Chapter

Performance Indices for Motorsport Drivers Analysis: Proceedings of the Second International Conference of IFToMM Italy

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

The present paper aims to propose performance indices able to characterize the driving abilities of a car driver in the motorsport ambit. These indices could be used both to improve drivers performances and to conduct comparative analyses between professional and non-professional drivers. The data used for the analysis come from a Formula 4 vehicle and have been acquired by means of a specific data logger. Some indices, suggested by the specific literature in the motorsport vehicles, have been analyzed and employed on the data acquired on track during races. The results were not so satisfactory especially to evaluate the performance of a non-professional driver. The proposed indicators defined as the product of the accelerations along one determined direction (longitudinal or lateral) for the corresponding velocities seem to be suitable to be used as performance indices for the pilot in all the three main phases of a curve. The analysis of the data shows that these indices are quite reliable even if, in some particular cases, they show little discrepancies. This happens because the indices must be interpreted differently in dependence of the various types of curve, which are diversely approached (e.g. a chicane or a hairpin). Further development will improve the indicators according to the type of curve, trying to give an overall performance indicator for each curve.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Direct yaw moment controllers improve vehicle stability and handling in severe manoeuvres. In direct yaw moment control implementations based on Linear Quadratic Regulators (LQRs), the control system performance is limited by the unmodelled dynamics and parameter uncertainties. To guarantee robustness with respect to uncertainties, this paper proposes a gain scheduled Robust Linear Quadratic Regulator (RLQR), in which an extra control term is added to the feedback contribution of a conventional LQR to limit the closed-loop tracking error in a neighbourhood of the origin of its state-space, despite the uncertainties and disturbances acting on the plant. In addition, the intrinsic parameter-varying nature of the vehicle dynamics model with respect to the longitudinal vehicle velocity can compromise the closed-loop performance of fixed-gain controllers in varying driving conditions. Therefore, in this study the control gains optimally vary with velocity to adapt the closed-loop system to the variations of this parameter. The effectiveness of the proposed RLQR in improving the robustness of a classical LQR against model uncertainties and parameter variations is proven analytically, numerically and experimentally. The simulation and vehicle test results are consistent with the formal analysis proving that the RLQR reduces the ultimate bound of the error dynamics.
Article
Full-text available
Typical active safety systems that control the dynamics of passenger cars rely on the real-time monitoring of the vehicle sideslip angle (VSA), together with other signals such as the wheel angular velocities, steering angle, lateral acceleration, and the rate of rotation about the vertical axis, which is known as the yaw rate. The VSA (also known as the attitude or “drifting” angle) is defined as the angle between the vehicle’s longitudinal axis and the direction of travel, taking the centre of gravity as a reference. It is basically a measure of the misalignment between vehicle orientation and trajectory; therefore, it is a vital piece of information enabling directional stability assessment, such as in transience following emergency manoeuvres, for instance. As explained in the introduction, the VSA is not measured directly for impracticality, and it is estimated on the basis of available measurements such as wheel velocities, linear and angular accelerations, etc. This work is intended to provide a comprehensive literature review on the VSA estimation problem. Two main estimation methods have been categorised, i.e., observer-based and neural network-based, focussing on the most effective and innovative approaches. As the first method normally relies on a vehicle model, a review of the vehicle models has been included. The advantages and limitations of each technique have been highlighted and discussed.
Article
Full-text available
This paper presents some results on the development and testing of new solutions in the field of driving automation. The introduction of increasing levels of vehicle automation aimed at enhancing road safety requires a renewed approach to the research and development process and needs a multi-actor environment where the innovation can be tested. Indeed, vehicle automation spans several scientific disciplines and it is becoming exceedingly difficult and too costly for a single research innovation team to go in depth into all technologies and solutions. This is shifting the innovation process toward a multidisciplinary approach in which the only way to ensure an easy, rapid, efficient and scalable introduction of the required innovation is to adopt integrated and complex testing platforms for the simulation of automation solutions, based on a modular architecture, where independent components can be developed and then integrated and tested in a multi-actor environment. A platform for virtual testing is presented herein and employed to assess the performance of an integrated driving assistance solution based on computing appropriate surrogate measures of safety that allow for the transition between different automation logics in free-flow, car-following and emergency braking conditions.
