ArticlePDF Available

Composition and biochemical properties of l -carnitine fortified Makgeolli brewed by using fermented buckwheat

Wiley
Food Science & Nutrition
Authors:

Abstract

Makgeolli is a traditional Korean alcoholic rice beverage. It is brewed of ingredients containing starch, Nuruk, and water. In order to improve the quality and functionality of Makgeolli, the Rhizopus oligosporus fermented buckwheat containing 18.7 mg/kg of l‐carnitine were utilized to brew l‐carnitine fortified Makgeolli with rice. Makgeolli was prepared in two‐stage fermentation method and total rutin and quercetin in each fermented buckwheat Makgeolli were increased 1.8‐fold greater than buckwheat Makgeolli. DPPH antioxidant activity was enhanced in fermented buckwheat Makgeolli than buckwheat Makgeolli (21.9%–65.7%). The amounts of l‐carnitine in rice Makgeolli, buckwheat Makgeolli, and fermented buckwheat Makgeolli were 0.9, 0.8–1.0, and 1.0–1.9 mg/L, respectively. The fermented buckwheat Makgeolli not only promoted health benefit by increasing l‐carnitine and flavonols, but also made effective alcohol production (2.8%–8.4%) compared to common buckwheat Makgeolli, indicating the potential industrial application with health benefits.
Food Sci Nutr. 20 18 ;1– 8.    
|
 1
www.foodscience-nutrition.com
Received:21June2018 
|
  Revised:18A ugust2018 
|
  Accepted:22Augus t2018
DOI: 10.1002/f sn3.80 3
ORIGINAL RESEARCH
Composition and biochemical properties of l- carnitine fortified
Makgeolli brewed by using fermented buckwheat
Namhyeon Park1| Thi Thanh Hanh Nguyen2| Gang-Hee Lee1| Shi-Na Jin1|
So-Hyung Kwak1| Tae-Kyung Lee1| Yeong-Hwan Choi3| Seong-Bo Kim4|
Atsuo Kimura5| Doman Kim1,2
ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,
providedtheoriginalworkisproperlycited.
©2018TheAuthors.Food Scien ce & NutritionpublishedbyWileyPeriodicals,Inc.
1GraduateSchoolofInternational
AgriculturalTechnolog y,SeoulNational
University,Pyeongchang-gun,Gangwon-do,
Korea
2InstituteofFoodIndustrialization,Institutes
ofGreenBioScienceandTechnology,Center
forFoodandBioconvergence,Seoul
NationalUniversity,Pyeongchang-gun,
Gangwon-do,Korea
3KooksoondangBreweryCo.,LTD.,
Hoengseong-gun,Gangwon-do,Korea
4CJCheilJedang,LifeIngredientandMaterial
ResearchInstitute,Suwon,SouthKorea
5ResearchFacultyofAgriculture,Hokkaido
University,Sapporo,Japan
Correspondence
DomanKim,GraduateSchoolof
InternationalA griculturalTechnology,Seoul
NationalUniversity,Pyeongchang-gun,
Gangwon-do,Korea.
Email:kimdm@snu.ac.kr
Funding information
KoreaInstituteofPlanningandEvaluation
forTechnologyinFood,Agriculture,
Forestry(IPE T)throughAgriculture,Food
andRuralAffairsResearchCenterSupport
Program,MinistryofA griculture,Food
andRuralAffairs(MAFRA);Grant/Award
Number:710012-03-1-HD220;Korea
InstituteofPlanningandEvaluationfor
TechnologyinFood,Agriculture,Forestry
andFisheries(IPET)throughHighValue-
addedFoodTechnologyDevelopment
ProgramMinistryofAgriculture,Foodand
RuralAffairs,RepublicofKorea,Grant /
AwardNumber:116013032HD020;
NationalResearchFoundationof
Korea(NRF),Grant/AwardNumber:
2016K1A3A1A19945059
Abstract
MakgeolliisatraditionalKoreanalcoholicricebeverage.Itisbrewedofingredients
containingstarch,Nuruk,andwater.Inordertoimprovethequalityandfunctionality
ofMakgeolli,theRhizopus oligosporusfermentedbuckwheatcontaining18.7mg/kg
of l-carnitinewereutilizedtobrewl-carnitinefortifiedMakgeolliwithrice.Makgeolli
was prepare d in two-stage ferm entation method an d total rutin and quer cetin in
eachfermented buckwheat Makgeolliwereincreased 1.8-fold greater than buck-
wheatMakgeolli.DPPHantioxidantactivitywasenhancedinfermentedbuckwheat
MakgeollithanbuckwheatMakgeolli(21.9%–65.7%).Theamountsofl- carnitine in
riceMakgeolli,buckwheatMakgeolli,andfermentedbuckwheatMakgeolliwere0.9,
0.8–1.0, and1.0–1.9mg/L, respectively.The fermented buckwheat Makgeolli not
onlypromotedhealthbenefitbyincreasingl-carnitineandflavonols,butalsomade
effective alcohol production (2.8%–8.4%) compared to common buckwheat
Makgeolli,indicatingthepotentialindustrialapplicationwithhealthbenefits.
KEYWORDS
antioxidantactivity,buckwheat,l-carnitine,quercetin,Rhizopus oligosporus,rutin
2 
|
   PARK et Al .
1 | INTRODUCTION
MakgeolliisatraditionalKoreanalcoholicbeverage.Itisbrewedby
fermentationofingredientscontainingstarch, Nuruk (a traditional
fermentation starter composing ofvariousmicroorganisms such as
fungi,yeasts,andlacticacidbacteria),andwater(Baeketal.,2010).
MakgeollicontainsvitaminBcomplex,organicacids,andbioactive
substances with yeasts,resultinginhigh nutritionalandfunctional
values,includingantioxidantproperty(Kim,Park,&Sung,2012).The
sizeandtypeofmicroorganismsinNurukarecontinuouslychanged
atdifferentstagesofMakgeollifermentation.Theysignificantlyre-
main in the finalproduct (Kimetal., 2015).Thesemicroorganisms
notonlyparticipateinsaccharificationand alcoholicfermentation
(Nile,2015),butalsocontributetoMakgeolli’suniquewhitecreamy
textureandflavor(Lee&Choi,2005).However,becauseofalackof
uniquecharacteristics,inferioracceptability,andfunctionality,pop-
ularit y of Makgeolli h as been decli ning (Kim, Cha ng, Ko, & Jeong,
2013).ToimprovethequalityofMakgeolliwithmicrobialactivities
andfunctionalcharacteristics,utilizationofrawmaterialsandman-
ufactureprocesses have beenstudied (Kim,Lee, Lee,Choi, &Lee,
2004;Kim,Chang,etal.,2013).
