Content uploaded by Elisabeth M. A. Strain
Author content
All content in this area was uploaded by Elisabeth M. A. Strain on Oct 25, 2018
Content may be subject to copyright.
Researcharticle
Buildingblueinfrastructure:AssessingthekeyenvironmentalissuesandpriorityareasforecologicalengineeringinitiativesinAustralia'smetropolitan
embayments
E.M.A.Straina,b,c,∗
beth.strain@unimelb.edu.au
R.L.Morrisc
M.J.Bishopa,d
E.Tannera,e
P.Steinberga,b
S.E.Swearerc
C.MacLeodf
K.A.Alexanderf,g
aSydneyInstituteofMarineScience,19ChowderBayRd,Mosman,NSW,2088,Australia
bCentreforMarineBio-Innovation,SchoolofBiological,EarthandEnvironmentalSciences,UniversityofNewSouthWales,Sydney,NSW,2052,Australia
cNationalCentreforCoastsandClimateandSchoolofBioSciences,TheUniversityofMelbourne,Melbourne,VIC,3010,Australia
dDepartmentofBiologicalSciences,MacquarieUniversity,Sydney,NSW,2109,Australia
eSchoolofGeosciences,UniversityofSydney,Sydney,NSW,2006,Australia
fInstituteforMarineandAntarcticStudies,UniversityofTasmania,Hobart,TAS7001,Australia
gCentreforMarineSocioecology,UniversityofTasmania,Hobart,TAS7014,Australia
∗Correspondingauthor.SydneyInstituteofMarineScience,19ChowderBayRd,Mosman,NSW,2088,Australia.
Abstract
Ecologicalengineering principlesareincreasinglybeing appliedtodevelopmultifunctionalartificialstructuresorrehabilitatedhabitatsin coastalareas.Ecologicalengineeringinitiativesareprimarilydrivenbymarine
scientistsand coastalmanagers,butoften theviews ofkeyuser groups,whichcan stronglyinfluencethe success ofprojects,arenotconsidered.Weusedanonline surveyandparticipatorymapping exercisetoinvestigate
differencesinprioritygoals,sitesandattitudestowardsecologicalengineeringbetweenmarinescientists andcoastal managersas comparedto otherstakeholders.ThesurveyswereconductedacrossthreeAustralian cities
that varied in their level of urbanisati on and environmental pressures. We tested the hypotheses that, relative to other stakehold ers, marine scientists and coastal managers will: 1) be more sup portive of ecological
engineering; 2) be more likely to agr ee that enhancement of biodiversity and rem ediation of pollution are key priorities for eco logical engineering; and 3) identify different priority areas and infrastructure or degrad ed
habitatsforecologicalengineering.Wealsotestedthehypothesisthat4)perceptionsofecologicalengineeringwouldvaryamonglocations,duetoenvironmentalandsocio-economicdifferences.Inallthreeharbours,marine
scientists and coastal managers we re more supportive of ecological engineering than oth er users. There was also greater supportsupport for eco logical engineering in Sydney and Melbourne than Hob art. Most people
identifiedtransport infrastructure,inbusytransporthubs(i.e.CircularQuayinSydney,thePortinMelbourneandtheWaterfrontin Hobart)asprioritiesfor ecologicalengineering,irrespective oftheir stakeholdergroupor
location. There were, however,significant differences among locationsin what people perceive as the key priorities for ecological engineering (i.e. biodiversity in Sydney and Melbourne vs. pollution in Hobart). Greater
1Introduction
Human population growth is accele rating and is forecast to reach 10 billion by 205 0 (Bloom,2011; Lutz and Sa mir, 2010). Muc h of the recent human population growth is in vulne rable coastal regions and this trend is
predictedtocontinue(Martínezetal.,2007;SmallandNicholls,2003).Currentestimates suggestthat>40%ofthe globalpopulationand60%ofitslargest cities(>5 millionpeople)are foundwithin100 kmofthecoast(Firth et al.,
2016).Coastalurbanisationhasbeen linkedwithextensivelossandfragmentationofnaturalhabitatsandspecies (McKinney,2008),theintroductionofpollutants, suchasheavymetals,nutrients,artificiallightand sound(Halpernet
al.,2008),andan increasing needforbuilt infrastructure (Daffornetal., 2015). Builtinfrastructureservesa diversity of purposes, suchascoastal defence (e.g. breakwaters, seawalls, groynes), transport orrecreation(e.g.marinas,
piers,ports),services(e.g.stormdrainsandcanals)orindustry(e.g.pipesandaquaculturecages),(Strainetal.,2018).
Builtinfrastructure impactsonnaturalecosystemsinavarietyofways,includinglossofnatural habitats(Heeryetal.,2017),andthemodificationofecologicalconnectivity (Bishopetal.,2017),ecosystemfunctioning(Mayer-
Pintoetal.,2015Mayer-Pintoetal. ,2018 (Mayer-Pintoetal.,2018) (Mayer-PintoM,Co leVJ,JohnstonEL,BugnotA,HurstH,Airoldi L,GlasbyTM,DaffornKA.Functionaland structuralresponsestomarineurbanisa tion.EnvironmentalResearchLetters.
2018Jan5;13(1):014009.))andservices(Airoldietal.,2015),aswellasthephysico-chemicalenvironment(Hinkeletal.,2014;KittingerandAyers,2010).Inresponse,thereis growinginterestin‘ecologicalengineering’,the application
ofecologicalprinciplesto mitigate the negative impacts ofbuiltinfrastructure(ChapmanandUnderwood,2011;FrancisandLorimer,2011;Mitsch,2012).Ecologicalengineeringapproaches include: (1)modifying theattributesof
neworexistingbuiltinfrastructurebyaddingstructuralcomplexity,buildingwithmoreeco-friendlymaterials,orseedingwithhabitat-formingorganisms(termed‘hard’ ecologicalengineering;ChapmanandUnderwood,2011,Firthet
al., 2016 Firth et al., 2014 (Firth et al., 20 14))(Firth LB, Thompson RC, Bohn K, Abbiati M, Airoldi L, Bouma TJ, Bozzeda F, Ceccherelli VU,Colang elo MA, Evans A, Ferrario F. Between a rock and a hard plac e: environmental and engineering
considerations when designing coasta l defence structures. Coastal Engineering . 2014 May 1;87:122-35.); (2) replacing built infrastructure withrestored or created habitats such as saltmarshes, mangroves or oyster reefs(‘soft’ecological
engineering;Temmerman,Meireetal.,2013;Morris,Konlechneretal.,2018);and(3)combining restoredor createdhabitatswithbuiltinfrastructure,forexampleplanted wetlandsbehindarocksill(‘hybrid’ecological engineering,
ChapmanandUnderwood,2011).Althoughthe ecologicalobjectivesandtypeofenvironmentwillinfluencethechoiceofapproach,theoverall objectiveisthesame:tobuildmulti-functionalinfrastructureorrestoredegradedhabitats
tothebenefitofbothhumansandnature(Mitsch,2012).
