Article

The challenging application of cosmogenic dating methods in residual glacial landforms: The case of Sierra Nevada (Spain)

Authors:
To read the full-text of this research, you can request a copy directly from the authors.

Abstract

An accurate review of the literature on surface exposure dating methods shows evidence of the difficulty in applying cosmogenic dating methods to old moraines because of the intensity of late Quaternary erosion processes. Moreover, as in some previous cases, we also found special difficulties in applying these methods to LIA moraines, caused by the intensity of current paraglacial processes. The objective of this study is to apply cosmogenic dating methods to very old and very young moraines, which in both cases have been or are being affected intensively by erosion. With this purpose, we collected samples of boulders from moraines corresponding to (i) the penultimate glaciation and (ii) the Little Ice Age (LIA), both from Sierra Nevada in the south of the Iberian Peninsula. The sampling strategy was based on a preliminary accurate analysis of the geomorphological settings of two valley sites that resulted in the collection of only four boulder samples from an old moraine and three more from a very recent moraine. Using in situ-produced cosmogenic 10Be to date these boulders, the old samples yielded an age of ca. 130-135 ka for moraine stabilization. The younger samples indicate that the LIA moraine accretion probably occurred between the fourteenth and seventeenth centuries, with a subsequent stage of accumulation during the nineteenth century as suggested by historical documents. Dating a glaciation that occurred prior to the last Pleistocene glacial cycle and dating LIA glacial stages are novel in the context of Iberian glaciations and agree with other palaeoenvironmental studies in Iberian and in other European mountains. The limited number of boulders adequate for cosmic-ray exposure dating prevents statistical methods to be applied, and therefore highlights the need to improve geomorphological criteria in sample selection.

No full-text available

Request Full-text Paper PDF

To read the full-text of this research,
you can request a copy directly from the authors.

... The chronology of the MIE of the Last Glacial Cycle shows an asynchronous pattern with respect to other Iberian mountains, with the MIE occurring at ca. 30 36 Cl ka (Gómez-Ortiz et al., 2012a;Palacios et al., 2016). A second maximum glacial expansion occurred at 19-20 ka, with the construction of moraines close to the location of the MIE outermost moraines (Palacios et al, 2019). This stage has been dated at ca. 19.6 36 Cl ka (at 1975 m, on the north slope) and ca. ...
... Recently, the first attempt to date LIA moraines by CRE in the Iberian Peninsula provided new absolute ages for the moraines existing in the Veleta cirque. CRE 10 Be ages suggest that the outermost moraine ridge formed during the early 14th century, whereas the innermost ridge developed during the 17th century (Palacios et al., 2019). These ages correspond, respectively, to the onset and the coldest climate conditions of the LIA reconstructed for Iberian mountains . ...
... Another factor that needs to be considered in order to interpret the geography of past glaciations is the long time passed since the oldest glaciations. Intense postglacial erosive processes may have significantly degraded moraines or removed the sedimentary evidence entirely (Palacios et al., 2019). This may explain the absence of glacial features corresponding to certain stages in some massifs. ...
Article
The only glaciers existing today in the Iberian Peninsula are small features located in the Pyrenees, though their number and extension has undergone significant changes over the Late Quaternary. The wide range of glacial landforms and deposits distributed across different Iberian ranges suggests the occurrence of several past periods with larger glacial systems. The objective of this research is to summarize the current knowledge on the spatial and temporal patterns of glacial activity in the Iberian mountains during the Late Quaternary. To this purpose, the chronological framework was divided in six periods: glaciations prior to the Last Glacial Cycle (Middle Pleistocene), Last Glacial Cycle (Late Pleistocene), Termination-1, Holocene, Little Ice Age (LIA) and present-day. The data were geographically divided considering the mountain systems where glacial evidence exists: Pyrenees, Cantabrian Range, NW ranges, Central Range, Iberian Range and Sierra Nevada. During Quaternary cold stages, ice accumulated in the head valleys of these mountain ranges and glaciers flowed down-valleys. In all cases, glaciers remained confined within the mountain systems and did not reach the surrounding lowlands. Depending on the combination of temperatures and moisture conditions, more or less ice was stored. In some ranges, there is evidence of Middle Pleistocene glaciations, one potentially correlating with marine isotope stage (MIS) 12 and another correlating with MIS 6 with glaciation dated to ca. 130-170 ka. However, most of the glacial records correspond to the Last Glacial Cycle and subsequent Termination. The maximum glacial expansion of this last Pleistocene glaciation stage occurred well before the global Last Glacial Maximum (LGM) between 30 and 60 ka in the Cantabrian Mountains and Pyrenees, at ca. 30 ka in Sierra Nevada and NW ranges, and (almost) synchronously to the LGM in the Central Range and Iberian Range. A massive glacial retreat occurred in all ranges at 19-20 ka, but the long-term deglaciation process was interrupted by cold intervals, such as the Oldest and Younger Dryas, which favoured glacial expansion in the highest mountains. Temperature increase recorded during the Holocene conditioned the melting of glaciers, which only reappeared in the highest massifs during the coldest periods, such as the LIA. However, post-LIA warming led to glacier disappearance in the Cantabrian Mountains, Sierra Nevada and most massifs of the Pyrenees, together with an accelerated shrinkage of the small glaciers still existing in this range at elevations near 3000 m.
... Vidal-Romaní and Fernández-Mosquera (2006), Vidal-Romaní et al. (2015) applied CRE ( 21 N) dating in two ranges of the NW of the Peninsula: in the Sierra de Queixa, a maximum advance was dated at 155 ± 30 ka, and in the Serra de Gerês/Xurez, polished bedrock outcrops were dated at 231 ± 48 ka and 131 ± 31 ka. Palacios et al. (2019) applied CRE ( 10 Be) dating to the most external moraine boulders in the Mulhacen valley (Sierra Nevada) and obtained ages of 134.8 ± 10 ka and 129.2 ± 8.9 ka. ...
... Vidal-Romaní and Fernández-Mosquera (2006), Vidal-Romaní et al. (2015) applied CRE ( 21 N) dating in two ranges of the NW of the Peninsula: in the Sierra de Queixa, a maximum advance was dated at 155 ± 30 ka, and in the Serra de Gerês/Xurez, polished bedrock outcrops were dated at 231 ± 48 ka and 131 ± 31 ka. Palacios et al. (2019) applied CRE ( 10 Be) dating to the most external moraine boulders in the Mulhacen valley (Sierra Nevada) and obtained ages of 134.8 ± 10 ka and 129.2 ± 8.9 ka. ...
