Article

Clinical implications of epidermal growth factor receptor (EGFR) epigenetic modification in lung cancer, proof of concept for dual multitargeted epigenetic therapy (MTET) in combination with egfr inhibitors

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Full-text available
Tyrosine kinase inhibitors (TKIs) against the human epidermal growth factor receptor (EGFR) are now standard treatment in the clinic for patients with advanced EGFR mutant non-small-cell lung cancer (NSCLC). First-generation EGFR TKIs, binding competitively and reversibly to the ATP-binding site of the EGFR tyrosine kinase domain, have resulted in a significant improvement in outcome for NSCLC patients with activating EGFR mutations (L858R and Del19). However, after a median duration of response of ~12 months, all patients develop tumor resistance, and in over half of these patients this is due to the emergence of the EGFR T790M resistance mutation. The second-generation EGFR/HER TKIs were developed to treat resistant disease, targeting not only T790M but EGFR-activating mutations and wild-type EGFR. Although they exhibited promising anti-T790M activity in the laboratory, their clinical activity among T790M+ NSCLC was poor mainly because of dose-limiting toxicity due to simultaneous inhibition of wild-type EGFR. The third-generation EGFR TKIs selectively and irreversibly target EGFR T790M and activating EGFR mutations, showing promising efficacy in NSCLC resistant to the first- and second-generation EGFR TKIs. They also appear to have lower incidences of toxicity due to the limited inhibitory effect on wild-type EGFR. Currently, the first-generation gefitinib and erlotinib and second-generation afatinib have been approved for first-line treatment of metastatic NSCLC with activating EGFR mutations. Among the third-generation EGFR TKIs, osimertinib is today the only drug approved by the Food and Drug Administration and the European Medicines Agency to treat metastatic EGFR T790M NSCLC patients who have progressed on or after EGFR TKI therapy. In this review, we summarize the available post-progression therapies including third-generation EGFR inhibitors and combination treatment strategies for treating patients with NSCLC harboring EGFR mutations and address the known mechanisms of resistance.
Article
Full-text available
Purpose: To determine the maximum tolerated dose (MTD), safety, pharmacokinetics, pharmacodynamics, and preliminary evidence of antitumor activity of the PI3K/mTOR inhibitor PF-04691502, administered orally once daily. Methods: Escalating doses of PF-04691502 were administered to 23 patients with advanced solid tumors in sequential cohorts across the following dose levels: 2 mg, 4 mg, 8 mg, and 11 mg. 14 additional patients were enrolled in an expansion cohort at the MTD to ensure at least five matched pre- and post-treatment biopsies for biomarkers of PI3K activity. Results: The MTD of PF-04691502 was 8 mg orally once daily. There were three dose-limiting toxicities: one grade 3 fatigue at 8 mg, one grade 3 rash at 11 mg, and one intolerable grade 2 fatigue at 11 mg. Among 37 patients enrolled, treatment-related adverse events included fatigue, decreased appetite, nausea, hyperglycemia, rash, and vomiting. Across all dose levels, average steady-state plasma PF-04691502 concentrations approximated or exceeded the target concentration of 16.2 ng/mL required for ≥75 % tumor growth inhibition in preclinical models. PF-04691502 resulted in increased mean fasting serum glucose, insulin, and c-peptide levels, and produced partial blockade of PI3K signalling in five paired tumor biopsies, as demonstrated by reductions in phosphorylated Akt, FKHR/FKHRL1, and STAT3. No objective anti-tumor responses were observed. Conclusions: Daily oral administration of PF-04691502 was tolerable at 8 mg orally once daily, with a safety profile similar to other PI3K/mTOR inhibitors. PF-04691502 demonstrated PI3K pathway inhibition by changing glucose homeostasis, and by decreasing phosphorylation of downstream molecules in tumor tissue.
Article
Full-text available
Treatment of second- and third-line patients with non-small-cell lung carcinoma (NSCLC) with the epidermal growth factor receptor (EGFR) kinase inhibitor erlotinib significantly increased survival relative to placebo. Whereas patient tumors with EGFR mutations have shown responses to EGFR inhibitors, an exclusive role for mutations in patient survival benefit from EGFR inhibition is unclear. Here we show that wild-type EGFR-containing human NSCLC lines grown both in culture and as xenografts show a range of sensitivities to EGFR inhibition dependent on the degree to which they have undergone an epithelial to mesenchymal transition (EMT). NSCLC lines which express the epithelial cell junction protein E-cadherin showed greater sensitivity to EGFR inhibition in vitro and in xenografts. In contrast, NSCLC lines having undergone EMT, expressing vimentin and/or fibronectin, were insensitive to the growth inhibitory effects of EGFR kinase inhibition in vitro and in xenografts. The differential sensitivity of NSCLC cells with epithelial or mesenchymal phenotypes to EGFR inhibition did not correlate with cell cycle status in vitro or with xenograft growth rates in vivo, or with total EGFR protein levels. Cells sensitive to EGFR inhibition, with an epithelial cell phenotype, did exhibit increased phosphorylation of EGFR and ErbB3 and a marked increase in total ErbB3. The loss of E-cadherin and deregulation of beta-catenin associated with EMT have been shown to correlate with poor prognosis in multiple solid tumor types. These data suggest that EMT may be a general biological switch rendering non-small cell lung tumors sensitive or insensitive to EGFR inhibition.