Ecologicalengineeringprojectsareoftendrivenbymarinescientistsandcoastalmanagers,however,marineprofessionalshavesignificantlydifferentperceptionsonenvironmentalissuescomparedtootherstakeholdergroups
(Easmanetal., 2018). Responsesofstakeholders to new policies or conservation projectscanvarydepending on a range of socio-economic factors,suchaseducation, occupation or income (Derkzen et al., 2017). The uptake, and
thereforethe success ofecologicalengineeringinitiativesis dependent ongainingbroadstakeholdersupportsupport(Gelcichet al.,2008).For example, anecologicalengineering projectdrivenbymarine scientists/coastalmanagers
that fails to get social licenceis unlikely to be implemented at multiple sites. Conversely, a project that proceeds without input from marine scientists andcoastal managers may lackthe expert knowledge required for successful
implementation.TheLivingBreakwatersproject, which couplescoastalprotectionwith habitat creation, andis to beimplementedon Staten Island,USAin 2020, hasgainedwidespreadsupportsupportfromthe local community asa
resultofits extensive consultationprocesswith marine scientistsand other user groups, and has stimulated interest in implementation of similar projects asfarawayasEurope(rebuildbydesign.org/our-work/all-proposals/winning-
projects/ny-living-breakwaters).Withinecologicalengineeringprojects however,thereis relativelylittleresearch onhow theperceptionsand prioritiesofmarine andcoastalmanagers differfromthose ofother stakeholders, orwhat
thefactorsarethatinfluencetheviewsofthedifferentstakeholdergroups(Evansetal.,2017;Grayetal.,2017;Kienkeretal.,2018;Morrisetal.,2016bMor risetal.,2016 (correcttoMorrisetal.,2016)).
Thelevel ofsupportsupportforecologicalengineeringcan also differ between geographic locations (Morris etal.,2016b (Correctto Morris et al., 2016);Morrisetal.,2016;Evanset al., 2017; Kienker et al., 2018). Forexample,
recentresearchin Australia,NewZealand andtheUK hasdemonstratedthatmost peoplesurveyedwereinterestedintheconceptofecologicalengineering(Morriset al.,2016b; Morris etal.,2016;Evansetal.,2017; Kienker et al.,
2018).However,residents from moremodifiedembayments(>50%of harbour covered byseawall),in Sydney and Aucklandweremoresupportiveof ecological engineering inthemarine environment than residents inlessmodified
embayments (<40% of harbourcovered by seawalls) in Hobart and Tauranga(Kienker et al., 2018). People in more urbanised locations could be moreinterested in the concept of ecological engineering becauseof greater public
exposurethrough mediaandresearch(Morris etal.,2016aMorrisetal .,2016 (CorrecttoMorris etal.,2016)),increased connectionwithitswaterways(Kienkeretal.,2018),or highersocio-economicstatus(Ambrosius andGilderbloom,
2015;Berengueret al., 2005). Alternatively, the views of residents from different locationscouldbeinfluencedbythepopulation density,citysizeand/or other environmental pressures (Madureiraet al., 2015, 2018). Interestingly,
Kienkeretal.(2018)showedthatmostpeopleagreedthatecologicalengineeringwasimportantforimprovingbiodiversity,nurseryhabitat,waterquality,stabilisingtheshoreline,limitingdamagetoexistinghabitatsandreducingthe
abundancesof invasivespecies,irrespective oftheir locationorstakeholder group.However,Kienkeretal.(2018) didnotdetermine whether therewereany differencesamongstakeholdergroups orlocations,in theirperceptionsof
considerationoftheselocation-specificdifferencesisessentialforeffectivemanagementofartificialstructuresandrehabilitatedhabitatsinurbanembayments.
Keywords:Marineurbandevelopment;Eco-engineering;Spatialplanning;Artificialstructures;Coastalandmarinehabitats
thekeyenvironmentalissuesthatcouldbeaddressedusingecologicalengineering.
Participatorymapping is an approach that canbe used to represent the spatial knowledge of local communities (Sletto et al., 2009). It is usedin land- and sea-scape planningas well as conservation and natural resource
management (Sletto et al., 2009). Participatory mapping h as been applied to conservation in a wide range o f contexts including incorporation of local knowl edge (Aswani and Lauer,2006) , identifying conflicts between use and
conservation(Alexanderetal.,2012)andidentifyingcommunityvaluesandaspirations(BrownandWeber,2012;KlainandChan,2012;Raymondet al.,2009).Studieshavealsousedparticipatorymapping toidentifypriorityareasfor
terrestrialgreeningprogramsinurbancities(DeRidderetal.,2004;Tyrväinenetal.,2007;VandenBerg etal.,2007).Todate, however,nostudies haveused thistechniqueto identifythepriority sitesfordifferent stakeholders and
locationsinvolvedinmarineecologicalengineeringprojects.Thisinformationisimportantforensuringthesuccessofanyfutureecologicalengineeringinitiatives.
Inthisstudyweusedanonlinesurveyandparticipatorymappingexerciseto:(1)examinedifferencesintheperceptionsofmarinescientists/coastalmanagers,versusotherstakeholderstowardsmarineecologicalengineering;
and(2) identify anydifferencesinthe objectives and sitesforecologicalengineeringthesetwo groups would liketo see prioritised. The studywasreplicatedacross three Australian metropolitan embayments (Sydney Harbour,Port
PhillipBayandtheDerwentEstuary)thathavedifferentlevelsofmodification bybuiltinfrastructureandotherenvironmentalpressures (TableS1).Wehypothesizedthat comparedtootherstakeholders,marine scientistsandcoastal
managers would be more suppor tive of ecological engineering, be more likel y to consider biodiversity and remediation o f pollution as key issues for ecological engin eering, and identify different priority areas and structures for
ecologicalengineering.Wealso predicted thatperceptionsandpriorities for ecologicalengineeringwoulddifferbetween thethreelocationsbecause of differencesinurbanisation,environmentalpressuresand othersocio-economic
factors. We discuss how the information provided by differe nt stakeholder groups through such participatory exercis es might be integrated in to environmental decision making . We then use the inform ation generated by this
participatorymappingexercisetoidentifypotentialecologicalengineeringoptionsforeachofthelocations.
2Methods
2.1Studysites
ThesurveywasundertakeninthreeAustraliancities(Sydney,MelbourneandHobart),eachofwhichissituatedonamajorestuaryorembayment.Thesecitiesdifferintheirphysicalandhumanpopulationsize,theirhistoryof
harbourdevelopmentanduse,presentdayindustry,theenvironmentalpressurestheyexertonestuarine ecosystems,aswellastheir populationdemographics(TableS1).Thesurveysweredistributedtorespondentslivingin,working
inorvisitingareaswithintwokilometresoftheforeshoretotargetpeoplewhoactivelyuseditswaterways(Kienkeretal.,2018).
2.2Studydesign
Thisstudyusednon-probabilisticsampling,includingpurposivesamplingformarinescientistsandcoastalmanagersandconveniencesamplingforotherstakeholderswhoareeasiertoreach(Blairetal.,2013).Anonline survey
andamappingexercisewereopentothepublicforfivemonthsbetween25Mayand22December2017.Wechosetouseaninternet-basedsurveyandmappingtooltoreachasbroadanaudienceaspossible.Allparticipantsanswered
thequestionsthroughSurveyMonkey(www.surveymonkey.com)andenteredthespatialdatadirectlyintothemappingtoolMaptionnaire(maptionnaire.com/).Participantswererecruitedthroughadvertisementsoncommunityboards,
businesscards,emails, socialmedia,newsletters,mailing lists,andin-personusing face-to-face surveysin four suburbs(twolower socioeconomic andtwohigher socio-economic suburbs) alongeachharbour foreshore (Kienker etal.,
2018).Specificusergroups (i.e.harbourmanagersandmarine scientists)werefurthertargetedthroughdirectemailsandface-to-facesurveysatmeetings,and socialevents (Kienkeret al.,2018). Allrespondentswere provided witha
participantinformationsheet(ethicsapprovalreferencenumber
H16175)
beforeagreeingtoundertakethesurvey(Fig.S2).