Article
Full-text available
The objective of this work is to present a first assessment on the age of the glacial features of the Serra da Estrela, in the central Portugal, Iberian Peninsula (40°19′ N, 7°37′ W, 1993 m), using Cosmic-Ray Exposure dating (in situ cosmogenic ³⁶Cl). A total of 6 samples were dated, 4 extracted from exposed moraine boulders and 2 from glacially polished bedrock surfaces. Despite the low number of samples, the results are consistent, reinforcing previous dating obtained by other methods and geomorphological and paleoclimatic information. The maximum extension of the glaciers occurred at the end of the Penultimate Glacial Cycle (Marine Isotope Stage 6), during Heinrich Stadial 11, around 140 ka. At the end of the Last Glacial Cycle, slightly before the Last Glacial Maximum, at around 30 ka, the Estrela glaciers reached again a similar extent. Finally, the glaciers disappeared from the Serra da Estrela at the beginning of the Bølling-Allerød Interstadial, at around 14.2 ka. These data confirm a certain synchronicity in the major glacial phases in most the Mediterranean and also European mountains, although there are notable differences in the maximum extent in the two cycles.
... According to 10 Be cosmogenic dates, sedimentary and erosive records show ages of glacial phases ranging from 135 ka to 300 years. 26 This indicates the occurrence of glacial activity since phases prior to the Last Glaciation up until the LIA, when those summits intensely affected by periglacial processes included small glaciers in sheltered areas of the highest glacial cirques, in some of which remnants of ice still persist under a thick debris cover. 18 According to historical documents, the lower limit of the periglacial processes in the mid-19th century was probably located at around 2435 m, ca. ...
Article
Full-text available
Outside the Alps, the Sierra Nevada is probably the best studied European massif with respect to its past and current environmental dynamics. A multi‐approach research program started in the early 2000s focused on the monitoring of frozen ground conditions in this National Park. Here, we present data on the thermal state and distribution of permafrost and seasonal frozen ground in different sites across the highest areas of the massif. New results confirm the absence of widespread permafrost conditions, with seasonal frost prevailing above 2500 m. Small permafrost patches have been only detected in glaciated areas of the Veleta and Mulhacén cirques during the Little Ice Age at elevations of 3000–3100 m. The remnants of those glaciers are still preserved under the thick debris layer covering the cirque floors. Geomatic and geophysical surveying of a rock glacier existing in the Veleta cirque, together with the monitoring of soil temperature at different depths, have revealed permanently frozen conditions undergoing a process of degradation. In the rest of the massif, a seasonal frost regime prevails, even at the highest plateaus at 3300–3400 m, where annual soil temperatures average 2.5°C. The monitoring of soil temperatures in other different periglacial features has also revealed positive average values ranging between 2°C (inactive sorted‐circles) and 3–4°C (inactive and weakly active solifluction lobes). Consequently, we conclude that the present‐day climatic regime does not allow the existence of permafrost in the Sierra Nevada, and environmental dynamics is controlled by the intensity and duration of seasonal frost in the ground.
Article
Full-text available
Throughout the last cold stage, the North Atlantic region was punctuated by abrupt climate shifts and atmospheric processes propagated their effects to adjacent continents. During Heinrich Stadials, the ocean was chilled by icebergs calved from the great ice sheets. The impact of multiple temperature and precipitation regime changes on Late Pleistocene mountain glaciers and landscape development is poorly understood. Here we analyse 1,118 cosmogenic exposure ages—spanning the last 100,000 years—from glacial landforms on three continents across the Mediterranean. We evaluate their geomorphological context and stratify the record by depositional setting and geographical region. The database includes 300 dated moraines. We show that, despite cold temperatures, Heinrich Stadial aridity caused negative glacier mass balance and repeatedly stalled glacier growth across the Mediterranean. In contrast, relatively warm and humid climates between Heinrich Stadials favoured positive glacier mass balance, resulting in region-wide glacier growth and moraine formation. Our analysis supports climate model simulations of repeated and widespread Heinrich Stadial aridity in the Mediterranean basin during the last cold stage. Heinrich Stadials also saw enhanced supply of coarse debris from valley sides. The cumulative geomorphological impact of these climate shifts saw the largest moraines form at the culmination of the glacial cycle.
Article
Full-text available
Although several types of glacial landforms and deposits were described from different parts of the Croatian Dinarides, up to date there are no quantitative glacial chronological data. Here we present the first cosmogenic 36Cl glacial chronology from the Southern Velebit Mt. from a moraine complex known as the Rujanska Kosa. We sampled four limestone boulders and used 20 mm ka−1 erosion corrected ages, as the study area is composed of well-karstified carbonate deposits and located in one of the highest precipitation regions of Europe. The inner Rujanska Kosa ridge yielded an age of 20.7 ± 2.2 ka for the retreat of glaciers in that part of Velebit Mt. A slightly older age was measured from the outer ridge on the left-lateral part of the Rujanska Kosa, which dates back to 22.7 ± 2.7 ka ago. Whilst the ages between inner and outer ridges overlap within error, we can place an age difference between the two moraines to be between 0 and 6.9 ka, supported by the geomorphic evidence that the latter is older. Although we could not perform any geomorphological work higher up in the Rujno paleo-ice field due to the remnant minefields, our results may indicate a Late Pleistocene (i.e. la st glacial maximum) retreat of ice from the Southern Velebit Mt. Despite the small number of valid samples, acquired age data on glacial landforms in Southern Velebit Mt. are in accordance with ages from several other Mediterranean mountain ranges.
