, and 15 articles on drug-induced RBD/ RSWA were analyzed. Based on scores < or = 10 and trials of medication reduction/cessation, the strongest evidence available for drug induced RLS are for the following drugs: escitalopram; fluoxetine; L-dopa/carbidopa and pergolide; L-thyroxine; mianserin; mirtazapine; olanzapine; and tramadol. Since none of the PLMS articles assessed PLMI in trials of medication reduction/cessation, the strongest evidence based on scores > or = 10 are for the following drugs: bupropion, citalopram, fluoxetine, paroxetine, sertraline, and venlafaxine. Based on scores > or = 10 and/or trials of medication cessation, the strongest evidence for drug induced RBD/ RSWA is for the following drugs: clomipramine, selegiline, and phenelzine.
Article
Zolpidem is a hypnotic which acts at the GABAA receptor and is indicated for short-term insomnia. Sleep related disorders including somnambulism, sleep related eating and sleep-driving have been reported with zolpidem. A 51-year-old insomniac who used zolpidem 10 mg nightly starting at 44 years of age is described. A few weeks after starting zolpidem she began walking, eating, and had one episode of driving while asleep. Episodes of sleep related eating, sleepwalking, and sleeptalking occurred 3 nights per week, 1 to 2 h after sleep onset. After her evaluation, the patient's zolpidem was gradually discontinued, and all sleep related activities immediately ceased. An 18F-FDG-PET was obtained 2 months after discontinuation of zolpidem. The following day, FDG was administered 1 h after oral administration of 10 mg zolpidem, and then a second PET was performed. We report the results and a review of the literature regarding other unintended effects seen with zolpidem use.