Theparticipantswereshownexamplesofecologicalengineeringinitiatives(Fig.S3),andasked iftheyweresupportiveoftheconcept(yesorno).Theyindicated whethertheywereamarinescientistor acoastalmanager(yes
or no) and then added point marker s indicating specific locations in which they would like ecological engineering to be appl ied to online maps of Sydney Harbour (Sydn ey), PortPh illip Bay (Melbourne), or the Derwent Estua ry
(Hobart).Theparticipantscouldplacemultiplemarkers. Foreach point, they were asked to name thearea,thetypeof structure or degraded habitat (e.g. beaches, oyster reefs, mangrovessaltmarshes,seeTable S4forfulllist), to
which ecological engineering shou ld be applied. For each m arker, participants were asked to provi de reasons as to why they would like ecological engineering to occur th ere. The phrases “enhancement of biodiversity” and
“remediationofpollution” were provided to participantstoexplore any differences in perceptionbetween key stakeholders. However,the question was left open-ended tocapture further insights and complexityofresponses from
participants.
2.3Dataanalysis
Participantsidentified36 differenttypesofstructureordegradedhabitatsastargetsforecologicalengineering,which wereclassifiedintosix categories(transport,industry,coastaldefence, service,degradedhabitatorreef)
forthe purposesof the analyses (TableS4). Using generalisedlinearmodels,wetestedfor effects of stakeholder type (marine scientistsand coastalmanagersvsothers)on: supportsupportforecological engineering (yes or no), the
typesofstructuresidentifiedassitesforecologicalengineering (transport, industry,coastal defence, service, degraded habitat or reef), and the purpose of ecological engineering as enhancing biodiversity (yes or no) or mitigating
pollution/remediation of water quality (yes or no). These effects were compared across the three locations (Sydney,Melbourne and Hobart,fixedfactor = 3levels).For all analyses, we tested and found no effects of over-dispersion
usingtheAERlibrary.AllanalyseswereconductedinR(www.R-project.org).
Wecross-checkedthatthe locationsnamedbyparticipantsastargets forecological engineeringwereconsistentwiththelocation ofpointstheyhadplacedonthe maps.Where therewereinconsistenciesthepointwas moved
tothecentreofthelocationgivenbyname.Thesenamedpoints,aswellasthosethatwereun-namedweremarkedandusedtoproduceheatmaps.Pointdataaddedtothemapsbythepublichavebeenshowntoaccumulatebetween
3and6 km,soacircularsearchradiusandfixeddistancebandof5 kmwere usedfortheanalysesinthispaper.Kerneldensitiesareinfluencedbythenumberofpointsadded,sodensityanalyseswerestandardisedbysubtractingthe
meangriddensityanddividingbythegridstandarddeviation.Kerneldensitieswereplottedin5natural(jenks)breaksintervalbandsforthehotspotheatmaps.AllanalyseswereperformedinArcGIS10.2(ESRI,RedlandsCA,USA).
3Results
3.1Respondents
Intotal,606peoplecompletedthesurvey(217inSydney,157inMelbourneand232inHobart)and421peoplecompletedthemappingexercise(153inSydney,100inMelbourneandin168Hobart).Thisnumberofresponses
iscomparabletoother,similar,publicperceptionstudies(Evansetal.,2017;Morrisetal.,2016bM orrisetal.,2016 (CorrecttoMorrisetal.,2016)).
3.2SupportSupportforecologicalengineering
Thesurveyindicatedmostrespondents(>70%)supportedsupportedecologicalengineering.Inallthreelocations,marinescientistsandcoastal managerswere,however,moresupportiveoftheconceptofecologicalengineering
thanpeopleintheotherusergroups(Fig.1,Table1).TherewasalsogreatersupportsupportforecologicalengineeringinSydneyandMelbournethanHobart(Fig.1,Table1).
Table1Resultsofgeneralisedlinearmodellingtestingfordifferencesbetweenstakeholdergroups(marinescientists/managersvsothers)andlocations(SydneyvsMelbournevsHobart)inparticipantsupportfor
ecologicalengineering(yes/no).Significantp-values(<0.05)areindicatedinbold-print.
alt-text:Table1
Factor df Deviance Residualdf ResidualDeviance P-value
Null 606 295.75
Location 3 544.35 603 295.75 <0.001
Stakeholder 1 8.16 602 287.58 0.005
Fig.1Percentageofmarinescientists/coastalmanag ersandotherusersthatsupportedecol ogicalengineeringofbuiltstructuresor degradedhabitatsina)Sydney,b)Melbourneandc)Hobart.
alt-text:Fig.1
3.3Keylocationsidentifiedforecologicalengineering
Theareas mostfrequentlyidentifiedbythe789 pointsassitesforecologicalengineering werecentraltransporthubs. Thispatternwasseenacross allrespondents,aswellasfor marinescientists/managers.Thesetransport
hubsincluded Circular QuayinSydney (whichaccountedfor 18.6% ofall marked points,and33.33% ofpointsfrom marinescientists/managers), thePort ofMelbournein Melbourne(10.86%of allmarkedpoints;24.12% formarine
scientists/managers) and the WaterfrontinHobart (20.71% of all marked points; 37.25% for marinescientists/managers (Fig. 2, TableS5). The other areasof interest for the participantswere Blackwattle Bay (9.75% ofallmarked
points)inSydney,StKildabeach(9.14%ofallmarkedpoints)inMelbourneandtheZincworks(7.77%ofallmarkedpoints)inHobart,(Fig.2,TableS5).
3.4Priorityinfrastructureidentifiedforecologicalengineering
Thepointdata showedthattransportinfrastructure(jetties,terminals,ferry,piers,wharves,marinas, docks,ports,shipyardsandyachtclubs)wasconsistentlyidentifiedbymarinescientists/coastal managersandotherusers,
inallthreelocations,astheprioritystructuresforecologicalengineering(Fig.3,Table2).ThiswasfollowedbycoastaldefenceinfrastructureinSydneyandHobartanddegradedhabitatsinMelbourne.
Fig.2Heapmapsshowingprioritysite sidentifiedbymarinescientists/coastalm anagersandotherusersforecological engineeringofartificialstructuresorreh abilitatedhabitatsina)SydneyHarbou r,b)PortPhillipBayandc)DerwentEstuary.Reddotsarepointsfrommarine
scientists/coastalmanagers.Numbered pointsonthemapcorrespondtothena mesinTableS5.(Forinterpretationofthereferencestocolourinthisfigureleg end,thereaderisreferredtotheWebversionofthisarticle.)
alt-text:Fig.2
Table2Resultsofgeneralisedlinearmodellingtestingfordifferencesbetweenstakeholdergroups(marinescientists/managersvsothers)andlocations(Sydneyvs.Melbournevs.Hobart)inthetypesofbuilt
structures/degradedhabitats(transport,vs.coastalvs.industrialvs.reefsvs.degradedhabitats,vs.services)identifiedforecologicalengineering.Significantp-values(<0.05)areindicatedinbold-print.
alt-text:Table2
Factor df Deviance Residualdf ResidualDeviance P-value
Null 662 2503.37
Location 3 1822.84 659 690.53 <0.001
Stakeholder 1 1.94 658 678.59 >0.05
3.5Environmentalprioritiesforecologicalengineering
Thepointdataalsoindicated that the priorities for ecological engineeringdifferedbetween locations but not users (Fig. 4, Table3). In both Sydney and Melbourne, all the participants identified that increasing biodiversity
shouldbethepriorityforecologicalengineering,whereasinHobartmorepeoplewantedtoreducepollutionorincreasewaterquality(Fig.4,Table3)(seeFig.5 (Incorrectcitation)).