Article
Full-text available
Mountain glaciers at ~26–19 ka, during the global Last Glacial Maximum near the end of the last 10^5 yr glacial cycle, are commonly considered on the basis of dating and field mapping in several well-studied areas to have been the largest of the late Quaternary and to have advanced synchronously from region to region. However, a numerical sensitivity model (Rupper and Roe, 2008) predicts that the fraction of ablation due to melting varies across Central Asia in proportion to the annual precipitation. The equilibrium-line altitude of glaciers across this region likely varies accordingly: in high altitude, cold and arid regions sublimation can ablate most of the ice, whereas glaciers fed by high precipitation cannot ablate completely due to sublimation alone, but extend downhill until higher temperatures there cause them to melt. We have conducted field studies and 10Be dating at five glaciated sites along a precipitation gradient in Mongolia to test the Rupper/Roe model. The sites are located in nearby 1.875 × 1.875° cells of the Rupper/Roe model, each with a different melt fraction, in this little-studied region. The modern environment of the sites ranges from dry subhumid in the north (47.7° N) to arid in the south (45° N). Our findings show that the maximum local advances in the dry subhumid conditions predated the global Last Glacial Maximum and were likely from MIS 3. However, we also found that at ~8–7 ka a cirque glacier in one mountain range of the arid Gobi desert grew to a magnitude comparable to that of the local maximum extent. This Holocene maximum occurred during a regional pluvial period thousands of years after the retreat of the Pleistocene glaciers globally. This asynchronous behavior is not predicted by the prevailing and generally correct presumption that glacier advances are dominantly driven by tempera- ture, although precipitation also plays a role. Our findings are consistent with and support the Rupper/ Roe model, which calls for glaciation in arid conditions only at high altitudes of sub-freezing temperatures, where the melt fraction in ablation is low. We expect a heterogeneous pattern of glacial responses to a changing modern climate in cold arid regions; an individual glacier advance should not be necessarily interpreted as evidence of cooling climate.
Article
Full-text available
Historical documents have shown their potential to infer the origin and evolution of the glacier existing in the Veleta cirque, in the massif of Sierra Nevada (Spain). This information encompasses written sources spanning from the 17th to the mid-20th centuries, and provides valuable knowledge about the Little Ice Age. These new data complement the already existing geomorphological knowledge about the natural system and landscape evolution in Sierra Nevada, particularly with regards to glacial geomorphic events in the summit areas. From a transdisciplinary methodological approach, the results show that the Veleta glacier was a singular geomorphic event that owed its existence to the particular environmental conditions of the high lands of Sierra Nevada, besides the favourable morpho-topographical setting, altitude, aspect as well as microclimate conditions prevailing in this area.
Article
Full-text available
Glaciers were common across the Mediterranean mountains during the Little Ice Age. In parts of Turkey some glaciers were several kilometres longer than they are today, whilst in the Pyrenees glaciers were up to several hundred metres longer. In the wettest Mediterranean mountains, such as the Dinaric Alps, many small glaciers and perennial snow patches would have been present. Even in driest and most southerly mountains, such as the High Atlas, small glaciers and perennial snowfields were present. This paper examines the evidence from these two contrasting regions (the western and southern Balkans and the High Atlas) and the climatic significance of glaciers in these areas during the Little Ice Age. Particular focus is given on the climatological controls on glacier mass balance in different climatic conditions. Glaciers in cold and dry climates exhibit different sensitivity to regional climate change compared with glaciers in cold and wet climates. In addition, the factors controlling ablation of glaciers in different climatic regimes can differ considerably, especially the relative contributions and effects of melting and sublimation. All Mediterranean mountain glaciers were strongly controlled by local topoclimatic factors. Avalanche-fed glaciers have proven to be the most resilient to climate change and dramatically increased accumulation from avalanching snow explains the surviving glaciers in the Dinaric Alps and the semi-perennial snow fields of the High Atlas. In addition, geology as well as landscape morphology inherited from Pleistocene glaciations plays a role in explaining the patterns of Little Ice Age glacier distribution and especially the patterns of retreat and survival of these glaciers. The resilience of some of the last remaining Mediterranean glaciers, in the face of warming climate, presents a contradiction and comparisons between glaciers gone and those that remain provides important insight into the future of similar glaciers globally.
Article
Full-text available
Similar to many other regions in the world, glaciers in the southern sub-polar regions are currently retreating. In the Kerguelen Islands (49°S, 69°E), the mass balance of the Cook Ice Cap (CIC), the largest ice cap in this region, experienced dramatic shrinking between 1960 and 2013 with retreat rates among the highest in the world. This observation needs to be evaluated in a long-term context. However, data on the past glacier extents are sparse in the sub-Antarctic regions. To investigate the deglaciation pattern since the Last Glacial Maximum (LGM) period, we present the first 13 cosmogenic ³⁶Cl surface exposure ages from four sites in the Kerguelen Islands. The ³⁶Cl ages from erratic and moraine boulders span from 24.4 ± 2.7 ka to 0.3 ± 0.1 ka. We combined these ages with existing glacio-marine radiocarbon ages and bathymetric data to document the temporal and spatial changes of the island's glacial history. Ice began to retreat on the main island before 24.4 ± 2.7 ka until around the time of the Antarctic Cold Reversal (ACR) period (∼14.5–12.9 ka), during which the Bontemps moraine was formed by the advance of a CIC outlet glacier. Deglaciation continued during the Holocene probably until 3 ka with evidence of minor advances during the last millennium. This chronology is in pace with major changes in δ¹⁸O in a recent West Antarctica ice core record, showing that Kerguelen Islands glaciers are particularly sensitive and relevant to document climate change in the southern polar regions.
Article
Full-text available
The timing and extent of ‘Little Ice Age’ (LIA) glacial advances on the Tibetan Plateau (TP) are critical for understanding climate during the past millennium. However, the lack of LIA chronologies in central Tibet makes it difficult to fully understand the nature of LIA throughout the TP. In this study, two presumed LIA moraines in the east of Mount Jaggang, Xainza range, the central TP, were examined and dated using ¹⁰Be surface exposure dating. Eight boulders from the two moraines yielded apparent ¹⁰Be exposure-ages ranging from 41 ± 31 to 529 ± 130 years. These ¹⁰Be exposure-ages indicate that glaciers advanced at least once in the Mount Jaggang area during the LIA. A relatively extensive glacial advance occurred around 267 ± 36 years, a relatively humid period as indicated by proxy data from lake sediments in the central TP. A glacial standstill might have occurred around 151 ± 36 years. The two LIA glacial events are comparable with those across the TP. However, much more efforts should be made on dating of LIA moraines in the Mount Jaggang area to elucidate the relationships between glacial advances and climate changes during the LIA.