Buckwheat(Fagopyrum sp p.)isaregionalspecialtyinBongpyeong
ofKorea .I tisagoodso urceofnutritional lyvaluabl ep rote in,lipid,di-
etaryfiber,minerals,flavonoids,fagopyrin,tocopherols,andphenolic
substancessuchas3-flavanols,rutin,phenolicacids,andtheirderiv-
atives (Holasova etal., 2002; Jiang etal., 2007;Oomah, Campbell,
& Mazza, 1996). Among buck wheat species, common buck wheat
(Fagopyrum esculentum) and Tartary b uckwheat (Fagopyrum tatari-
cum)arecultivatedashumanfoodsources.Commonbuckwheathas
asweettastewithalargeseedsizewhereasTartarybuckwheathasa
bittertastewithasmallseedsize.Tartarybuckwheatseedscontain
100-foldhigheramountsofrutincompared tocommonbuckwheat
seeds (Fabjanetal., 2003; Jiang etal.,2007). Common buckwheat
fermentationbyusingRhizopus oligosporushasbeenreportedinour
previous study (Park etal.,2017).Duringbuckwheat fermentation
by R. oligosporus, macr omolecule s are hydrolyzed by e nzymes an d
corresponding hydrolytic products are coupled with metabolism
which can change biochemical compositions of food substrates
(Handoyo & Morita, 2006; de Reu, Linssen, Rombouts, & Nout,
1997 ). l-carnitin e can be synthesi zed from lysine and m ethionine
(Bremer,1983). Buckwheat waschosen due to its higher content
ofprecursorslysineandmethioninefor l-carnitinesynthesiswhen
comparedwiththose ofother crops(Park etal.,2017).Buckwheat
without additionalnutrients hasbeen fermented using R. oligospo-
rus,producingfour timeshigheramountofl-carnitinethanoriginal
buckwheat(Parketal.,2017).l-carnitineisaquaternaryammonium
compoundnaturallyfound inmeat (Walter&Schaffhauser,2000).
Itsmajorrole isacarrierof long-chainfattyacidintomitochondria
forbeta-oxidation.Ithasgoodinfluenceonischemic heartdisease
andrecoveryafterexercise(Walter&Schaffhauser,2000).
Makgeolli using buckwheat has been studied (Cho, Seo, Lee,
& Cho, 2012; Kang, Choi, Choi, Yeo, & Jeong, 2014). Cho etal.
(2012) have exploited several cereals, including buckwheat, to
brewMakgeolliandcompare differencesof pHandalcoholin final
Makgeolli. In addition, Kang etal. (2014) have analyzed various
commercial Makgeolli, including buckwheat Makgeolli. However,
thesepreviousresearchesonlyindicatedgeneralcharacteristicsof
buckw heat Makgeol li such as pH, acid ity, alcohol, red ucing sugar,
aminoacidicity, color, and volatile acidity (Cho etal., 2012; Kang
etal., 2014).Therefore, in this study, we focus on using combina-
tion of common and Tartary buckwheat or mix of common and
Tartary fermented buckwheat by R. oligosporus as ingredients to
brew functionally-enhanced Makgeolli. Their chemical composi-
tion, antioxidant properties,andgeneralqualities(pH,alcohol,and
acidity)weretheninvestigated.Especially,functionalcompounds(l-
carnitine, rutin, quercetin)in these Makgeolli were analyzed using
LC/MS.
2 | MATERIALS AND METHODS
2.1 | Preparation of fermented buckwheat
Rhizopus oligosporus was identified using Biolog (Biolog Inc., CA,
USA)and16SrRNAasdescribedinourpreviousreport(Parketal.,
2017).R. oligosporuswasincubatedonPotatoDextroseAgar(Difco,
Detroit , MI, USA) plat es at 28°C for spor ulation. Fer mentation of
buckwheat was carried out as described in our previous report
(Park etal., 2017) with some modifications. Briefly, 250gof com-
monbuckwheat seed(Bongpyeong, Korea) weremixedwith 250g
of Tartary buckwheat seed (Bongpyeong) and soaked in distilled
water for 12hr.After draining,soaked buckwheat seedswere au-
toclaved at 121°C for 15m in. These auto claved buck wheat seeds
werethencooledtoambienttemperature(20–22°C)andmovedinto
atetragonalstainless-steelcontainerandinoculatedwith 5%(v/w)
R. oligosporus (1.6×106 spores/ml). After covering the container
withwrappingpaper,buckwheat seedswereincubatedat28°Cfor
3days. These fermented buckwheat seeds were then lyophilized
(EyelaFD-550; Rikakikai Co.,Tokyo,Japan)at0°C under10Pafor
5daysandstoredat−20°Cforfurtherstudy.Commonbuckwheat,
Tartarybuckwheat,andmixtureofcommonbuckwheatandTartary
buckwheat seed (1:1) without fermentation as control were pre-
paredasdescribedabove.
2.2 | Brewing of l- carnitine enhanced Makgeolli
with fermented buckwheat seed
Fortygramsof rice(Nonghyup,Naju,Korea)weresoakedfor12hr
and autoclaved at 121°C for 15min (Jinju Gokja, Seoul, Korea).
Steamed rice was thencompletely cooledandmovedintoaplastic
bottle with 8g of Nuruk and80ml of distilledwater.The mixture
wasincubatedat22°Candstirredtwiceadaytoprepareseedmash.
After2days,thesameamountofsteamedrice,Nuruk,anddistilled
waterwere addedintothe seedmashforfirst-stage fermentation.
Duringthefirststage,themixturewasstirredoncedaily.After1day
of fermentation, different cereals were added for second-stage
    
|
 3
PARK et Al.
fermentation. For rice Makgeolli, twice the amount of the same
material used atthepreviousstagewasadded.Forbuckwheatand
fermentedbuckwheatMakgeolli,differentratiosofricetosteamed
buckwheatseed(10,20,or40gin80goftotalsecond-stagecere-
als)or fermented buckwheat seed powder were added with addi-
tionalNurukandwater.Thesemixtureswereincubatedat22°Cfor
5days. Thefinalproducts were roughly filtered with twofolds of
cottonandstoredat−20°Cforfurtheranalyses.
2.3 | Analyses of ethanol, pH, and acidity
Makgeolliwascentrifugedat12,600×gfor10minandthesuperna-
tant was usedto determine pH (Suntex, Taipei, Taiwan).Makgeolli
samples were titrated using 0.1M NaOH solution (Lee, Haq,
Saravana,Cho,&Chun,2017).Aciditywascalculatedasaceticacid
based onthe volumeofNaOHused for titration to pH 8.2.Tode-
terminealcoholcontent,100mlofMakgeolliwasdistilledfirstwith
arotaryevaporator(Hei-VAP,Heidolph,Germany).Thefinalvolume
wasthenadjustedto100ml.AlcoholcontentofMakgeolliwasthen
measuredusinganalcoholhydrometer(Joylab,Seoul,Korea).