Fig.3Thedominantartificialstructures ordegradedhabitatsforecologicaleng ineeringidentifiedbyparticipantsina)S ydney,b)Melbourneandc)Hobart.
alt-text:Fig.3
Fig.4Wordcloudshowingtheparticipantsprioritiesforeco logicalengineeringina)Sydney,b)Melbourneandc)Hobart.
alt-text:Fig.4
Table3Resultsofgeneralisedlinearmodelstestingfordifferencesbetweenstakeholdergroups(marinescientists/managersvsothers)andlocations(SydneyvsMelbournevsHobart)inconsiderationof
“enhancementofbiodiversity”(yes/no)and“remediationofpollutionorincreasewaterquality”(yes/no)askeyprioritiesforecologicalengineering.Significantp-values(<0.05)areindicatedinbold-print.
alt-text:Table3
Factor Df Deviance Residualdf ResidualDeviance P-value
Biodiversity
Null 730 1011.99
Location 3 343.67 727 668.32 <0.001
Stakeholder 1 1.13 726 677.19 >0.05
Pollution
Null 730 1011.99
Location 3 185.14 727 826.86 <0.001
Stakeholder 1 1.15 726 814.71 >0.05
4Discussion
4.1Perceptions,keyenvironmentalissuesandsitesidentifiedbystakeholdersforecologicalengineering
Thereisincreasinginterestin combiningscientificknowledgeandpublicperceptionsto guide urban greening or ecological engineering initiativesin both terrestrial and marine environments (Goddard et al., 2010; Janse and
Konijnendijk,2007;RocaandVillares, 2008;Warrenetal.,2005). Weprovide the firstempiricalevidence,thatdespitethe differences in prior knowledge between stakeholder groups whose professions areactivelyengagedinecological
engineering (i.e. marine scientists and coastal managers) and those that are not, both groups identifie d the same priority infrastructure, environmental issues and loca tions for ecological engineering initiatives in the marine
environment.Foreachofthree Australian embayments surveyed, mostpeople(>70%) were supportive ofecologicalengineering,however,supportsupportwas positively influenced bypriorknowledgeand differed between locations,
consistentwithotherstudies(Evansetal.,2017;Kienkeretal.,2018).Similarly,acrossthethreelocations,bothgroupsidentifiedtransportinfrastructure(jetties,wharves,marinas,piersandyachtclubs,quays)asthehighestpriorityfor
Fig.5Ecologicalengineeringsolutions proposedforSydneyHarbour,PortPhillipBayandtheDerwentEstuarya)hardso lutionsfortransportandcoastalinfrast ructureinexposedandmodifiedsites,b )hybridsolutionsforcoastalinfrastructu reinmoderatelyexposedandmodified
sitesandc)softsolutionsfordegradedh abitatsforshelteredandlessmodifiedsites. (MoveFig.5under Table4)
alt-text:Fig.5
ecological engineering. This was c losely followed by coastal infrastructure (seawalls, groynes a nd breakwaters) in Sydney and Hobart and degraded habitats (beaches, saltmarshes, mangroves, seagrasses and oyster r eefs) in
Melbourne.Thisconsensusisvitalforpreventingthefailureofecologicalengineeringproject(Lietal.,2012).
Incontrast, across all three locations, therewere distinct differences in the environmental issues defined by respondentsaskeyobjectives for ecological engineeringinitiatives in the marine environment.Enhancement of
biodiversitywasa greaterpriorityfor peopleinSydney andMelbournethanHobart, where respondents expressedstrongerconcernfor pollutionremediationorincreasingwater quality.Thesetrends coulddemonstratestronglinks
betweenthepeoplesurveyedandtheirknowledge oftheir environment(WalmsleyandLewis,2014). Forexample,studiesinsouth-easternAustraliahavedemonstratedthattransportinfrastructureisassociatedwithsignificantlylower
biodiversity relative to other infras tructure, because of heavy metal and bioci de run-off from the anti-fouling paint couple d with elevated sediment and turbidity leve ls (Dafforn et al., 2012;Fowles et al., 2018). Similarly,survey s of
pollutionlevelshaveshownthatdespitetheirsimilaritiesinindustryanddevelopment,theDerwentEstuaryhadmuchhigherlevels(>10timetheconcentrations)ofheavymetalsinsedimentthaneitherSydneyHarbourorPortPhillip
Bay(Lingetal.,2018).Alternatively,theviewsofresidentsfromdifferentlocationscouldbeinfluencedbytheirexposuretotheconceptsorothersocio-economicfactors(Madureiraetal.,2015,2018).
Inthisstudy,wecombined twotypesofnon-probability sampling– purposiveandconvenience, toprovide crucialinsightsintohowdifferentstakeholdergroupsviewecologicalengineering,acrossthreelocations. Thistype of
samplingcanprovidevaluableinformationforearlystagesofdecision-making,raisingawarenessofthemarineenvironment,andidentifyingkeystakeholderperspectives(BrownandKyttä,2014;Jarvisetal.,2015) however,therecanbe
some problems in gettinga representative sample (Blair et al., 2013). To address these potential limitations, within each harbour location, we sa mpled respondents in a variety of places in cluding foreshore areas, street locations,
shoppingmallsandprivatebusinesses.Inallthreelocations,wealso sampledacrossfourareas withdifferent socio-economicstatus(Kienkeretal.,2018). Overall,we suggestthisapproachallowedustocaptureimportantinformation
aboutthekeyprioritiesandlocationsforfutureecologicalengineeringprojectsinSydney,MelbourneandHobart.
4.2Integrationofparticipatoryplanningintoecologicalengineeringprojects
Weproposethatthemethodsusedinthisstudycouldguidebestpractiseforplanningandmanagingfutureecologicalengineeringinitiatives.Theseprojectsshouldconsiderthegoalsandviewsofthemainstakeholdergroups
suchasmarinescientists/coastalmanagersandotherprivateandpublicusers(Yepsenetal.,2016).Manyframeworksandmethodsforparticipatoryplanninghavebeendevelopedwhichmayassistwiththis,forexamplefor,tidalenergy
arrays(Alexanderetal.,2012),marineprotectedareas(BrownandWeber,2011;Jarvisetal.,2015)terrestrialgreenroofs(JanseandKonijnendijk,2007),tonameafewexamples.However,todate,thesehaverarelybeenappliedtoecological
engineeringprojects.Inthefollowing sectionweshow howthepriority objectivesandsites identifiedthroughparticipatorymapping mightbeusedtodevelop ecologicalengineeringoptionsfor threeAustralianembayments,Sydney
Harbour,PortPhillipBayandtheDerwentEstuary.
4.3EcologicalengineeringoptionsforthethreeAustralianestuaries
In Sydney Harbour,the key areas of interest for ecological engineerin g to enhance the native biodiversity were Cir cular Quay and Blackwattle Bay (Fig. 5, Table 4 (Fig.5 , Table4)). In both locati ons, the positive effects of
ecologicalengineeringinterventions biodiversityneedtobe temperedbypotentiallynegativeeffects ofthe interventionsonthelongevityoftheinfrastructureandonusers(Fig.5, (Fig. 5,Table4)Table4).Boating infrastructureblocks
lightwhichcan negativelyaffectthegrowthandsurvivorship ofprimaryproducerssuchasmacroalgaeandseagrasses,andmayinsteadfavourthe colonisationof non-nativemarineinvertebrates(ConnellandGlasby,1999;Marzinelli et
al.,2011).Thehard ecologicalengineeringinterventionswhichcouldbeappliedtoboatinginfrastructureincludetheadditionofLEDlights whichpromoteseaweedgrowthinaquaculturepractices,andprevent invertebratefoulingon
ships(Rabbette,1992), or skylights fins andotherenhancementsaddedtoseawallsto provide habitat for fishandinvertebrates(Munsch etal.,2017) and/or the incorporation of soft rope structure to create fishhabitat(HairandBell,
1992).Atthesesitesthebiodiversityonnearbycoastalinfrastructurecanalsobeenhancedbyretrofittingtileswithcreviceandridges(Strainetal.,2018)andflowerpots(whichserveassurrogaterock-pools;Browne&Chapman2014).
Interventionsoncoastalinfrastructurealsohastheadvantagethat,ifplacedintheintertidal,theywillbevisiblefromtheshoreline,creatingpublicinterest.