Article
Full-text available
In the Northern Hemisphere, most mountain glaciers experienced their largest extent in the last millennium during the Little Ice Age (1450 to 1850 CE, LIA), a period marked by colder hemispheric temperatures than the Medieval Climate Anomaly (950 to 1250 CE, MCA), a period which coincided with glacier retreat. Here, we present a new moraine chronology based on ³⁶Cl surface exposure dating from Lyngmarksbræen glacier, West Greenland. Consistent with other glaciers in the western Arctic, Lyngmarksbræen glacier experienced several advances during the last millennium, the first one at the end of the MCA, in ~1200 CE, was of similar amplitude to two other advances during the LIA. In the absence of any significant changes in accumulation records from South Greenland ice cores, we attribute this expansion to multi-decadal summer cooling likely driven by volcanic and/or solar forcing, and associated regional sea-ice feedbacks. Such regional multi-decadal cold conditions at the end of the MCA are neither resolved in temperature reconstructions from other parts of the Northern Hemisphere, nor captured in last millennium climate simulations.
Article
Full-text available
In this study we quantify the evaposublimation and the energy balance of the seasonal snowpack in the Mediterranean semiarid region of Sierra Nevada, Spain (37° N). In these kinds of regions, the incidence of this return of water to the atmosphere is particularly significant to the hydrology and water availability. The analysis of the evaposublimation from snow allows us to deduct the losses of water expected in the short and medium term, and is critical for the efficient planning of this basic and scarce resource. To achieve this, we performed 15 test field campaigns from 2009 to 2015, during which detailed measurements of mass fluxes of a controlled volume of snow were recorded using a modified version of an evaporation pan with lysimeter. Meteorological data at the site of the snow control volume was extensively monitored during the tests. With these data, a point energy balance snowmelt model was validated for the area. This model, fed with the complete meteorological dataset available at the Refugio Poqueira Station (2500 m a.s.l.), let us estimate that evaposublimation losses for this site can range from 24 to 33 % of total annual ablation. This ratio is changeable throughout the year and between years, depending on the particular combination and timing of the meteorological inputs, generally unforeseeable in this semiarid region. Evaposublimation proceeds at maximum rates of up to 0.49 mm h−1, an order of magnitude less than maximum melt rates. However, evaposublimation occurs during 60 % of the time that snow lies, while snowmelt only takes up 10 % of this time. Hence, both processes remain close in magnitude on the annual scale.
Article
Full-text available
The Last Interglacial (LIG) represents an invaluable case study to investigate the response of components of the Earth system to global warming. However, the scarcity of absolute age constraints in most archives leads to extensive use of various stratigraphic alignments to different reference chronologies. This feature sets limitations to the accuracy of the stratigraphic assignment of the climatic sequence of events across the globe during the LIG. Here, we review the strengths and limitations of the methods that are commonly used to date or develop chronologies in various climatic archives for the time span (∼140–100 ka) encompassing the penultimate deglaciation, the LIG and the glacial inception. Climatic hypotheses underlying record alignment strategies and the interpretation of tracers are explicitly described. Quantitative estimates of the associated absolute and relative age uncertainties are provided. Recommendations are subsequently formulated on how best to define absolute and relative chronologies. Future climato-stratigraphic alignments should provide (1) a clear statement of climate hypotheses involved, (2) a detailed understanding of environmental parameters controlling selected tracers and (3) a careful evaluation of the synchronicity of aligned paleoclimatic records. We underscore the need to (1) systematically report quantitative estimates of relative and absolute age uncertainties, (2) assess the coherence of chronologies when comparing different records, and (3) integrate these uncertainties in paleoclimatic interpretations and comparisons with climate simulations. Finally, we provide a sequence of major climatic events with associated age uncertainties for the period 140–105 ka, which should serve as a new benchmark to disentangle mechanisms of the Earth system's response to orbital forcing and evaluate transient climate simulations.
Article
Full-text available
To reconstruct the timing of Alpine glacier advances onto the Jura Mountains, we sampled 17 Alpine erratic boulders within and beyond the LGM (Last Glacial Maximum) extent of the Valais Glacier along three transect for the analysis of cosmogenic 10Be. Our results indicate at least two advances into the study area in Northwestern Switzerland; one during the LGM and one beforehand. Reaching of the maximum extent of by the Valais Glacier into the Jura mountains during the LGM occurred at 21.9 ± 1.8 ka based on erratic boulders exposure ages. Ages of boulders located beyond the LGM extent of the Valais Glacier vary from 19.9 ± 1.6 to 144.0 ± 9.6 ka. These ages indicate that many of the boulders were displaced and re-deposited by local ice in the Jura Mountains both during and perhaps even prior to the LGM. Therefore, the chronology of the pre-LGM advance(s) of Alpine glaciers into the Jura Mountains remains still to be elaborated.
Article
Full-text available
This paper reviews data currently available on the glacial fluctuations that occurred in the Pyrenees between the Würmian Maximum Ice Extent (MIE) and the beginning of the Holocene. It puts the studies published since the end of the 19th century in a historical perspective and focuses on how the methods of investigation used by successive generations of authors led them to paleogeographic and chronologic conclusions that for a time were antagonistic and later became complementary. The inventory and mapping of the ice-marginal deposits has allowed several glacial stades to be identified, and the successive ice boundaries to be outlined. Meanwhile, the weathering grade of moraines and glaciofluvial deposits has allowed Würmian glacial deposits to be distinguished from pre-Würmian ones, and has thus allowed the Würmian Maximum Ice Extent (MIE) –i.e. the starting point of the last deglaciation– to be clearly located. During the 1980s, 14C dating of glaciolacustrine sequences began to indirectly document the timing of the glacial stades responsible for the adjacent frontal or lateral moraines. Over the last decade, in situ-produced cosmogenic nuclides (10Be and 36Cl) have been documenting the deglaciation process more directly because the data are obtained from glacial landforms or deposits such as boulders embedded in frontal or lateral moraines, or ice-polished rock surfaces. On that basis, it is now accepted that (i) the Würmian MIE occurred in the Pyrenees during MIS 4 and not the Global LGM; and that (ii) a major glacial readvance took place during the Global LGM. This ice readvance reached a position close to the MIS 4 icefield boundary in the Eastern part of the range, but apparently not in the west. (iii) Soon after the Global LGM, the Pyrenean ice margin went into major and rapid recession. Even before the beginning of the Lateglacial, the main trunk glaciers had already retreated to the upper parts of the valleys. (iv) The paleogeography of the Pyrenean icefield during the Last Glacial-Interglacial Transition (LGIT) is still partially unknown but all available data indicate that glaciers during the Oldest Dryas (GS-2a) were substantially smaller than during the Global LGM. During the Bølling-Allerød interstadial, the Pyrenean ice margins retreated substantially, and glaciers locally vanished definitively. The Younger Dryas cooling event generated either a short readvance of existing cirque glaciers or the development of rock glaciers.