2.4 | Analysis of l- carnitine content
Forsamplepreparation, one gramofmilled Makgeolli ingredients
(rice, buckwheat seed,or fermented buckwheat seed) was added
into 10ml distilled water and extracted for 1hr.After centrifuga-
tion at 8, 000×g for 10min at 4°C , 100μl supernat ant was mixed
with 900μl acetonitrile and centrifuged at 12,600×g for 10 min.
Afterfiltrationwitha0.2μmmembranesyringefilter(SartoriusAG,
Germany),1μlsample wasinjectedintothe LC/MS.ForMakgeolli
samplepreparation,100μlsamplewasmixedwiththesamevolume
ofdistilledwateranddilutedwithacetonitrilefollowedbycentrifu-
gation,filtration,andinjectionasdescribedabove.Theusedsystem
wasWatersAcquityH-classwithWatersQDadetector(Waters,MA,
USA) with Wate rs Acquity UPLC Beh Hilic 1.7μm, 2.1×100mm
column. l-carnitine contents in different kinds of ingredients and
Makgeolliwere determined usinga LC/MS system (Waters)asde-
scribedinourpreviousreport(Parketal.,2017).Acalibrationcurve
waspreparedwithanexternalstandardmethod(0.01,0.05,0.1,0.5,
and 1 μg/ml).Thelinearitybetweenconcentrationofstandardsand
areawasevaluated(r2>0.99).Recoverywasconfirmedbystandard
additiontechnique(0.0125,0.025,0.05,and0.1μg/ml)inorder to
determinethematrix effect of ingredientsandMakgeollionquan-
tification.Eachrecoverywasanalyzedbyone-samplet-testinSPSS
version 23.0 forWindows(SPSSInc., Chicago,IL,USA) toevaluate
significantdifference from 100%(p < 0.05;Supportinginformation
TableS1).
2.5 | Analyses of rutin and quercetin contents
Onegramofrice, buckwheatseed, and fermented buckwheat
seed were e xtracte d with 10ml of 70% (v/v) ethanol for 1hr
and serially diluted (10 and 100 times) by acetonitrile. Final
Makgeollisamplesweremixedwiththesamevolumeofdistilled
water and deproteinized using acetonitrile. All samples were
filtered using a 0.2μm membrane syringe filter. Then 1μl of
eachsamplewasinjectedintoLC/MS(WatersH-classequipped
with QDa detector, MA, USA). Kromasyl C18 column (1.8μm,
2.1×100mm)wasusedtoanalyzerutinandquercetincontents
with solventA(100%tripledistilledwater with0.1%(v/v) for-
micacid)andsolventB(10 0%acetonitrilewith0.1%(v/v)formic
acid). Con ditions for the m ass detector we re as follows: ele c-
trospr ay ionization (ESI) n egative, 609.5m/z, capill ary energy
(CE)of0.8kV,conevoltage(CV)of25Vforrutin;ESIpositive,
303m/z,CEof1.5kV,andCVof 10Vforquercetin.Asblank,
90% (v/v) acetonitrile was used. Calibration curve linearity
rangedfrom0.05to5μg/mlforquercetin.Itrangedfrom0.1to
5 μg/mlfor rutin(r2 >0.99).Recoverytestsforbuckwheat and
Makgeolliwereperformedbystandardadditionmethodwitht-
test(p < 0.05)toevaluate significantdifference(Supportingin-
formationTableS1).
2.6 | Analysis of reducing sugar content
Reducing sugar content in Makge olli ingredients was determined
using DNS me thod (Gonçalve s, Rodriguez-Jasso, Gom es, Teixeira ,
&Belo,2010; Park,Kim, & Jeong,2018)with glucoseasstandard.
Sample s were extra cted by the sam e process as for an alysis of l-
carnitine.Theyweremeasuredwithadifferentdilutionrate.
2.7 | Analysis of antioxidant activity
Antioxidant activities of Makgeolli were evaluated by
2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging method
(Kimetal.,2012).Briefly,10μlofeachMakgeollisampleandwater
ascontrolweremixedwith100μMDPPHat37°Cfor30minintotal
darkness.Aftercentrifugingthemixtureat12,600×gfor10min,the
absorbance of each supernatantwas measured using a microplate
reader (M olecular Devi ce, Sunnyvale , CA, USA) at 517nm. DPPH
radic al scavenging ac tivity (SC) w as converted into p ercentage of
antioxidantactivityasfollows(Choi,Kang,&Mok,2018):
2.8 | Statistical analysis
Each analysis of general and functional compounds was repeated
threetimes.Resultsoftestwerepresentedasmean±standarddevia-
tion.Analysisofvariance(AN OVA)wasconductedusin gSPSSversion
23.0forWindows(SPSSInc.).Levene’stest forequalityofvariances
was conducted first. Significant difference was evaluated using
Scheffe’smethodbetweendifferentMakgeollisamples.Significantly
differentMakgeolliwasindicatedbydifferentsuperscriptlowercase
alphabetintablesandfigures.Statisticalsignificancewasconsidered
at p < 0.05.
SC(%) =(Abs of control - Abs of sample)(Abs of control) ×100
4 
|
   PARK et Al .
3 | RESULTS AND DISCUSSION
3.1 | Analyses of rutin, quercetin, l- carnitine, and
reducing sugar contents in Makgeolli ingredients
Amountsofrutinandquercetininrawmixed buckwheat seed
were 7.3 and 1.1g/kg, respectively. In soaked and steamed
buckwheat,theiramountswere10.8and0.6g/kg,respectively.
Infermentedbuckwheat,amountsofrutinandquercetinwere
7.1and1g/kg,respectively(Table1).Rutinandquercetinwere
not detected in rice ( Table1). By soaking and steaming, the
content of rutin in buckwheat was increased47.9%whilethe
contentofquercetininbuckwheatwasdecreased45.5%.These
contents were signifi cantly (p < 0.05 ) different from t hose in
raw ones . Our results wer e consistent with pr evious report s
(Li,Li,Ding, & Park,2008;Qin,Wu,Yao,&Ren, 2013),show-
ingthatrutin contentwasincreased bysteam-treating soaked
buckwheat materials. Rutininbuckwheat was hydrolyzed ina
fewminutesuponadditionofwaterbecauseofthepresenceof
rutin-degradingenzymesinTartarybuckwheatseed(Yasuda&
Nakagaw a, 1994)an d flavonol 3-gluco sidase in Tartar y buck-
wheat testa (Suzuki, Honda, Funatsuki, & Nakatsuka, 2002).
However,activitiesoftheseenzymesarecompletelyinhibited
at 80–85°C (Suz uki etal., 2002; Yasuda & Na kagawa, 1994).