Table4Ecologicalengineeringsolutionsproposedbymarinescientiststoaddressenvironmentalissuesin,SydneyHarbour,PortPhillipBayandDerwentEstuary.
alt-text:Table4
Site Environmentalpriority Additional
Issues Infrastructure Solution
CircularQuay,SydneyHarbour Biodiversity Publicaccess,safety,exposure
Jetties/Wharves
Pontoons
Seawalls
LEDlights,skylightssoft
Crevice/Ridges,Flowerpots
Biodiversity NA Jetties/Wharves
Pontoons Skylights
BlackwatttleBay,SydneyHarbour Degradedhabitat Mangroves/Saltmarshhybrid
Oysterreef
Seawall Crevices/Ridges,Flowerpots
PortofMelbourne,PortPhillipBay Biodiversity Shipping Piers,Wharves,Pontoon Seedingwithbivalves
StKilda,PortPhillipBay Biodiversity Publicaccess
Piers
Seawalls,Breakwaters
Degradedhabitats
Seedingwithnativeorganismsor
Addingmicrohabitats,Seedingandplanting
Oysterormusselreefs
Waterfront,DerwentEstuary (Extensiveformattingissues.Redo)
Zincworks,DerwentEstuary
Pollution
Pollution
Publicaccess,exposure
Shipping,exposure
Piers,wharves,pontoons,
Seawalls
Piers,wharves,pontoons,
Seawalls
Seedingandplanting
Seedingandplanting
Seedingandplanting
InPortPhillipBay,theareathatreceivedmostinterestasasiteforecologicalengineeringwasatransportationhub,thewerethePortofMelbourne,withbiodiversityenhancementandwaterqualityimprovementidentifiedas
key goals (Fig. 5, Table4)(Fig. 5, Table4). The Port of Melbou rne is the largest container and general car go port in Australasia, therefore any ecolo gical engineering solutions must be sensi tive to maintaining these extensive port
operations.Shippingactivities inPortPhillipBayhave causedconsiderableecologicalimpacts,including theintroductionof >100invasivespeciesthrough transportoforganismsonhullsand inballastwater (Hewitt etal., 1999),the
spreadof which could thenbeexacerbatedbythe extensive artificial structures along theportshoreline(Airoldi etal.,2015). Ecological engineeringstrategiesthatenhancenative organisms,whileexcludinginvasivespecies,would
therefore be beneficial forthe local biodiversity (Dafforn et al., 2012). A promising har d ecological engineering approach cou ld be the seeding of structures with muss els (
Mytilusgalloprovincialis
), a native habitat-forming organism
(Paalvastetal.,2012;Strainetal.,2018).Musselbedscreatefoodandshelterfornumerousothermarineorganisms,whiletakingupspacethatcouldotherwisebecolonisedbynon-nativespecies(Coenetal.,2007).Further,musselscan
improvewaterqualitythroughthefiltrationoflargevolumesofwaterandsuspendedparticles(Denisetal.,1999).
Theother area that received highinterest for ecological engineering interventions in Port Phillip Bay wasthe foreshore of St Kilda,which contains both transportand coastal infrastructure (Fi g. 5, Table4 (Fig. 5, Table 4)).
DespitetheirconcernsStKildabreakwaterisawildlifemanagementcooperativeareaduearesidentcolonyoflittlepenguins.Volunteershavebeen“greening”thebreakwatersinceitwasrefurbishedthroughre-plantingvegetationto
providesuitablehabitattosustainthepenguincolony(earthcarestkilda.org.au).Furtherbenefitscouldalsobeprovidedbyintegratingnativeorganismsand/orincreasinghabitatcomplexitythroughaddingmicrohabitats(Chapmanand
Underwood, 2011;Strainet al., 2018). Melbournediffered from Sydney and Hobartinthatdegraded habitats were identifiedas a high priority for ecological engineering (Fig. 3). At this site, the rehabilitation ofshellfish reefs could
providewaveattenuationandshorelinestabilisation,whiledeliveringotherecosystemserviceco-benefits(Scyphersetal.,2011).
Inthe Derwent Estuary,the keyareaswhererespondentsfeltecologicalengineeringwouldbe most beneficial were for improvement of waterqualityandreductionof pollution at the Waterfrontand near theZincWorks at
Lutana(Fig.5,Table4 (Fig.5,Table4)).Intheseareas,hard ecologicalengineeringsolutionsthroughseedingwith nativemusselsoroysters(McCayetal.,2003),andtransplantingseaweeds(Fariaset al.,2017) couldbeused toincrease
filtration capacity and nutrient uptak e to improve water quality around some transport infrastructure (e.g . pilings, pontoons and wharves) and coastal defence infrastructure ( i.e. seawalls). It is important that any ecological
engineeringinterventionsdonotenhancetheabundancesofinvasivespeciessuchasthepredatorJapaneseseastar(
Asteriasamurensis
)whichconsumesbivalves(LockhartandRitz,2001).
Themain concern, however atbothsites intheDerwentEstuary is heavymetalpollution,particularlyzinc, lead, cadmium(DerwentEstuaryProgram, 2016), whichaccumulateinthe sediment but are remobilised inthewater
columnthrough resuspension fromboatwakeandwaves. Therearelimited ecologicalengineeringoptionsfordealingwith heavymetalcontamination.Species thattake metalsoutofthesystem (e.g.bivalves,seaweeds, saltmarshes
and wetlands) are likely to bio-accumulate and/or bio-magnifythe pollutant. The only wayto remove the contaminantswould be to harvest the species, which may be counterproductive for biodiversity endpoints. Forspecies that
remaininthesystem,managementwould needtobecertainthatanyattempttoremovecontaminants throughenhancementofnativespeciesdoesnotinadvertentlyreintroducetheminto thefood chain.Iftheaimistoreduceheavy
metalcontamination,thenecologicalengineeringstrategiesfortheDerwentEstuarywillbenefitfromfacilitatingtheproductionoffastgrowingspecies,withlowpalatability,thatcanberemovedfromthesystemwithoutimpactingon
thebiodiversity(Fariasetal.,2017).
5Conclusion
Understandingtheattitudes,perceptions andvaluesofkeystakeholdergroupstourbanconservationinitiativesisvitalfordevelopingholisticmanagementstrategies.Wefoundthataclearmajorityofbothstakeholdergroups
(marinescientists/coastalmanagersvs.others)at allthreelocations weresupportiveof ecologicalengineering.Bothgroups similarlyidentifiedinterventionsthat targetenhancementof biodiversityormitigation ofpollutantsaround
transportinfrastructure as akeypriorityforecological engineering, creating a strong supportsupport base with which to moveforwardinthedevelopment of potential interventions. The ecologicalengineering options identified by
marinescientistsforthesehigh waveenergyand heavilymodifiedlocations includehardoptionsthatalterabiotic andbioticconditions toenhancebiodiversity,andseeding ortransplantingnativehabitat-formingspecies toenhance
biodiversityandimprove water quality (Table5).The costs of these interventions, is relatively low,rangingbetweenAUD$50to300 per m2 (Table5), particularly when compared with built infrastructure (Morris, Konlechner et al.
2018).However,further investmentwouldbe requiredformonitoringto ensurethe ecological engineering interventionshavethe desiredbenefits.Ecologicalengineeringprojects thatincorporatingthe viewsofmultiple stakeholder
groupscanprovidepeoplewithgreaterpublicaccesstothemarineenvironment,increasetourismandculturalactivities,andareimportantforscientificresearchandeducation(Yepsenetal.,2016).