Book
Full-text available
Book available at HALF PRICE (50% off), shipping included worldwide till MARCH 31, 2016 here http://www.springer.com/en/book/9789401785327 (Springer website) THE MORE YOU KNOW VEHICLE DYNAMICS, THE MORE YOU'LL BE SURPRISED Vehicle dynamics is often perceived as a quite intuitive subject. As a matter of fact, lots of people are able to drive a car. Nevertheless, without a rigorous mathematical formulation it is very difficult to truly understand the physical phenomena involved in the motion of a road vehicle. In this book, mathematical models of vehicles are developed, always paying attention to state the relevant assumptions and to provide explanations for each step. This approach allows for a deep, yet simple, analysis of the dynamics of vehicles, without having to resort to foggy concepts. The reader will soon achieve a clear understanding of the subject, which will be of great help both in dealing with the challenges of designing and testing new vehicles and in tackling new research topics. However, there is much more than that. Quite surprisingly, it is shown that several classical concepts, such as the understeer gradient or the roll axis, are either wrong or inadequate and need to be replaced. The book covers handling and performance of both road and race cars. A new approach, called MAP (Map of Achievable Performance), is presented and thoroughly discussed. It provides a global and intuitive picture of the handling features of a vehicle. Moreover, the book also deals with several relevant topics in vehicle dynamics that have never been discussed before. Even very experienced people should find the book interesting and stimulating. This new book is not a translation of the Italian Dinamica del Veicolo; by the same author. Actually, in some sense, this new book is totally different, with new topics and with new points of view for the topics covered in the Italian book as well.
Conference Paper
Full-text available
Continuing advances in the automotive industry in recent years, leading manufacturers of automobiles to develop more and more advanced products from technical and quality point of view and. In addition, consumer needs, now aligned with the high standards achieved, prevent manufacturers to make vehicles of poor quality. The user of the vehicle, in fact, seems to be particularly attentive to the vibro-acoustic emissions. For that reason the major car manufacturers devote significant resources to the NVH sector, which deals with noise and vibration of the vehicle to the vehicle driving comfort. This present work was aimed to analyze two gearboxes, made by the same manufacturer, for the objective assessment of its vibro-acoustic emissions due to the phenomenon of gear whine.
Article
Full-text available
This paper presents a new gearbox noise detection algorithm based on analyzing specific points of vibration signals using the Wavelet Transform. The proposed algorithm is compared with a previously- developed algorithm associated with the Fourier decomposition using Hanning windowing. Simulation carried on real data demonstrate that the WT algorithm achieves a comparable accuracy while having a lower computational cost. This makes the WT algorithm an appropriate candidate for fast processing of noise gear box.
Article
Full-text available
The empirical basis for legislation to limit cell phones while driving is addressed. A comprehensive meta-analysis of the effects of cell phones on driving performance was performed. A total of 33 studies collected through 2007 that met inclusion criteria yielded 94 effect size estimates, with a total sample size of approximately 2000 participants. The dependent variables of reaction time, lateral vehicle control, headway and speed and the moderating variables of research setting (i.e., laboratory, simulator, on-road), conversation target (passenger, cell phone) and conversation type (cognitive task, naturalistic) were coded. Reaction time (RT) to events and stimuli while talking produced the largest performance decrements. Handheld and hands-free phones produced similar RT decrements. Overall, a mean increase in RT of .25s was found to all types of phone-related tasks. Observed performance decrements probably underestimate the true behavior of drivers with mobile phones in their own vehicles. In addition, drivers using either phone type do not appreciably compensate by giving greater headway or reducing speed. Tests for moderator effects on RT and speed found no statistically significant effect size differences across laboratory, driving simulation and on-road research settings. The implications of the results for legislation and future research are considered.