Steamingmightinhibitrutindegradationandacatalyticreverse
shift re action of rut in-sy nthesizing coul d take place, thus i n-
creasingtheextractionofflavonoidsfromthematerial(Barber
& Behrma n, 1991).Fur ther stud y is needed to obt ain clearer
explanation.
Rutinandquercetincontentsinfermentedbuckwheatweresim-
ilarwith thoseof rawbuckwheat(Table1).However,rutin content
in fermented buckwheat was decreased by 34.3% while querce-
tin contentwas increasedby 66.7% compared to those of soaked
and steamed buckwheat. Various molds such as Penicillium and
Aspergilluscan userutinby rutin catabolic pathway (Tranchimand,
Brouant,&Iacazio,2010).Therefore,R. oligosporus, which is one of
moldsmightusethispathwayorasimilarpathway,thusalteringrutin
andquercetincontents.
l-carnitinecontentsin raw riceand buckwheatseed were7and
5.7mg/kg, respectively (Table1). After soaking and steaming, l-
carnitinecontent wasdecreasedto3.6mg/kg in riceand 4.6mg/kg
inbuckwheat(Table1).Leachingofl-carnitineduringheattreatment
with water might account for the decrease in l-carnitine (Knüttel-
Gustavsen&Harmeyer,2011).Fermentedbuckwheatcontained4.1-
fold increase in theamountof l-carnitine (18.7mg/kg) compared to
soaked ands teamedbuck wheatseed with significant difference. It
showed a 3. 3-fold incre ase over the orig inal one (p < 0.05; Table1).
Ourpreviousstudyhasrevealedthatl-carnitinecontentinbuckwheat
extractpowderafterfermentationusingR. oligosporus was increased
fourfoldcomparedtothatinnon-fermentedbuckwheatextractpow-
der (Park etal., 2017). Thus, although whole buckwheat seed was
fermented with R. oligosporus,fermentedbuckwheatseedcontained
similar augmentation of l-carnitine, resulting in improved potential
functionalityduetoenhanced l-carnitine withabundant flavonolsof
buckwheathulls.
Reducing sugar contents of rice, soaked and steamed rice,
buckwheat,soakedandsteamedbuckwheat,andfermentedbuck-
wheat with R. oligosporus are sh own in Table1. Reduc ing sugar
contents i n raw rice and buck wheat seed wer e 5.1a nd 21.3g/
kg,respectively.Soakingandsteamingprocessincreasedreducing
sugar contents (to23.1g/kg inrice and22.9g/kg in buckwheat
seed). Reducing sugar contents in fermented buckwheat seed
was 5.2-fold higher (110.7g/kg) th an that in the origina l buck-
wheat. Theseincreasesin reducingsugarscouldbeattributedto
hydrothermalandcatalytichydrolysisbyR. oligosporus(Nagamori
&Funazukuri2004;Sarrette, Nout,Gervais, & Rombouts,1992)
which could affect the brewing of Makgeolli. Higher reducing
sugarcontentmightbeoneofthereasonswhyethanolcontentin
finalfermentedbuckwheatMakgeolliishigherthanthatinunfer-
mentedbuckwheatMakgeolli.
3.2 | Characterization of different
kinds of Makgeolli
The pH of rice M akgeolli, 6. 25% or 12.5% buckwh eat Makgeolli,
or fermented buckwheat Makgeolli was 4.0 without significant
Ingredient Rutin (g/kg) Quercetin (g/kg) l- carnitine (mg/kg)
Ruducing
sugars (g/kg)
Rice(noprocess) ND ND 7.0±1.7b5.1±0.6c
Rice(soak&
steam)
ND ND 3.6±0.4d23.1±1.4b
Buckwheat(no
process)
7.3±0.2b1.1a5.7±0.8bc 21.3±1.1b
Buckwheat(soak
&steam)
10.8±0.2a0.6c4.6±0.6cd 22.9±1.3b
Buckwheat
(Fermentation)
7.1±0.2b1.0b18.7±0.4a110.7±0.7a
Notes.ND:notdetected.
a,b,c,dDifferentsuperscriptslower-casealphabetsaftervaluesmeandifferentgroups(p < 0.05).
TABLE1 Functionalcompoundsin
rice,buckwheat,andfermented
buckwheat
    
|
 5
PARK et Al.
difference(p > 0.05;Table2).However,the pH of25%buckwheat
Makgeolliwas4.1andthatoffermentedbuckwheatMakgeolliwas
4.2, which was significantly (p < 0.05) different from that of rice
Makgeolli(Table2).Buckwheatcontainsmoreessentialaminoacids
thanrice(Motaetal.,2016)andfermentationbyR. ligosporus further
increas ed these amino a cid contents in bu ckwheat ( Wronkowska,
Christ a, Ciska, & Sora l-Śmiet ana, 2015). The amin o acid contents
of Makgeo lli were shown to be asso ciated with the raw m aterial
(Kangetal.,2014).Asaresult,theincreasedpHin25%buckwheat
Makgeolli or fermented buckwheat Makgeolli may be due to in-
creased aminoacidcontentsandtheirbuffering capacity (Thomas,
Hynes,&Ingledew,2002).
Results of acidit y of Makgeolli samp les are shown in Table2.
The acidity of fermented buckwheat Makgeolli was significantly
(p < 0.05) higher (40%–60%) than that of rice or buckwheat
Makgeolli(Table2).Theincreaseinacidityoffermentedbuckwheat
Makgeolli could be explained by the characteristic of fermented
TABLE2 GeneralcharacteristicsofdifferentMakgeolli
Typ e pH Alcohol (%) Acidity (%) Sugar (%)
RM 4.0b15.6±0.5a0.5d9.8±0.8a
BM_6.25 4.0b14.3±0.6ab 0.5d9.4±0.2ab
BM_12.5 4.0b14.5±1.1ab 0.6cd 9.6±0.4ab
BM_25 4.1ab 12.5±1.1b0.6d8.1±0.4b
FBM_6.25 4.0b15.5±0.5a0.7bc 10.2±0.7a
FBM_12.5 4.0b14.9±0.4ab 0.7ab 10.1±0.8a
FBM_25 4.2a13.2±1.6ab 0.8a10.1±0.4a
Notes.BM:buckwheatMakgeolli;FBM:fermentedbuckwheatMakgeolli;
RM:riceMakgeolli.
Makgeolli and the numbers withtypes of Makgeollimean the ratioof
buckwheatorfermentedbuckwheatinfinalMakgeolli.
a,b,cDifferentsuperscriptsoflower-caselettersaftervaluesmeandiffer-
entgroups(p < 0.05).