Table5CostandbenefitsofcurrentecologicalengineeringsolutionsappliedinSydneyHarbour,PortPhillipBayandDerwentEstuary.
alt-text:Table5
Ecologicalengineeringoption Cost(AU$;perm2) Benefit Infrastructure Location Reference
Tilewithcrevicesandridges $150 Biodiversity Coastaldefence SydneyHarbour Strainetal.(2018)
Flowerpots $300 Biodiversity Coastaldefence SydneyHarbour Browne&Chapman(2014)
Softropestructure Unknown Biodiversity Transport SydneyHarbour HairandBell(1992)
Integratingmusselsontopilings $120 Unknown Transport PlannedtrialforPortPhillipBay Notyettrialled
Seedingmusselsonartificialreefs $50(notincludingcostsofartificialreef) Unknown Coastaldefence PlannedtrialforPortPhillipBay Notyettrialled
Transplantingmussels/oysters $50 Improvedwaterquality Coastaldefence/Transport DerwentEstuary NA
Transplantingseaweeds Unknown Improvedwaterquality Coastaldefence/Transport DerwentEstuary Notyettrialled
Ethics
Thiswork complied with the National Statement on EthicalConduct in Human Research (2007). The study wasapproved by the Human Research Ethics CommitteeattheUniversity of New South Walesunder application
referenceH16175.
Acknowledgments
WethanktheTheIanPotter Foundation(grantgrant number NA), HardingMillerFoundation (grantgrant numberNA),TheNew South Wales Government Office of Science and Research(grantgrant number NA) an d
ResearchCoastalProcesses andResponsesNodeoftheNSWOfficeofEnvironment andHeritage Adaptation Hub (grantgrant number NA) for theirfinancialsupportfinancial support. Special thanks to Sarah Kienker,Chris
Seito,DominicMcAfeeandStephanieBagalafortheirhelpwiththefieldwork.ThisstudywaspartoftheWorldHarbourProject.
AppendixA.Supplementarydata
Supplementarydatatothisarticlecanbefoundonlineathttps://doi.org/10.1016/j.jenvman.2018.09.047.
Uncitedreference
VictorianStateGovernmentandEnvironment,2017.(Delete)
References
AiroldiL.,TuronX.,Perkol‐FinkelS.andRiusM.,Corridorsforaliensbutnotfornatives:effectsofmarineurbansprawlataregionalscale,
Divers.Distrib.
21,2015,755–768.
AlexanderK.A.,JanssenR.,ArciniegasG.,O'HigginsT.G.,EikelboomT.andWildingT.A.,Interactivemarinespatialplanning:sitingtidalenergyarraysaroundtheMullofKintyre,
PLoSOne
7,2012,e30031.
AmbrosiusJ.D.andGilderbloomJ.I.,Who'sgreener?Comparingurbanandsuburbanresidents'environmentalbehaviourandconcern,
LocalEnviron.
20,2015,836–849.
AswaniS.andLauerM.,Incorporatingfishermen'slocalknowledgeandbehaviorintogeographicalinformationsystems(GIS)fordesigningmarineprotectedareasinOceania,
HumanOrg.
65,2006,81–102.
BerenguerJ.,CorralizaJ.A.andMartínR.,Rural-urbandifferencesinenvironmentalconcern,attitudes,andactions,
Eur.J.Psychol.Assess.
21,2005,128.
BishopM.J.,Mayer-PintoM.,AiroldiL.,FirthL.B.,MorrisR.L.,LokeL.H.,HawkinsS.J.,NaylorL.A.,ColemanR.A.andCheeS.Y.,Effectsofoceansprawlonecologicalconnectivity:impactsandsolutions,
J.Exp.Mar.Biol.Ecol.
492,2017,7–30.
BlairJ.,CzajaR.F.andBlairE.A.,DesigningSurveys:aGuidetoDecisionsandProcedures,2013,SagePublications.
BloomD.E.,7billionandcounting,
Science
333,2011,562–569.
BrownG.andKyttäM.,KeyissuesandresearchprioritiesforpublicparticipationGIS(PPGIS):asynthesisbasedonempiricalresearch,
Appl.Geogr.
46,2014,122–136.
BrownG.andWeberD.,PublicParticipationGIS:anewmethodfornationalparkplanning,
Landsc.UrbanPlann.
102,2011,1–15.
BrownG.andWeberD.,MeasuringchangeinplacevaluesusingpublicparticipationGIS(PPGIS),
Appl.Geogr.
34,2012,316–324.(BrowneMA,ChapmanMG.Mitigatingagainstthelossofspeciesbyaddingartificial
intertidalpoolstoexistingseawalls.MarineEcologyProgressSeries.2014Feb5;497:119-29.)
ChapmanM.andUnderwoodA.,Evaluationofecologicalengineeringof“armoured”shorelinestoimprovetheirvalueashabitat,
J.Exp.Mar.Biol.Ecol.
400,2011,302–313.
CoenL.D.,BrumbaughR.D.,BushekD.,GrizzleR.,LuckenbachM.W.,PoseyM.H.,PowersS.P.andTolleyS.G.,Ecosystemservicesrelatedtooysterrestoration,
Mar.Ecol.Prog.Ser.
341,2007,303–307.
ConnellS.andGlasbyT.,Dourbanstructuresinfluencelocalabundanceanddiversityofsubtidalepibiota?AcasestudyfromSydneyHarbour,Australia,
Mar.Environ.Res.
47,1999,373–387.
DaffornK.A.,GlasbyT.M.,AiroldiL.,RiveroN.K.,Mayer-PintoM.andJohnstonE.L.,Marineurbanization:anecologicalframeworkfordesigningmultifunctionalartificialstructures,
Front.Ecol.Environ.
13,2015,82–90.
DaffornK.A.,GlasbyT.M.andJohnstonE.L.,Comparingtheinvasibilityofexperimental“reefs”withfieldobservationsofnaturalreefsandartificialstructures,
PLoSOne
7,2012,e38124.
DeRidderK.,AdamecV.,BañuelosA.,BruseM.,BürgerM.,DamsgaardO.,DufekJ.,HirschJ.,LefebreF.andPérez-LacorzanaJ.,Anintegratedmethodologytoassessthebenefitsofurbangreenspace,
Sci.TotalEnviron.
334,
2004,489–497.
DenisL.,AlliotE.andGrzebykD.,ClearancerateresponsesofMediterraneanmussels,Mytilusgalloprovincialis,tovariationsintheflow,watertemperature,foodqualityandquantity,
Aquat.LivingResour.
12,1999,
279–288.
DerkzenM.L.,vanTeeffelenA.J.andVerburgP.H.,Greeninfrastructureforurbanclimateadaptation:howdoresidents'viewsonclimateimpactsandgreeninfrastructureshapeadaptationpreferences?,
Landsc.Urban
Plann.
157,2017,106–130.
DerwentEstuaryProgram,StateoftheDerwent,Year2016ReportCard,2016,Hobart;Tasmania.
EasmanE.S.,AbernethyK.E.andGodleyB.J.,Assessingpublicawarenessofmarineenvironmentalthreatsandconservationefforts,
Mar.Pol.
87,2018,234–240.
EvansA.J.,GarrodB.,FirthL.B.,HawkinsS.J.,Morris-WebbE.S.,GoudgeH.andMooreP.J.,Stakeholderprioritiesformulti-functionalcoastaldefencedevelopmentsandstepstoeffectiveimplementation,
Mar.Pol.
75,2017,
143–155.
FariasD.,HurdC.,EriksenR.,SimioniC.,SchmidtE.,BouzonZ.andMacleodC.,InsituassessmentofUlvaaustralisasamonitoringandmanagementtoolformetalpollution,
J.Appl.Phycol.
29,2017,2489–2502.(FirthLB,
ThompsonRC,BohnK,AbbiatiM,AiroldiL,BoumaTJ,BozzedaF,CeccherelliVU,ColangeloMA,EvansA,FerrarioF.Betweenarockandahardplace:environmentalandengineeringconsiderationswhen
designingcoastaldefencestructures.CoastalEngineering.2014May1;87:122-35.)