Article
Full-text available
The large number of studies of Sierra Nevada’s environmental history since the Last Pleistocene glacial period makes it one of the most intensively analysed massifs in the Iberian Peninsula. The early geomorphological descriptions have been complemented in recent decades with absolute dating techniques that have allocated in time the sequence of environmental events occurred in Sierra Nevada during the last millennia. The maximum expansion of the glaciers during the Last Glaciation took place around 30-32 ka, with a subsequent re-advance by 19-20 ka. The process of deglaciation was very fast, and around 14-15 ka the ice had almost completely retreated from the massif. Since then, with greater or less intensity and extent, periglacial processes have driven the environmental change in the massif. The coldest and wettest phases during the Holocene have favoured the development of small glaciers in the highest northern cirques. The last of these phases was the Little Ice Age, where abundant historical sources and sedimentary records exist. During the mid XX century the last glaciers melted, resulting in the complete deglaciation of the massif.
Article
Full-text available
Understanding the sequence of events that take place during glacial-interglacial climate transitions is important for improving our knowledge of abrupt climate change. Here, we present a new stacked, high-resolution, precisely-dated speleothem stable isotope record from the northern Alps, which provides an important record of temperature and moisture-source changes between 134 and 111 ka for Europe and the wider North Atlantic realm. The record encompasses the penultimate deglaciation (Termination II (TII)), which lies beyond the limit of radiocarbon dating, thus providing an important new archive for a crucial period of rapid paleoclimate change. Warmer and wetter ice-free conditions were achieved by 134.1 ± 0.7 ka (modelled ages) as indicated by the presence of liquid water at the site. Temperatures warmed further at 133.7 ± 0.5 ka and led into an interstadial, synchronous with slightly elevated monsoon strength during the week monsoon interval. The interstadial experienced an unstable climate with a trough in temperature associated with a slowdown in Atlantic Meridional Overturning Circulation (AMOC) and a reduction in North Atlantic Deep Water (NADW) formation. The interstadial ended with a more extreme cold reversal lasting 500 years in which NADW formation remained active but the subpolar gyre weakened allowing cool polar waters to penetrate southwards. The main warming associated with TII was very rapid, taking place between 130.9 ± 0.9 and 130.7 ± 0.9 ka coeval with initial monsoon strengthening. Temperatures then plateaued before being interrupted by a 600-year cold event at 129.1 ± 0.6 ka, associated once again with penetration of polar waters southwards into the North Atlantic and a slowdown in monsoon strengthening. Sub-orbital climate oscillations were thus a feature of TII in the north Atlantic realm, which broadly resemble the Bølling/Allerød-Younger Dryas-8.2 ka event pattern of change observed in Termination I despite monsoon records indicating strong differences between the last and penultimate deglaciation.
Article
Full-text available
Basing on Uranium-Series datings, performed on calcite crystals included within moraine deposits, an ancient glaciation phase which affected the Campo Imperatore depression (Gran Sasso Massif) has been referred to the late-middle Pleistocene (Riss Auct.). As testified by the occurrence and distribution of erratics and moraines, this glaciation («Piano Racollo Glaciation») was significantly wider than the Upper Pleistocene (Würm) one («Coppe di Santo Stefano Glaciation»), whose landforms and deposits are much more evident in the area.
Article
Full-text available
The Serras of Queixa-Invernadoiro and Gerês-Xurés in the NW of the Iberian Peninsula are two small mountain massifs located at low altitude that were glaciated in the Pleistocene. The prevailing granitic lithology was a problem for mapping glacial forms (in many cases interpreted as banal granite forms) and for the identification of the tills (misunderstood as remains of regolith). A combination of geomorphological techniques (genetic mapping of granite forms and deposits), the micromorphological study of till thin sections and the morphoscopy of quartz grains at the SEM enabled to establish a model of the geomorphological evolution complemented with the chronology by cosmogenic nuclides (21Ne and 10Be) of both glacial systems. The obtained results represent the glacial evolution of the area from circa 250 ka B.P.
Article
The relatively warm climate conditions prevailing today in the Mediterranean region limit cold geomorphological processes only to the highest mountain environments. However, climate variability during the Late Pleistocene and Holocene has led to significant spatio-temporal variations of the glacial and periglacial domain in these mountains, including permafrost conditions. Here, we examine the distribution and evolution of permafrost in the Mediterranean region considering five time periods: Last Glaciation, deglaciation, Holocene, Little Ice Age (LIA) and present-day. The distribution of inactive permafrost-derived features as well as sedimentary records indicates that the elevation limit of permafrost during the Last Glaciation was between 1000 m and even 2000 m lower than present. Permafrost was also widespread in non-glaciated slopes above the snowline forming rock glaciers and block streams, as well as meter-sized stone circles in relatively flat summit areas. As in most of the Northern Hemisphere, the onset of deglaciation in the Mediterranean region started around 19-20 ka. The ice-free terrain left by retreating glaciers was subject to paraglacial activity and intense periglacial processes under permafrost conditions. Many rock glaciers, protalus lobes and block streams formed in these recently deglaciated environments, though most of them became gradually inactive as temperatures kept rising, especially those at lower altitudes. Following the Younger Dryas glacial advance, the Early Holocene saw the last massive deglaciation in Mediterranean mountains accompanied by a progressive shift of permafrost conditions to higher elevations. It is unlikely that air temperatures recorded in Mediterranean mountains during the Holocene favoured the existence of widespread permafrost regimes, with the only exception of the highest massifs exceeding 2500-3000 m. LIA colder climate promoted a minor glacial advance and the spatial expansion of permafrost, with the development of new protalus lobes and rock glaciers in the highest massifs. Finally, post-LIA warming has led to glacial retreat/disappearance, enhanced paraglacial activity, shift of periglacial processes to higher elevations, degradation of alpine permafrost along with geoecological changes.