FIGURE1 Analysisofrutin,quercetin,l-carnitineandDPPHantioxidantactivity.(a)rutin,(b)quercetin,(c)l-carnitine,and(d)DPPH
antioxidantactivityindifferentMakgeollisamples.RM:riceMakgeolli;BM:buckwheatMakgeolli;FBM:fermentedbuckwheatMakgeolli.
a,b,cDifferentlower-caselettersonbargraphsmeansignificantdifferenceateachsupplementlevel(p < 0.05).*Superscriptstarmark
indicatestheratioofsupplementsinBMorFBM
6 
|
   PARK et Al .
buckw heat itself s ince it could cont ain organic a cids produce d by
Rhizopus(Magnuson&Lasure,2004).
Alcohol contentwas15.6%forriceMakgeolli,14.3%for6.25%
buckwheatMakgeolli,14.5%for12.5%buck wheatmak geolli,12.5%
for 25% buck wheat Makgeo lli, 15.5% for 6.25% fe rmented buck-
wheatMakgeolli,14.9%for12.5%fermentedbuckwheatMakgeolli,
and 13.2% for 25% fermented buckwheat Makgeolli (Table2).
Theloweralcohol contentinbuckwheatorfermentedbuckwheat
Makgeo lli compared to that i n rice Makgeolli mig ht occur by the
factthatbuckwheatseedcontainshigherdietaryfiberandasmaller
amount of starch (Bonafaccia, Marocchini, & Kreft, 2003) which
canaffecttotal glucoseamountsforyeasttouseduringMakgeolli
brewing. Also, the reason for higher alcohol content in fermented
buckwheat Makgeolli than buckwheat Makgeolli could be pre-
fermentationpolysaccharidasewhich canbe producedbyR. oligos-
porus(Sarretteetal.,1992).Itcandegradeunavailablecarbohydrate
ofseedsintoadditional availablesugars.These additional glucoses
byfermentationmightbeexploitedbyyeasts(whichproduceetha-
nol)laterintheMakgeollibrewingprocess.
TheprimarypurposeofMakgeollibrewingistoproduceethanol,
animportantcomponentinfluencingflavorand preservation(Kim,
Park, etal., 2013). From these result s, pre-ferment ation of buck-
wheat see d seems to be useful fo r brewing Makgeo lli, especially
whenwholeseedswithhullsareused.
Sugar contents in different kinds of Makgeolli are shown in
Table2. Among three kinds of Makgeolli, fermented buckwheat
Makgeollihasslightly highersugar contentthanriceorbuckwheat
Makgeolli.
3.3 | Analyses of rutin, quercetin, l- carnitine, and
antioxidant effects in different Makgeolli
Amountsofrutinin6.25%,12.5%,and 25% buckwheatMakgeolli
were 63.0, 109.3, and 173.3mg/L , respectively. They were 19.6,
22.1, and 45.6mg/L in 6.25%, 12.5% , and 25% fermented buck-
wheat Makgeolli, respectively. However, rutin was not detected
inrice Makgeolli (Figure1a). Amountsofquercetinwere 7.6, 11.5,
and18.3mg/Lin6.25%,12.5%,and25%buckwheatMakgeolli,re-
spectively.Theywere52.5,104.1,and187.0mg/Lin6.25%,12.5%,
and25% fermentedbuckwheatMakgeolli,respectively.Quercetin
was not detected in rice Makgeolli (Figure1b). The sum of rutin
and quercetin in fermented buckwheat Makgeolli was increased
(by2.1%in6.25%fermentedbuckwheatadded,4.5%in12.5%fer-
mentedbuckwheatadded,and21.4%in25%fermentedbuckwheat
added) co mpared to that in no n-fe rmented buck wheat Makge olli.
l-carnitinewasdetectedinriceMakgeolli(0.7mg/L).Therewas no
significant difference in l-carnitine content between buckwheat
Makgeolli samples (6.25% and 12.5%) except 25% of buckwheat
Makgeolli (p<0.05) (Figure1c). Amounts of l- carnitine were in-
creasedsignificantly(p < 0.05)inallfermentedbuckwheatMakgeolli
comparedtothoseinriceMakgeolliandbuckwheatMakgeolliwith
samesupplementratio.In addition,thecalculatedconversion ratio
of l-carnitine fromingredientstofinalMakgeolliwasalmost stable
for all Makgeolli samples (51.4%±3.1). This result indicates that
l-c arnitine in fin al Makgeolli is de pendent on l-c arnitine levelsin
Makgeolliingredients.Tothebestofourknowledge,l- carnitine con-
tentinMakgeolliandl-carnitinefortifiedMakgeolliarereportedfor
thefirsttimeinthispaper.
Allbuckwheat andfermentedbuckwheat Makgeollishowed
significantly increased antioxidant activities compared to rice
Makgeolli (p < 0.05; Figure1d). Antioxidant activity in individ-
ual fermented buckwheat Makgeolli was higher than that of
each buck wheat Makgeolli using the s ame percent of supple-
ment. An tioxidant act ivities of 6. 25% and 12.5% of ferme nted
buckwheatMakgeolli were significantlydifferent from thoseof
6.25% and 12.5%ofbuckwheat Makgeolli (p < 0.05; Figure1d).
The higher antioxidant activity of buckwheat and fermented
buckwheatMakgeollicomparedtoriceMakgeolli mightbedue
tothe presence ofl-carnitine,tocopherols,phenolicsubstance
such as 3-flav anols, rutin , phenolic aci ds, and their de rivatives
in buck wheat which are k nown to possess a ntioxidant ac tivity
(Holasovaetal.,2002;Oomahetal.,1996).Especially,thehigher
antioxidantactivityoffermentedbuckwheatMakgeollithanthat
of buckwheat Makgeolli might result from R. oligosporus that
can prod uce α-a mylase and endo genous carb ohydrate-cleav ing
enzymes, since these enzymes can produce polyphenols from
carbohydrates-conjugated phenolic compounds during fermen-
tationofbuckwheat(McCue&Shetty,2003).In addition,R. oli-
gosporus is known to produce β-glucosidase, β-glucuronidase,
or xylanase to degrade cell wall matrix (Huynh, Van Camp,
Smagghe,& Raes,2014).Thus,duringfermentation,R . oligospo-
rusmightbio-convertbound-phenoliccompoundsintounbound
phenolics as aglycone forms (Huynh etal.,2014). Furthermore,
during the process of brewing Makgeooli, different kinds of
fungi ( Aspergillus,Rhizopus), yeast, and va rious lactic ac id bac-
teria(Nile, 2015)canproducetannase,phenolicaciddecarbox-
ylase, benzyl alcohol dehydrogenase, and β-glucosidase that
can degr ade some phenolic compoun ds (Landete etal., 2010).
Therefore,fermentationprocessesmightreleasephenoliccom-
pounds fromplant matrixes followedbymetabolic pathwaysof
flavonoids, including glycosylation, deglycosylation, ring cleav-
age, methylation, glucuronidation, and sulfate conjunction in
waystoproducenewbioactivecompounds(Huynhetal.,2014).