FirthL.B.,KnightsA.M.,BridgerD.,EvansA.,MieskowskaN.,MooreP.J.,O'ConnorN.E.,SheehanE.V.,ThompsonR.C.andHawkinsS.J.,Oceansprawl:challengesandopportunitiesforbiodiversitymanagementinachanging
world,
Oceanogr.Mar.Biol.Annu.Rev.
54,2016,193–269.
FowlesA.E.,Stuart-SmithR.D.,HillN.A.,ThomsonR.J.,StrainE.M.,AlexanderT.J.,KirkpatrickJ.andEdgarG.J.,Interactiveresponsesofprimaryproducersandgrazerstopollutionontemperaterockyreefs,
Environ.Pollut.
237,2018,388–395.
FrancisR.A.andLorimerJ.,Urbanreconciliationecology:thepotentialoflivingroofsandwalls,
J.Environ.Manag.
92,2011,1429–1437.
GelcichS.,KaiserM.J.,CastillaJ.C.andEdwards-JonesG.,Engagementinco-managementofmarinebenthicresourcesinfluencesenvironmentalperceptionsofartisanalFishers,
Environ.Conserv.
35,2008,36–45.
GoddardM.A.,DougillA.J.andBentonT.G.,Scalingupfromgardens:biodiversityconservationinurbanenvironments,
TrendsEcol.Evol.
25,2010,90–98.
GrayJ.D.E.,O'NeillK.andQiuZ.,Coastalresidents'perceptionsofthefunctionofandrelationshipbetweenengineeredandnaturalinfrastructureforcoastalhazardmitigation,
OceanCoast.Manag.
146,2017,144–156.
HairC.andBellJ.,Effectsofenhancingpontoonsonabundanceoffish:initialexperimentsinestuaries,
Bull.Mar.Sci.
51,1992,30–36.
HalpernB.S.,WalbridgeS.,SelkoeK.A.,KappelC.V.,MicheliF.,D'agrosaC.,BrunoJ.F.,CaseyK.S.,EbertC.andFoxH.E.,Aglobalmapofhumanimpactonmarineecosystems,
Science
319,2008,948–952.
HeeryE.C.,BishopM.J.,CritchleyL.P.,BugnotA.B.,AiroldiL.,Mayer-PintoM.,SheehanE.V.,ColemanR.A.,LokeL.H.andJohnstonE.L.,Identifyingtheconsequencesofoceansprawlforsedimentaryhabitats,
J.Exp.Mar.Biol.
Ecol.
492,2017,31–48.
HewittC.,CampbellM.,ThresherR.andMartinR.,MarineBiologicalInvasionsofPortPhillipBay,1999,Victoria.CSIRO;Hobart,Tasmania.
HinkelJ.,LinckeD.,VafeidisA.T.,PerretteM.,NichollsR.J.,TolR.S.J.,MarzeionB.,FettweisX.,IonescuC.andLevermannA.,Coastalflooddamageandadaptationcostsunder21stcenturysea-levelrise,
Proceed.Natl.Acad.Sci.
U.S.A.
111,2014,3292–3297.
JanseG.andKonijnendijkC.C.,Communicationbetweenscience,policyandcitizensinpublicparticipationinurbanforestry—experiencesfromtheNeighbourhoodsproject,
UrbanFor.UrbanGreen.
6,2007,23–40.
JarvisR.M.,BreenB.B.,KrägelohC.U.andBillingtonD.R.,Citizenscienceandthepowerofpublicparticipationinmarinespatialplanning,
Mar.Pol.
57,2015,21–26.
KienkerS.E.,ColemanR.A.,MorrisR.L.,SteinbergP.,BollardB.,JarvisR.,AlexanderK.A.andStrainE.M.A.,Bringingharboursalive:assessingtheimportanceofeco-engineeredcoastalinfrastructurefordifferent
stakeholdersandcities,
Mar.Pol.
94,2018,238–246.
KittingerJ.N.andAyersA.L.,Shorelinearmoring,riskmanagement,andcoastalresilienceunderrisingseas,
Coast.Manag.
38,2010,634–653.
KlainS.C.andChanK.M.,Navigatingcoastalvalues:participatorymappingofecosystemservicesforspatialplanning,
Ecol.Econ.
82,2012,104–113.
LiT.H.,NgS.T.andSkitmoreM.,Conflictorconsensus:aninvestigationofstakeholderconcernsduringtheparticipationprocessofmajorinfrastructureandconstructionprojectsinHongKong,
HabitatInt.
36,2012,
333–342.
LingS.,DaveyA.,ReevesS.,GaylardS.,DaviesP.,Stuart-SmithR.andEdgarG.,Pollutionsignaturefortemperatereefbiodiversityisshortandsimple,
Mar.Pollut.Bull.
130,2018,159–169.
LockhartS.andRitzD.,Sizeselectivityandenergymaximisationoftheintroducedseastar,Asteriasamurensis(Ltitken),In:
Tasmania,Australia,PapersandProceedingsoftheRoyalSocietyofTasmania,
2001,35–40.
LutzW.andSamirK.,Dimensionsofglobalpopulationprojections:whatdoweknowaboutfuturepopulationtrendsandstructures?,
Phil.Trans.Biol.Sci.
365,2010,2779–2791.
MadureiraH.,NunesF.,OliveiraJ.V.,CormierL.andMadureiraT.,Urbanresidents'beliefsconcerninggreenspacebenefitsinfourcitiesinFranceandPortugal,
UrbanFor.UrbanGreen.
14,2015,56–64.
MadureiraH.,NunesF.,OliveiraJ.V.andMadureiraT.,Preferencesforurbangreenspacecharacteristics:acomparativestudyinthreePortuguesecities,
Environments
5,2018,23.
MartínezM.,IntralawanA.,VázquezG.,Pérez-MaqueoO.,SuttonP.andLandgraveR.,Thecoastsofourworld:ecological,economicandsocialimportance,
Ecol.Econ.
63,2007,254–272.
MarzinelliE.M.,UnderwoodA.J.andColemanR.A.,Modifiedhabitatsinfluencekelpepibiotaviadirectandindirecteffects,
PLoSOne
6,2011,e21936.
Mayer-PintoM.,JohnstonE.,HutchingsP.,MarzinelliE.,AhyongS.,BirchG.,BoothD.,CreeseR.,DoblinM.andFigueiraW.,SydneyHarbour:areviewofanthropogenicimpactsonthebiodiversityandecosystemfunctionof
oneoftheworld'slargestnaturalharbours,
Mar.Freshw.Res.
66,2015,1088–1105.(Mayer-PintoM,ColeVJ,JohnstonEL,BugnotA,HurstH,AiroldiL,GlasbyTM,DaffornKA.Functionalandstructuralresponses
tomarineurbanisation.EnvironmentalResearchLetters.2018Jan5;13(1):014009.)
McCayD.P.F.,PetersonC.H.,DeAlterisJ.T.andCatenaJ.,Restorationthattargetsfunctionasopposedtostructure:replacinglostbivalveproductionandfiltration,
Mar.Ecol.Prog.Ser.
264,2003,197–212.
McKinneyM.L.,Effectsofurbanizationonspeciesrichness:areviewofplantsandanimals,
UrbanEcosyst.
11,2008,161–176.
MitschW.J.,Whatisecologicalengineering?,
Ecol.Eng.
45,2012,5–12.
MorrisR.L.,DeavinG.,HemelrykDonaldS.andColemanR.A.,Eco-engineeringinurbanisedcoastalsystems:considerationofsocialvalues,
Ecol.Manag.Restor.
17,2016a,33–39.
MorrisR.L.,DeavinG.,HemelrykDonaldS.andColemanR.A.,Eco‐engineeringinurbanisedcoastalsystems:considerationofsocialvalues,
Ecol.Manag.Restor.