Article
In this study, we present a new glacial chronology based on 20 in situ-produced 36Cl-based cosmic ray exposure datings from moraine boulders and bedrock from the Throne of Zeus (TZ) and Megala Kazania (MK) cirques on Mount Olympus. The 36Cl derived ages of glacial landforms range from 15.6 ± 2.0 to 0.64 ± 0.08 ka, spanning the Late-glacial and the Holocene. The Late-glacial, recorded in both cirques, is partitioned in three distinct phases (LG1-3): an initial phase of moraine stabilization at 15.5 ± 2.0 ka with subsequent deglaciation starting at ∼14 ka (LG1), followed by a shift to marginal conditions for glaciation at 13.5 ± 2.0 ka (LG2), sustained by large amounts of wind-blown snow, despite regional warming. Glacial conditions returned at 12.5 ± 1.5 ka (LG3) and were characterized by low air temperatures and glacier shrinking. The Holocene glacial phases (HOL1-3) are recorded only in the MK cirque, likely due to its topographic attributes. An early Holocene glacier stillstand (HOL1) at 9.6 ± 1.1 ka follows the regional temperatures recovery. No glacier activity is observed during the mid-Holocene. The Late Holocene glacier expansions, include a moraine stabilization phase (HOL2) at 2.5 ± 0.3 ka, during wet conditions and solar insolation minima, while (HOL3) corresponds to the early part of the Little Ice Age (0.64 ± 0.08ka). Our glacial chronology is coherent with glacial chronologies from several cirques along the northeast Mediterranean mountains and in pace with numerous proxies from terrestrial and marine systems from the north Aegean Sea. (https://authors.elsevier.com/a/1XI5D-4PRq8b-)
Article
Alpine glacier variations are known to be reliable proxies of Holocene climate. Here, we present a terrestrial cosmogenic nuclide (TCN)-based glacier chronology relying on 24 new 10 Be exposure ages, which constrain maximum Neoglacial positions of four small to mid-sized glaciers (Rateau, Lautaret, Bonnepierre and Etages) in the Ecrins-Pelvoux massif, southern French Alps. Glacier advances, marked by (mainly lateral) moraine ridges that are located slightly outboard of the Little Ice Age (LIA, c. 1250-1860 AD) maximum positions, were dated to 4.25 ± 0.44 ka, 3.66 ± 0.09 ka, 2.09 ± 0.10 ka, c. 1.31 ± 0.17 ka and to 0.92 ± 0.02 ka. The '4.2 ka advance', albeit constrained by rather scattered dates, is to our knowledge exposure-dated here for the first time in the Alps. It is considered as one of the first major Neoglacial advance in the western Alps, in agreement with other regional paleoclimato-logical proxies. We further review Alpine and Northern Hemisphere mid-to-high latitude evidence for climate change and glacier activity concomitant with the '4.2 ka event'. The '2.1 ka advance' was not extensively dated in the Alps and is thought to represent a prominent advance in early Roman times. Other Neoglacial advances dated here match the timing of previously described Alpine Neoglacial events. Our results also suggest that a Neoglacial maximum occurred at Etages Glacier 0.9 ka ago, i.e. during the Medieval Climate Anomaly (MCA, c. 850-1250 AD). At Rateau Glacier, discordant results are thought to reflect exhumation and snow cover of the shortest moraine boulders. Overall, this study highlights the need to combine several sites to develop robust Neoglacial glacier chronologies in order to take into account the variability in moraine deposition pattern and landform obliteration and conservation.
Article
The Little Ice Age (LIA) is known as one of the coldest stages of the Holocene. Most records from the Northern Hemisphere show evidence of significantly colder conditions during the LIA, which in some cases had substantial socio-economic consequences. In this study we investigated the magnitude and timing of climate variability during the LIA in the mountains of the Iberian Peninsula, based on a wide range of natural records (including from glacial, periglacial, and lacustrine/peatland areas; fluvial/alluvial deposits; speleothems; and tree rings), historical documents, and early instrument data. The onset of the LIA commenced in approximately CE 1300, and cold conditions with alternating moisture regimes persisted until approximately CE 1850; the environmental responses ranged from rapid (e.g. tree rings) to delayed (e.g. glaciers). The colder climate of the LIA was accompanied by severe droughts, floods, and cold/heat waves that showed significant spatio-temporal variation across the Iberian mountains. Several phases within the LIA have been detected, including (a) 1300–1480: increasing cooling with moderate climate oscillations; (b) 1480–1570: relatively warmer conditions; (c) 1570–1620: gradual cooling; (d) 1620–1715: coldest climate period of the LIA, particularly during the Maunder Minimum, with temperatures approximately 2 °C below those at present; (e) 1715–1760: warmer temperatures and a low frequency of extreme events; (f) 1760–1800: climate deterioration and more climate extremes (i.e. cold and heat waves, floods and droughts); (g) 1800–1850: highly variable climate conditions alternating with stability (1800–1815), extreme events (1815–1835), and a slight trend of warming associated with intense hydrometeorological events (1835–1850); (h) since 1850: a gradual staggered increase in temperature of approximately 1 °C. Post-LIA warming has led to substantial changes in geo-ecological dynamics, mainly through shrinking of the spatial domain affected by cold climate processes.
Article
Studies of past glacial cycles yield critical information about climate and sea-level (ice-volume) variability, including the sensitivity of climate to radiative change, and impacts of crustal rebound on sea-level reconstructions for past interglacials. Here we identify significant differences between the last and penultimate glacial maxima (LGM and PGM) in terms of global volume and distribution of land ice, despite similar temperatures and radiative forcing. Our analysis challenges conventional views of relationships between global ice volume, sea level, seawater oxygen isotope values, and deep-sea temperature, and supports the potential presence of large floating Arctic ice shelves during the PGM. The existence of different glacial ‘modes’ calls for focussed research on the complex processes behind ice-age development. We present a glacioisostatic assessment to demonstrate how a different PGM ice-sheet configuration might affect sea-level estimates for the last interglacial. Results suggest that this may alter existing last interglacial sea-level estimates, which often use an LGM-like ice configuration, by several metres (likely upward).