Increased contents of flavonoids might influence on DPPH-
radicalSC, resulting in higherantioxidant activityoffermented
buckwheat Makgeolli thanbuckwheat Makgeollias well as rice
Makgeolli. Quercetin has higherantioxidant activity compared
torutin (SC50 of quercetin=37.4μM,SC50 of rutin ≥1,000μM)
(Kong,Mat-Junit,Aminudin,Ismail,&Abdul-Aziz,2012;Nguyen
etal., 2015). In addition,anincreaseofl- carnitine contained in
fermentedbuckwheat Makgeollicouldincreasethe antioxidant
activitybecausel-carnitineisanantioxidantcompoundthatcan
preventoxidativestressandregulatecellularrespirationbynitric
oxide(Brown,1999).Theseresultssuggestthatpre-fermentation
techniqueofbuckwheatseed by R. oligosporuspriortobrewing
Makgeo lli could incre ase antioxidant a ctivitie s of final produ ct
    
|
 7
PARK et Al.
with enhanced functional compounds (l-carnitine, rutin, and
quercetin).
4 | CONCLUSION
In this study, forthe first time, l-carnitinefortified Makgeolli was
successfully brewed using rice and fermented whole buckwheat
seedpreparedwithR. oligosporus.Fermentedbuckwheatseedcon-
tained increased l- carnitine content and maintained its richness
in rutin an d quercetin as m ajor functi onal compoun ds. This result
indicatesthatitispossible to enhancethefunctionalityandwiden
the appl ication of buck wheat as a food ingr edient. In addit ion, l-
carnitinefortifiedMakgeolliusingfermentedbuckwheatseedwith
natural fortificationofl-carnitine andflavonolsis expected toen-
hancehealth effects.Asa result, thisbrewingtechniquewith pre-
fermentationseemstobeeffectivewhenwholebuckwheatseeds
are used be cause it enhan ces functio nal compounds wi th alcohol
productionandantioxidantactivitycomparedtooriginalbuckwheat
Makgeolli.
ACKNOWLEDGMENTS
The authors acknowledge the technical advice and assistance of
JenahParkfromWatersKoreaforLC/MSoperation.Thisworkwas
partiallysupportedbyKoreaInstituteofPlanningandEvaluationfor
TechnologyinFood,Agriculture,Forestry(IPET)throughAgriculture,
Food and Rural Affairs Research Center SupportProgram, funded
by Ministr y of Agriculture, Food and Rural Affairs (MAFRA)(D.
Kim, 710012-03-1-HD220),andbyKoreaInstituteofPlanningand
EvaluationforTechnologyinFood,Agriculture,ForestryandFisheries
(IPET) through High Value-added Food Technology Development
Program (116013032HD020) funded by Ministry of Agriculture,
Food and Rural Affairs, Republic of Korea, by the Basic Science
Research Program through the National Research Foundation of
Korea(NRF)fundedbytheframeworkofInternationalCooperation
Program m anaged by the NRF (2016K1 A3A1A19945059), and by
OTTOGICorporationthroughResearchandPublicationProject.
CONFLICT OF INTEREST
Nonedeclared.
ETHICAL STATEMENT
Allauthorswereactivelyinvolvedintheworkleadingtothemanu-
script andwill hold themselves jointly andindividually responsible
for its con tent. This stu dy does not involve any h uman or animal
testing.
ORCID
Doman Kim http://orcid.org/0000-0003-0389-3441
REFERENCES
Baek, S.Y.,Yun,H. J., Choi, H. S.,Hong,S. B., Koo,B. S., & Yeo, S.H.
(2010). Screening and characteristics of useful fungi for brewing
fromcommercialNurukinChungcheongProvince.Korean Journal of
Microbiology and Biotechnology,38,373–378.
Barber, G. A., & Behrman, E. J. (1991). The synthesis and char-
acterization of uridine 5′- (beta-L-rhamnopyranosyl diphos-
phate) and its role in the enzymic synthesis of rutin. A rchives
of Biochemistry and Biophysics, 288, 239–242. https://doi.
org/10.1016/0003-9861(91)90190-T
Bonafaccia,G .,Marocchini,M.,&Kreft ,I.(2003).Compositionandtech-
nologicalpropertiesoftheflourandbranfromcommonandTartary
buckwheat. Food Chemistry, 80, 9–15. https://doi.org/10.1016/
S0308-8146(02)00228-5
Bremer, J. (1983). Carnitine–metabolism and functions.
Physiological Reviews, 63, 1420–1480. https://doi.org/10.1152/
physrev.1983.63.4.1420
Brown,G.C.(1999).Nitricoxideandmitochondrialrespiration.Biochimica
et Biophysica Acta, 1411 , 351–369. https://doi.org/10.1016/
S0005-2728(99)00025-0
Cho, H. K., Seo,W.T.,Lee, J. Y.,& Cho, K.M. (2012).Quality charac-
teristics of cereal Makgeolli rice Nuruk prepared Rhizopus oryzae
CCS01. Journal of Korean Society of Food Science and Nutrition, 41,
1002–1008.https://doi.org/10.3746/jkfn.2012.41.7.1002
Choi, E. S., Kang, Y.Y., & Mok, H. (2018). Evaluationof the enhanced
antioxidantactivit yof curcumin within exosomesby fluorescence
monitoring.Biotechnoly Bioprocess Engineering,23,150–157.https://
doi.org/10.1007/s12257-018-0058-2
Fabjan,N.,Rode,J.,Kosir,I.J.,Wang,Z.H.,Zhang,Z.,&Kreft,I.(2003).
Tartarybuckwheat(Fagopyrum tataricumGaertn.)asasourceofdi-
etaryrutinandquercitrin.Journal of Agricultural and Food Chemistry,
51,6452–6455.https://doi.org/10.1021/jf034543e
Gonçalves,C.,Rodriguez-Jasso,R.M.,Gomes,N.,Teixeira,J.A.,&Belo,
I. (2010). Adaptation of dinitrosalicylic acid method to microtiter
plates. Analytical Methods, 2, 2046–2048. https://doi.org/10.1039/
c0ay00525h
Handoyo, T., & Morita, N. (2006). Structural and functional proper-
ties of fermented soybean (Tempeh) by using Rhizopus oligosporus.