17,2016b,33–39.(Deleterepeatedreference)
MunschS.H.,CordellJ.R.andToftJ.D.,Effectsofshorelinearmouringandoverwaterstructuresoncoastalandestuarinefish:opportunitiesforhabitatimprovement,
J.Appl.Ecol.
54,2017,1–12.(PaalvastP,van
WesenbeeckBK,vanderVeldeG,deVriesMB.Poleandpontoonhulas:Aneffectivewayofecologicalengineeringtoincreaseproductivityandbiodiversityinthehard-substrateenvironmentoftheportof
Rotterdam.Ecologicalengineering.2012Jul1;44:199-209.)
Rabbette,S.,1992.Methodandapparatusforinhibitingbarnaclegrowthonboats.GooglePatents.
RaymondC.M.,BryanB.A.,MacDonaldD.H.,CastA.,StrathearnS.,GrandgirardA.andKalivasT.,Mappingcommunityvaluesfornaturalcapitalandecosystemservices,
Ecol.Econ.
68,2009,1301–1315.
RocaE.andVillaresM.,Publicperceptionsforevaluatingbeachqualityinurbanandsemi-naturalenvironments,
OceanCoast.Manag.
51,2008,314–329.
ScyphersS.B.,PowersS.P.,HeckK.L.,Jr.andByronD.,Oysterreefsasnaturalbreakwatersmitigateshorelinelossandfacilitatefisheries,
PLoSOne
6,2011,e22396.
SlettoB.I.,HaleC.R.,MiddletonB.R.,NygrenA.,RodríguezI.,SchroederR.,UlloaA.andSlettoB.I.,“WeDrewwhatWeImagined”participatorymapping,performance,andtheartsoflandscapemaking,
Curr.Anthropol.
50,
2009,443–476.
SmallC.andNichollsR.J.,Aglobalanalysisofhumansettlementincoastalzones,
J.CoastRes.
2003,584–599.
StrainE.,OlabarriaC.,Mayer‐PintoM.,CumboV.,MorrisR.L.,BugnotA.B.,DaffornK.A.,HeeryE.,FirthL.B.andBrooksP.,Eco‐engineeringurbaninfrastructureformarineandcoastalbiodiversity:whichinterventionshave
thegreatestecologicalbenefit?,
J.Appl.Ecol.
55,2018,426–441.(TemmermanS,MeireP,BoumaTJ,HermanPM,YsebaertT,DeVriendHJ.Ecosystem-basedcoastaldefenceinthefaceofglobalchange.Nature.
2013Dec;504(7478):79.)
TyrväinenL.,MäkinenK.andSchipperijnJ.,Toolsformappingsocialvaluesofurbanwoodlandsandothergreenareas,
Landsc.UrbanPlann.
79,2007,5–19.
VandenBergA.E.,HartigT.andStaatsH.,Preferencefornatureinurbanizedsocieties:stress,restoration,andthepursuitofsustainability,
J.Soc.Issues
63,2007,79–96.
VictorianStateGovernment:Environment,L.,WaterandPlanning,PortPhillipBayEnvironmentalManagementPlan2017-2027,2017,(Victoria).
WalmsleyD.J.andLewisG.J.,PeopleandEnvironment:BehaviouralApproachesinHumanGeography,2014,Routledge.
WarrenC.R.,LumsdenC.,O'DowdS.andBirnieR.V.,‘Greenongreen’:publicperceptionsofwindpowerinScotlandandIreland,
J.Environ.Plann.Manag.
48,2005,853–875.
YepsenM.,MoodyJ.andSchusterE.,AFrameworkforDevelopingMonitoringPlansforCoastalWetlandRestorationandLivingShorelineProjectsinNewJersey.ReportPreparedbytheNewJerseyMeasuresand
MonitoringWorkgroupoftheNJResilientCoastlinesInitiative,withSupportfromtheNOAANationalOceanicandAtmosphericAdministration(NOAA)CoastalResilience(CRest)GrantProgram
(NA14NOS4830006),2016.
AppendixA.Supplementarydata
ThefollowingistheSupplementarydatatothisarticle:
MultimediaComponent1
Multimediacomponent1
alt-text:Multimediacomponent1
Highlights
QueriesandAnswers
Query:Ofthetwosetofauthorgroupwithaffiliationswereprovided.Hence,weusedtheauthorgroupwithaffiliationsprovidedalongwith“Mapping_RevisedPDSMJB2RMKASS_spl_KAagain
_spl_MBagain”.Pleasecheck,andcorrectifnecessary.
Answer:Correct
Query:Pleasecheckwhetherthedesignatedcorrespondingauthoriscorrect,andamendifnecessary.
Answer:Correct
Query:Pleasechecktheaddressforthecorrespondingauthorthathasbeenaddedhere,andcorrectifnecessary.
Answer:Correct
Query:Thecitations“Mayer-Pintoetal.,2017;Firthetal.2014;Strainetal.2017;Strain,Morrisetal.(2017)”havebeenchangedtomatchtheauthorname/yearinthereferencelist.Pleasecheck
hereandinsubsequentoccurrences.
Answer:CitationshavebeencorrectedtoMayer-Pintoetal.,2018andFirthetal.,2014
Query:Pleasenotethat“Fig.5”wasnotcitedinthetext.Pleasecheckthatthecitationsuggestedbythecopyeditorareintheappropriateplace,andcorrectifnecessary.
Answer:Citationscorrected.Fig.5shouldbemovedafterTable4
Query:Refs.Browne&Chapman2014;Meireetal.,2013;Morris,Konlechneretal.,2018;Paalvastetal.,2012arecitedinthetextbutnotprovidedinthereferencelist.Pleaseprovidetheminthe
referencelistordeletethiscitationfromthetext.
Answer:BrowneMA,ChapmanMG.Mitigatingagainstthelossofspeciesbyaddingartificialintertidalpoolstoexistingseawalls.MarineEcologyProgressSeries.2014Feb5;497:119-29.Temmerman
S,MeireP,BoumaTJ,HermanPM,YsebaertT,DeVriendHJ.Ecosystem-basedcoastaldefenceinthefaceofglobalchange.Nature.2013Dec;504(7478):79.PaalvastP,vanWesenbeeckBK,vander
VeldeG,deVriesMB.Poleandpontoonhulas:Aneffectivewayofecologicalengineeringtoincreaseproductivityandbiodiversityinthehard-substrateenvironmentoftheportofRotterdam.Ecological
engineering.2012Jul1;44:199-209.
Query:Havewecorrectlyinterpretedthefollowingfundingsource(s)andcountrynamesyoucitedinyourarticle:IanPotterFoundation,Australia?
Answer:Correct
Query:Uncitedreference:Thissectioncomprisesreferencethatoccurinthereferencelistbutnotinthebodyofthetext.Pleasepositioneachreferenceinthetextor,alternatively,deleteit.Any
referencenotdealtwithwillberetainedinthissection.Thankyou.
Answer:Thereferenceiscitedinthesupplementarysection.
Query:Pleaseconfirmthatgivennamesandsurnameshavebeenidentifiedcorrectlyandarepresentedinthedesiredorderandpleasecarefullyverifythespellingofallauthors’names.
Answer:Correct
•Marineecologicalengineeringprojectsrequiregreaterconsiderationofsocialvalues.
•Mostusers(>70%)aresupportiveofecologicalengineering.
•Boatinginfrastructureinbusytransporthubsarekeyprioritiesforecologicalengineering.
•ResidentsinSydneyandMelbournefocusedonimprovingbiodiversity.
•ResidentsinHobartweremoreconcernedaboutremediatingpollution.
Query:Yourarticleisregisteredasaregularitemandisbeingprocessedforinclusioninaregularissueofthejournal.IfthisisNOTcorrectandyourarticlebelongstoaSpecialIssue/Collectionplease
contactp.sivakumar@elsevier.comimmediatelypriortoreturningyourcorrections.
Answer:Correct