Article
Drug resistance remains a major challenge in epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) therapy. Bcl-2-like protein 11 (BIM), a B-cell lymphoma 2 family pro-apoptotic protein, is a prime target for specific anti-cancer therapeutics. However, the epigenetic regulation of BIM in non-small cell lung cancer (NSCLC) cell lines and patients with NSCLC in association with EGFR-TKI resistance requires investigation. Methylation-specific PCR (MSP), pyrosequencing, and nested quantitative (q)-MSP were conducted to explore the methylation status of BIM in NSCLC cell lines. In addition, the methylation profile of BIM in patients with NSCLC was assessed by nested q-MSP using circulating free DNA. Cell lines, treated with methylation inhibitor 5-Aza-2′-deoxycytidine (AZA) or histone deacetylation inhibitor trichostatin A (TSA) prior to gefitinib treatment, were examined for BIM gene expression and resistance to gefitinib. All cell lines used in the present study presented with hypo-methylated BIM. Treatment with AZA had no effect on BIM RNA expression in PC9 cells or the gefitinib-resistant cell lines PC9/R and PC9/G2, nor did it reverse their resistance to gefitinib. In contrast, TSA treatment produced the opposite result. In the present study, 25 (78.1%) patients with hypo-methylated BIM and 7 patients (21.9%) with partial or hyper-methylated BIM were identified. The clinicopathological data revealed a random hypo-methylated BIM distribution amongst patients with NSCLC. In the overall study group and EGFR mutant group, hypo-methylated BIM carriers presented with no significant differences in progression free survival compared with patients with partial or hyper-methylated BIM. All cell lines in the present study and the majority of patients with NSCLC carried hypo-methylated BIM. Histone deacetylation, as opposed to promoter methylation, may contribute to the epigenetic silencing of BIM and lead to EGFR TKI resistance in NSCLC.
Article
Specific mutations in epidermal growth factor receptor (EGFR) gene are predictive for response to the EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer patients (NSCLC). According to international guidelines, the molecular testing in patients with advanced NSCLC of a non-squamous subtype is recommended. However, obtain a tissue sample could be challenging. Liquid biopsy allows to determine patients suitable for EGFR-targeted therapy by analysis of circulating-free tumor DNA (cfDNA) in peripheral blood samples and might replace tissue biopsy. It allows to acquire a material in convenient minimally invasive manner, is easily repeatable, could be used for molecular identification and molecular changes monitoring. Many studies show a high concordance rate between tissue and plasma samples testing. When U.S. Food and Drug Administration (FDA) approved the first liquid biopsy test, analysis of driver gene mutation from cfDNA becomes a reality in clinical practice for patients with NSCLC.
Article
The epidermal growth factor receptor (EGFR) is a kind of receptor tyrosine kinase (RTK) that plays a critical role in the initiation and development of malignant tumors via modulating downstream signaling pathways. In non-small cell lung cancer (NSCLC), the activating mutations located in the tyrosine kinase domains of EGFR have been demonstrated in multiple researches as the "Achilles' heel" of this deadly disease since they could be well-targeted by epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs). However, it's still too early to celebrate since the first-generation EGFR-TKIs such as gefitinib and erlotinib have only achieved limited clinical benefits and acquired resistance to this kind of drugs occurred inevitably in almost all the NSCLC patients. In order to make the most of EGFR-TKIs and develop more effective regimens for the NSCLC patients, researchers majoring in different aspects start a battle against EGFR-TKI resistance. Challenging as it is, we still progress stably and step firmly toward the final victory. This review will summarize the major mechanisms of acquired resistance to EGFR-TKIs, and then discuss the development of rationally designed molecular target drugs in accordance with each mechanism, in the hope of shedding light on the great achievements we have obtained and tough obstacles we have to overcome in the battle against this deadly disease.
Article
Background: The epidermal growth factor receptor (EGFR) mutation T790M is reported in approximately 50% of lung cancers with acquired resistance to EGFR inhibitors and is a potential prognostic and predictive biomarker. Its assessment can be challenging due to limited tissue availability and underdetection at low mutant allele levels. Here, we sought to determine the feasibility of tumor rebiopsy and to more accurately assess the prevalence of the T790M using a highly sensitive locked nucleic acid (LNA) PCR/sequencing assay. MET amplification was also analyzed. Methods: Patients with acquired resistance were rebiopsied and samples were studied for sensitizing EGFR mutations. Positive cases were evaluated for T790M using standard PCR-based methods and a subset were re-evaluated with an LNA-PCR/sequencing method with an analytical sensitivity of approximately 0.1%. MET amplification was assessed by FISH. Results: Of 121 patients undergoing tissue sampling, 104 (86%) were successfully analyzed for sensitizing EGFR mutations. Most failures were related to low tumor content. All patients (61/61) with matched pretreatment and resistance specimens showed concordance for the original sensitizing EGFR mutation. Standard T790M mutation analysis on 99 patients detected 51(51%) mutants. Retesting of 30 negative patients by the LNA-based method detected 11 additional mutants for an estimated prevalence of 68%. MET was amplified in 11% of cases (4/37). Conclusions: The re-biopsy of lung cancer patients with acquired resistance is feasible and provides sufficient material for mutation analysis in most patients. Using high sensitivity methods, the T790M is detected in up to 68% of these patients.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
  • M A Nezami
Copyright: ©2018 Nezami MA. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients
  • R L Yauch
  • T Januario
  • D A Eberhard
  • G Cavet
  • W Zhu
Yauch RL, Januario T, Eberhard DA, Cavet G, Zhu W, et al. (2005) Epithelial versus mesenchymal phenotype determines in vitro sensitivity and predicts clinical activity of erlotinib in lung cancer patients. Clin Cancer Res 11: 8686-8698. [Crossref]