International Journal of Food Properties, 9, 347–355. https://doi.
org/10.1080/10942910500224746
Holasova, M., Fiedlerova, V., Smrcinova, H., Orsak, M., Lachman, J., &
Vavreinova,S.(2002).Buckwheat-thesourceofantioxidantactivity
infunctionalfoods.Food Research International,35,207–211.h ttps://
doi.org/10.1016/S0963-9969(01) 00185-5
Huynh,N. T., Van Camp, J., Smagghe,G., & Raes, K . (2014). Improved
release and metabolism of flavonoids by steered fermentation
processes: A review. International Journal of Molecular Sciences,15,
19369–19388.https://doi.org/10.3390/ijms151119369
Jiang ,P.,Bu rczyn ski ,F., Camp bel l,C . ,Pi erc e,G .,A ustr ia, J.A . ,& Brig gs,
C. J. (2007). Rutin and flavonoid contents in three buckwheat
species Fagopyrum esculentum, F. tataricum, and F. homotropi-
cumand their protective effects against lipid peroxidation. Food
Research International, 40, 356–364. https://doi.org/10.1016/j.
foodres.2006.10.009
Kang, J. E ., Choi, H. S., Ch oi, J. H., Yeo, S. H., & Jeo ng, S. T. (2014).
Physicochemical proper ties of Korean non-sterilized commercial
Makgeolli.The Korean Journal of Community Living Science,25,363–
372.https://doi.org/10.7856/kjcls.2014.25.3.363
Kim, E., Chang, Y.H., Ko, J.Y.,&Jeong,Y.(2013). Physicochemical and
microbial properties ofthe Korean traditional rice wine, Makgeolli,
supplemented with banana during fermentation. Preventive
Nutrition and Food Science, 18, 203–209. h ttps ://do i.o r g/10. 3746/
pnf.2013.18.3.203
Kim, J. H.,Lee, D. H., Lee, S.H., Choi,S. Y., & Lee, J.S.(200 4). Effect
of Ganoderma lucidum on the qualit y and function ality of Korean
8 
|
   PARK et Al .
traditional rice wine,yakju.Journal of Bioscience and Bioengineering,
97,24–28.https://doi.org/10.1016/S1389-1723(04)70160-7
Kim,O.S.,Park,S.S.,&Sung,J.M.(2012).Antioxidantactivityandfer-
mentationcharacteristicsoftraditionalblackricewine.Journal of the
Korean Society of Food Science an d Nutritio n,41,1693–1700.https://
doi.org/10.3746/jkfn.2012 .41.12.1693
Kim, S.H., Park, J. M.,Yoon, H. S.,Song, D.N., Song,I. G.,&Eom, H.
J. (2013). Physiological and sensory characteristics of Makgeolli
with added paprika (Capsicum annuum L.). Korean Journal of Foo d
Science and Technology, 45, 578–582. https://doi.org/10.9721/
KJFST.2013.45.5.578
Kim,S.,Yun,S.,Jeon, S.,Kim,N.,Kim,H.,Cho,T.,…Rhee,M.S.(2015).
Microbi al composition of tu rbid rice wine (Ma kgeolli) at dif ferent
stagesofproductioninarealprocessingline.Food Control,53, 1–8.
https://doi.org/10.1016/j.foodcont.2015.01.002
Knüttel-Gustavsen,S.,&Harmeyer,J.(2011).ThecontentofL-carnitinein
meat after different methods of heat treatment. British Food Journal,
113,1114–1126.ht tps://doi.org/10.110 8/0 0070701111174569
Kong, K. W., Mat-Junit, S ., Aminudin, N ., Ismail, A., & A bdul-Aziz, A.
(2012). Antioxidant activities and polyphenolics from the shoots
of Barringtonia racemosa (L.) Spreng in a polar to apolar medium
system. Food Chemistry, 134, 324–332. https://doi.org /10.1016/j.
foodchem.2012.02.150
Landete,J. M., Rodriguez, H.,Curiel,J. A.,delasRivas,B.,Mancheno,J.
M.,&Munoz,R.(2010).Genecloning,expression,andcharacteriza-
tionofphenolicaciddecarboxylasefromLactobacillus brevisRM84.
Journal of Industrial Microbiology and Biotechnology, 37, 617–624.
https://doi.org/10.10 07/s10295-010-0709-6
Lee,T.S.,&Choi,J.Y.(2005).VolatileflavorcomponentsinmashofTakju
preparedbyusingAspergillus kawachiinuruks.Korean Journal of Food
Science and Technology,37,944–950.
Lee, H. J. , Haq, M., Sarav ana, P.S ., Cho, Y. N., & Chun, B. S . (2017).
Omega-3fatty acids concentrateproductionby enzyme catalyzed
ethanolysisofsupercriticalCO2 extracted oyster oil.Biotechnology
Bioprocess Engineering, 22, 518–528. https://doi.org/10.1007/
s12 257- 017-02 93 -y
Li,D.,Li,X.L.,Ding,X.L.,&Park,K.H.(2008).Aprocessforpreventing
enzymaticdegradationofrutininTartarybuckwheat(Fagopyrum ta-
taricumGaertn)flour.Food Science and Biotechnology,17,118–122.
Magnuson,J.K., &Lasure,L. L. (2004). Organic acidproduction by fil-
amentousfungi. In J. S. Tkacz, & L.Lange (Eds.),Advances in fungal
biotechnology for industry, agriculture, and medicine (pp. 307–340).
Boston,MA:Springer.https://doi.org/10.1007/978-1-4419-8859-1
McCue, P.,&Shetty,K.(2003). Role ofcarbohydrate-cleavingenzymes
inphenolicantioxidantmobilizationfromwholesoybeanfermented
with Rhizopus oligosporus. Food Biotechnology,17,27–37.https://doi.
org/10.1081/FBT-120019982
Mota, C., Santos, M., Mauro, R., Samman, N., Matos, A.S., Torres, D.,
& Castanheira, I. (2016). Protein content and amino acids pro-
file of pseudocereals. Food Chemistry, 193, 55–61. https://doi.
org/10.1016/j.foodchem.2014.11.043
Nagamo ri, M., & Funazu kuri, T. (2004). G lucose prod uction by hydr o-
lysis of st arch under hydro thermal condi tions. Journal of Chemical
Technology and Biotechnology,79,229–233.https://doi.org/10.1002/
(ISSN)1097-4660
Nguyen,T.T.H.,Yu,S.H.,Kim,J.,An,E.,Hwang,K.,Park,J.S.,&Kim,D.
(2015).Enhancementofquercetinwatersolubilitywithsteviolglu-
cosides and thestudies of biological properties. Functional Foods in
Health and Disease,5,437–449.
Nile,S.H.(2015).Thenutritional,biochemicalandhealthef fect sofmak-
geolli–atraditionalKoreanfermentedcerealbeverage.Journal of the
Institute of B rewing,121,457–463.https://doi.org/10.1002/jib.264
Oomah,B.D.,Campbell,C.G.,&Mazza,G.(1996).Effectsofcultivarand
environmentonphenolicacidsinbuckwheat.Euphy tica,90,73–77.