Article
The behavior of subtropical glaciers during Middle to Late Pleistocene global glacial maxima and abrupt climate change events, specifically in Earth's most arid low-latitude regions, remains an outstanding problem in paleoclimatology. The present-day climate of Cordillera Oriental, in arid northwestern Argentina, is influenced by shifts in subtropical climate systems, including the South American Summer Monsoon. To understand better past glacier-subtropical climates during the global Last Glacial Maximum (LGM, 26.5–19 ka) and other time periods, we combined geomorphic features with forty-two precise ¹⁰Be ages on moraine boulders and reconstructed paleo-equilibrium line altitudes (ELA) at Nevado de Chañi (24°S) in the arid subtropical Andes. We found a major glacial expansion at ∼23 ± 1.6 ka, that is, during the global LGM. Additional glacial expansions are observed before the global LGM (at ∼52–39 ka), and after, at 15 ± 0.5 and 12 ± 0.6 ka. The ∼15 ka glacial event was found on both sides of Chañi and the ∼12 ka event is only recorded on the east side. Reconstructed ELAs of the former glaciers exhibit a rise from east to west that resembles the present subtropical climate trajectory from the Atlantic side of the continent; hence, we infer that this climate pattern must have been present in the past. Based on comparison with other low-latitude paleoclimate records, such as those from lakes and caves, we infer that both temperature and precipitation influenced past glacial occurrence in this sector of the arid Andes. Our findings also imply that abrupt deglacial climate events associated with the North Atlantic, specifically curtailed meridional overturning circulation and regional cooling, may have had attendant impacts on low subtropical Southern Hemisphere latitudes, including the climate systems that affect glacial activity around Nevado de Chañi.
Article
The Last Glacial Termination led to major changes in ice sheet coverage that disrupted global patterns of atmosphere and ocean circulation. Paleoclimate records from Iberia suggest that westerly episodes played a key role in driving heterogeneous climate in the North Atlantic Region. We used ¹⁰Be Cosmic Ray Exposure (CRE) dating to explore the glacier response of small mountain glaciers (ca. 5 km²) that developed on the northern slope of the Cantabrian Mountains (Iberian Peninsula), an area directly under the influence of the Atlantic westerly winds. We analyzed twenty boulders from three moraines and one rock glacier arranged as a recessional sequence preserved between 1150 and 1540 m above sea level (a.s.l.) in the Monasterio valley (Redes Natural Park). Results complement previous chronologic data based on radiocarbon and optically stimulated luminescence from the Monasterio valley, which suggest a local Glacial Maximum (local GM) prior to 33 ka BP and a long-standing glacier advance at 24 ka coeval to the global Last Glacial Maximum (LGM). Resultant ¹⁰Be CRE ages suggest a progressive retreat and thinning of the Monasterio glacier over the time interval 18.1–16.7 ka. This response is coeval with the Heinrich Stadial 1, an extremely cold and dry climate episode initiated by a weakening of the Atlantic Meridional Overturning Circulation (AMOC). Glacier recession continued through the Bølling/Allerød period as indicate the minimum exposure ages obtained from a cirque moraine and a rock glacier nested within this moraine, which yielded ages of 14.0 and 13.0 ka, respectively. Together, they suggest that the Monasterio glacier experienced a gradual transition from glacier to rock glacier activity as the AMOC started to strengthen again. Glacial evidence ascribable to the Younger Dryas cooling was not dated in the Monasterio valley, but might have occurred at higher elevations than evidence dated in this work. The evolution of former glaciers documented in the Monasterio valley seems consistent with previous ¹⁰Be chronologies reported in other mountain ranges of the Iberian Peninsula, which have been recalculated according to a common production rate and scaling scheme. However, the re-evaluation of published ¹⁰Be chronologies has highlighted the fact that glacial evidence previously ascribed to the Younger Dryas might be more limited than previously thought and the need for additional studies to characterized the extent of glaciers during the Younger Dryas cooling.
Article
In this study, fossil debris-covered glaciers are investigated and dated in the Sierra de la Demanda, northern Spain. They are located in glacial valleys of approximately 1 km in length, where several moraines represent distinct phases of the deglaciation period. Several boulders in the moraines and fossil debris-covered glaciers were selected for analysis of ¹⁰Be surface exposure dating. A minimum age of 17.8 ± 2.2 ka was obtained for the outermost moraine in the San Lorenzo cirque, and was attributed to the global Last Glacial Maximum (LGM) or earlier glacial stages, based on deglaciation dates determined in other mountain areas of northern Spain. The youngest moraines were dated to approximately 16.7 ± 1.4 ka, and hence correspond to the GS-2a stadial (Oldest Dryas). Given that the debris-covered glaciers fossilize intermediate moraines, it was deduced that they developed between the LGM and the Oldest Dryas, coinciding with a period of extensive deglaciation. During this deglaciation phase, the cirque headwalls likely discharged large quantities of boulders and blocks that covered the residual ice masses. The resulting debris-covered glaciers evolved slowly because the debris mantle preserved the ice core from rapid ablation, and consequently they remained active until the end of the Late Glacial or the beginning of the Holocene (for the San Lorenzo cirque) and the Holocene Thermal Maximum (for the Mencilla cirque). The north-facing part of the Mencilla cirque ensured longer preservation of the ice core.
Article
In this study, we document deglaciation in a sector of the southern central Pyrenees (the Panticosa massif and the upper Gallego and Ossau valleys) using cosmic-ray exposure (CRE) dating methods, which were applied to samples from high altitude polished rock steps and rock glacier boulders. The obtained CRE dates show a coherent spatial distribution and confirm results previously obtained in this study area, thus demonstrating the reliability and robustness of the method. The results of analyses based on two distinct isotopes (Be-10 and Cl-36) are consistent, although the error is higher for results based on the Cl-36 isotope. The study provides evidence for ice extent in the High Gallego Valley during the Oldest Dryas, with glacial advance until the bottom of the valleys, although the main glacier tongues remained disconnected from each other. During this period, the extent of glacier advance was directly related to the elevation of the associated summits. The Younger Dryas glaciers were constrained to cirques or very short ice tongues, and dating of the polished rock steps indicates that the ice masses were present until the first millennium of the Holocene. The Brazato rock glacier developed at the beginning of the Holocene and remained active until the Holocene Thermal Optimum, because of the protective effect of large masses of blocks and boulders.
Article
In this study, we document deglaciation in a sector of the southern–central Pyrenees (the Panticosa massif and the upper Gállego and Ossau valleys) using cosmic-ray exposure (CRE) dating methods, which were applied to samples from high altitude polished rock steps and rock glacier boulders. The obtained CRE dates show a coherent spatial distribution and confirm results previously obtained in this study area, thus demonstrating the reliability and robustness of the method. The results of analyses based on two distinct isotopes (¹⁰Be and ³⁶Cl) are consistent, although the error is higher for results based on the ³⁶Cl isotope. The study provides evidence for ice extent in the High Gállego Valley during the Oldest Dryas, with glacial advance until the bottom of the valleys, although the main glacier tongues remained disconnected from each other. During this period, the extent of glacier advance was directly related to the elevation of the associated summits. The Younger Dryas glaciers were constrained to cirques or very short ice tongues, and dating of the polished rock steps indicates that the ice masses were present until the first millennium of the Holocene. The Brazato rock glacier developed at the beginning of the Holocene and remained active until the Holocene Thermal Optimum, because of the protective effect of large masses of blocks and boulders.