Article
With the advent of electric vehicles with multiple motors, the steady-state and transient cornering responses can be designed and implemented through the continuous torque control of the individual wheels, i.e., torque-vectoring or direct yaw moment control. The literature includes several papers on sliding mode control theory for torque-vectoring, but the experimental investigation is so far limited. More importantly, to the knowledge of the authors, the experimental comparison of direct yaw moment control based on sliding modes and typical controllers used for stability control in production vehicles is missing. This paper aims to reduce this gap by presenting and analyzing an integral sliding mode controller for concurrent yaw rate and sideslip control. A new driving mode, the Enhanced Sport mode, is proposed, inducing sustained high values of sideslip angle, which can be limited to a specified threshold. The system is experimentally assessed on a four-wheel-drive electric vehicle. The performance of the integral sliding mode controller is compared with that of a linear quadratic regulator during step steer tests. The results show that the integral sliding mode controller significantly enhances the tracking performance and yaw damping compared to the more conventional linear quadratic regulator based on an augmented singletrack vehicle model formulation. © 2018, The Korean Society of Automotive Engineers and Springer-Verlag GmbH Germany, part of Springer Nature.
Article
Safety benefits of torque-vectoring control of electric vehicles with multiple drivetrains are well known and extensively discussed in the literature. Also, several authors analyze wheel torque control allocation algorithms for reducing the energy consumption while obtaining the wheel torque demand and reference yaw moment specified by the higher layer of a torque-vectoring controller. Based on a set of novel experimental results, this study demonstrates that further significant energy consumption reductions can be achieved through the appropriate tuning of the reference understeer characteristics. The effects of drivetrain power losses and tire slip power losses are discussed for the case of identical drivetrains at the four vehicle corners. Easily implementable yet effective rule-based algorithms are presented for the set-up of the energy-efficient reference yaw rate, feedforward yaw moment and wheel torque distribution of the torque-vectoring controller.
Article
The paper discusses novel computationally efficient torque distribution strategies for electric vehicles with individually controlled drivetrains, aimed at minimising the overall power losses while providing the required level of wheel torque and yaw moment. Analytical solutions of the torque control allocation problem are derived and effects of load transfers due to moderate driving/braking and cornering conditions are studied and discussed in detail. Influences of different drivetrain characteristics on the front and rear axles are described. The analytical solution of the control allocation problem is experimentally validated along multiple driving cycles on an electric vehicle with four identical drivetrains. The results of the analytically-derived algorithm are contrasted with those from two other control allocation strategies, based on the off-line numerical solution of more detailed formulations of the control allocation problem (i.e., a multi-parametric non-linear programming problem). The experiments show that the computationally efficient analytical solution represents a very good compromise between energy efficiency, drivability and controller complexity.
Article
In this paper a new method to analyze the micro-vibrational behavior of a complex dynamical system is presented. The aim of this work is to develop a tool for diagnostics of systems which is able to overcome the limitations of Fourier spectrum and seize the weak information hidden in a time series. To validate the reliability and sensitivity of the method, it is applied to a C30 Capstone turbine by setting several little different operating conditions in terms of rotational speed and mixed fuel.
Chapter
It is well recognized in the automotive research community that knowledge of the real-time tyre-road friction conditions can be extremely valuable for intelligent safety applications, including design of braking, traction, and stability control systems. This paper presents a new development of an on-line tyre-road adherence estimation methodology and its implementation using both Burckhardt and LuGre tyre-road friction models. The proposed strategy first employs the recursive least squares to identify the linear parameterization (LP) form of Burckhardt model. The identified parameters provide through a Takagi-Sugeno (T-S) fuzzy system the initial values for the LuGre model. Then, it is presented a new large-scale optimization based estimation algorithm using the steady state solution of the partial differential equation (PDE) form of LuGre to obtain its parameters. Finally, real-time simulations in various conditions are provided to demonstrate the efficacy of the algorithm.
Article
This paper presents the development, installation and application of a new wireless telemetry system for measuring the rotating ring's temperature of mechanical face seals. This new thermometric chain has been integrated in a preexisting tribological test rig, used in laboratory to characterize the dynamic, acoustic and thermal behavior of mechanical face seals. Before use, the new telemetry system has been subjected to calibration, validation as well as mechanical and electrical verification. Furthermore, the measuring uncertainty of the thermometric chain has been evaluated according to the Guide to the expression of uncertainty in measurement.
Analysis Techniques for Racecar Data Acquisition, 534 p
  • J Segers
Segers, J.: Analysis Techniques for Racecar Data Acquisition, 534 p. SAE International (2014). ISBN 978-0-7680-6459-9