Article
We review the evolution of glaciers in the Iberian Mountains during the Younger Dryas (12.9–11.7 ka, following the chronology of Greenland Stadial 1 – GS1) and compare with available environmental and climate data to investigate glacier dynamics during cold stadial episodes. The best examples of Younger Dryas moraines are found in the Central Pyrenees, involving short ice tongues up to 4 km in length in the highest massifs (above 3000 m a.s.l.) of the southern versant. Small cirque glaciers and rock glaciers formed during the YD occurred in other Pyrenean massifs, in the Cantabrian Range and in the Gredos and Guadarrama sierras (Central Range), as indicated by several rocky, polished thresholds that were ice-free at the beginning of the Holocene. Although some former rock glaciers were re-activated during the Younger Dryas, glacial activity was limited in the southernmost part of the Iberian Peninsula (Sierra Nevada).
Article
The mountain ranges of the Iberian Peninsula preserve a valuable record of past glaciations that may help reconstruct past atmospheric circulation patterns in response to cooling events in the North Atlantic Ocean. Available chronologies for the glacial record of the Cantabrian Mountains, which are mainly based on radiocarbon and luminescence dating of glacial-related sediments, suggest that glaciers recorded their Glacial Maximum (GM) during MIS 3 and experienced a later Last Glacial Maximum (LGM) advance. This LGM extent is not established yet, preventing a fair correlation with available Cosmic Ray Exposure (CRE) based chronologies for the glacial record of the Pyrenees and the Sistema Central.
Article
In this review, recently published results of cosmogenic dating of moraine boulders, rock glaciers and glacially-polished surfaces in various mountain massifs (the Sierra Nevada, the Central Range, the Pyrenees and the Northwestern Mountains) of the Iberian Peninsula were analysed to assess the importance of the glacial advance and subsequent retreat that occurred during the Oldest Dryas, between 17.5 and 14.5 ka. The glaciers, which had almost disappeared at the beginning of this period (approximately 17.5 ka), returned to fill the valley floors at approximately 16.8-16.5 ka, depositing moraines close to the moraines generated during the Last Glacial Maximum advance. Following this intense and short advance, the glaciers began to retreat, although this was frequently interrupted by glacial readvance episodes, with the last occurring at approximately 15.5 ka. Subsequently, the retreat was generalized, so that 1 ka later the glaciers were restricted to the cirque areas, and never again advanced. During this recession, the activity of many of the deglaciated cirque walls triggered frequent rockfalls, transforming the retreating degraded glaciers into rock glaciers; their fronts had become inactive by approximately 14 ka, although in many cases their roots conserved the internal ice until well into the Holocene. The glacial fluctuations, and the landforms and deposits consequently derived from them, are very similar to those described for other Mediterranean and European mountain ranges, especially the Alps. We conclude that the climate changes associated with the Oldest Dryas, had important impacts on mountain landscapes throughout the continent. © 2017 The Author(s). Published by The Geological Society of London.
Article
The climatic mechanisms driving the shift from the Medieval Warm Period (MWP) to the Little Ice Age (LIA) in the North Atlantic region are debated. We use cosmogenic beryllium-10 dating to develop a moraine chronology with century-scale resolution over the last millennium and show that alpine glaciers in Baffin Island and western Greenland were at or near their maximum LIA configurations during the proposed general timing of the MWP. Complimentary paleoclimate proxy data suggest that the western North Atlantic region remained cool, whereas the eastern North Atlantic region was comparatively warmer during the MWP-a dipole pattern compatible with a persistent positive phase of the North Atlantic Oscillation. These results demonstrate that over the last millennium, glaciers approached their eventual LIA maxima before what is considered the classic LIA in the Northern Hemisphere. Furthermore, a relatively cool western North Atlantic region during the MWP has implications for understanding Norse migration patterns during the MWP. Our results, paired with other regional climate records, point to nonclimatic factors as contributing to the Norse exodus from the western North Atlantic region.
Article
Multidecadal to centennial planktic δ18O and Mg/Ca records were generated at Ocean Drilling Program Site 976 (ODP976) in the Alboran Sea. The site is in the flow path of Atlantic inflow waters entering the Mediterranean and captured North Atlantic signals through the surface inflow and the atmosphere. The records reveal similar climatic oscillations during the last two glacial-to-interglacial transitions, albeit with a different temporal pacing. Glacial termination 1 (T1) was marked by Heinrich event 1 (H1), post-H1 Bølling/Allerød warming, and Younger Dryas (YD) cooling. During T2 the H11 δ18O anomaly was twice as high and lasted 30% longer than during H1. The post-H11 warming marked the start of MIS5e while the subsequent YD-style cooling occurred during early MIS5e. The post-H11 temperature increase at ODP976 matched the sudden Asian Monsoon Termination II at 129 ka B.P. Extending the 230Th-dated speleothem timescale to ODP976 suggests glacial conditions in the Northeast Atlantic region were terminated abruptly and interglacial warmth was reached in less than a millennium. The early-MIS5e cooling and freshening at ODP976 coincided with similar changes at North Atlantic sites suggesting this was a basin-wide event. By analogy with T1, we argue that this was a YD-type event that was shifted into the early stages of the last interglacial period. This scenario is consistent with evidence from northern North Atlantic and Nordic Sea sites that the continuing disintegration of the large Saalian Stage (MIS6) ice sheet in Eurasia delayed the advection of warm North Atlantic waters and full-strength convective overturn until later stages of MIS5e.
Article
Only a few small glaciers survive today in the Mountains of the Mediterranean. Notable examples are found in the Pyrenees, Maritime Alps, Italian Apennines, the Dinaric and Albanian Alps and the mountains of Turkey. Many glaciers disappeared during the 20th Century. Glaciers were much larger and more numerous during the Little Ice Age. Small glaciers even existed as far south as the High Atlas of Morocco and the Sierra Nevada of southern Spain. In more northerly areas, such as the western Balkans, glaciers and permanent snow fields occupied hundreds of cirques on relatively low-lying mountains. In the High Atlas and the Sierra Nevada no glaciers exist today, whilst in the Balkans only a few modern glaciers have been reported (