Park, M.R., Kim,S.K.,& Jeong,G.T.(2018).Biosugarproductionfrom
Gracilaria verrucosawithsulfamicacidpretreatmentandsubsequent
enzymatichydrolysis.Biotechnology Bioprocess Engineering,23,3 02–
310.https://doi.org/10.1007/s12257-018-0090-2
Park, N., Lee, T.K.,Nguyen,T.T.H., An, E.B.,Kim, N.M.,You,Y.H.,…
Kim,D.M.(2017).Theeffectoffermentedbuckwheatonproducing
L-carnitineandGamma-aminobutyricacid(GABA)enricheddesigner
eggs. Journal of the Science of Food and A griculture, 97, 2891–2897.
https://doi.org/10.10 02/jsfa.8123
Qin, P.Y.,Wu, L.,Yao,Y., & Ren, G.X. (2013). Changes in phy tochem-
ical compositions, antioxidant and alpha-glucosidase inhibitory
activities during the processing of Tartary buckwheat tea. Food
Research International, 50, 562–567. https://doi.org/10.1016/j.
foodres.2011.03.028
deReu,J.C.,Linssen,V.A.J.M.,Rombouts,F.M.,&Nout,M.J.R.(1997).
Consistency,polysaccharidaseactivitiesandnon-starchpolysaccha-
rides contentof soya beans during Tempeh fermentation. Journal
of the Science of Food and A griculture, 73, 357–363. https://doi.
org/10.1002/(ISSN)1097-0010
Sa rret te,M .,N out , M.J .R . ,Ger v ais ,P., &R ombo uts, F.M. (199 2).Ef f ectof
wateractivityonproductionandactivityofRhizopus oligosporuspoly -
saccharidases. Applied Microbiology and Biotechnology,37,420–425.
Suzuki,T.,Honda,Y.,Funatsuki,W.,&Nakatsuka,K.(2002).Purification
andcharacterizationofflavonol3-glucosidase,anditsactivityduring
ripeni ng in Tartary b uckwheat s eeds. Plant Science, 163, 417–423.
https://doi.org/10.1016/S0168-9452(02) 00158-9
Thomas,K. C., Hynes, S. H.,& Ingledew, W. M. (2002). Influenceof
medium bufferingcapacityoninhibition ofSaccharomyces cerevi-
siae growth by acetic and lactic acids. Applied and Environmental
Microbiology, 68, 1616–1623. ht tps://doi.org/10.1128/
AEM.68.4.1616-1623.2002
Tranchiman d, S., Brouant , P., & Iacazi o, G. (2010). The rut in catabol ic
pathwaywith specialemphasison quercetinase.Biodegradation,21,
833–859.https://doi.org/10.1007/s10532-010-9359-7
Walter,P.,&Schaffhauser,A.O.(2000).L-Carnitine,a‘vitamin-likesub-
stanc e’for functi onal food. Annals of Nutrition and Metabolism, 44,
75–96.https://doi.org /10.1159/000 012825
Wronkowska , M., Christa, K ., Ciska, E., & Soral-Śmietana, M. (2015).
Chemicalcharacteristicsandsensoryevaluationofrawandroasted
buckwheatgroatsfermentedbyRhizopus Oligosporus. Journal of Food
Quality,38,130–138.https://doi.org/10.1111/jfq.12127
Yasuda,T.,&Nakagawa,H.(1994).Purificationandcharacterizationofthe
rutin-degradingenzymesinTartarybuckwheatSeeds.Phytochemistry,
37,133–136.https://doi.org/10.1016/0031-9422(94)85012-7
SUPPORTING INFORMATION
Additional supporting information may be found online in the
SupportingInformationsectionattheendofthearticle.
How to cite this article:ParkN,NguyenTTH,LeeG-H,etal.
Compositionandbiochemicalpropertiesofl- carnitine
fortifiedMakgeollibrewedbyusingfermentedbuckwheat.
Food Sci Nutr. 2018;00:1–8. https://doi.org/10.1002/
fsn3.803

Supplementary resource (1)

... It produces various enzymes including amylase, protease, glucoamylase, and lipase, as well as carbohydrate-cleaving enzymes including xylanase, β-glucuronidase, and β-glucosidase to synthesize Lcarnitine, γ-aminobutyric acid (GABA), and polyphenols during fermentation (Huynh, Van Camp, Smagghe, & Raes, 2014;McCue & Shetty, 2003). Recently, we reported improvement of L-carnitine, GABA, and bioactive phenolic compound contents, as well as the biological properties of quinoa, ginseng, and buckwheat through SSF using R. oligosporus (Hur, Nguyen, Park, Kim, & Kim, 2018;Lee et al., 2020;Park et al., 2018). Moreover, coffee fermented via SSF using R. oligosporus had improved aroma and sweetness (Lee, Cheong, Curran, Yu, & Liu, 2016). ...
Article
Full-text available
This study investigated the effect of solid-state fermentation of wild turmeric (Curcuma aromatica) with Rhizopus oligosporus, a common fungus found in fermented soy tempeh, on phytochemical and biological properties. Ultra-performance liquid chromatography–tandem mass spectrometry showed that fermented wild turmeric has higher concentrations of curcumin, demethoxycurcumin, bisdemethoxycurcumin, phenolic compounds and total flavonoid-curcuminoid after fermentation for 1-, 3-, and 5-day relative to non-fermented turmeric. The L-carnitine content reached 242 µg g⁻¹ extract after fermentation for 7-day. Wild turmeric had 1.47- and 2.25-fold increases in ORAC and FRAP, respectively, after 3-day fermentation. The inhibitory effects of fermented wild turmeric on lipid accumulation from 3T3-L1 cells, nitric oxide production from lipopolysaccharide-stimulated RAW264.7 macrophages, and melanin formation by B16F10 cells with α-MSH increased 1.08-, 1.44-, and 1.52-fold, respectively, after 3-day fermentation. Based on these results, fermented wild turmeric product can be used as a functional ingredient in the cosmeceutical and nutraceutical industries.
... In addition to glucose and fructose, maltose were also utilized by yeast to generate alcohols, and the reduction of these sugars impart a specific taste to Makgeolli with mineral and vitamin nutrients . Park et al. (2018) reported L-carnitine fortified Makgeolli using fermented buckwheat. During Makgeolli brewing, increasing contents of L-carnitine and biogenic flavonoids in buckwheat promote the health benefits and effectively increase the alcohol production. ...
Article
Full-text available
Food is a very basic survival need for the sustenance of life and it always register its impact along with beverages. Varieties of alcoholic/non-alcoholic beverages were invented globally under the influence of cultural topography, which drastically differ in western and eastern tradition. One such traditional Korean fermented beverage is Makgeolli, which is popularly known as “Korean rice wine” made wholly from rice and other cereal such as wheat, barley, and germinated grains by the process of fermentation using a main natural ingredient Nuruk, an amylase enzyme “source”. The low alcohol content (6-9%) of Makgeolli with antioxidant constituents and benefiacial polyphenols like resveratrol, quercetin etc. endowing an interesting light sparkling tone of prominent astringency. The composition of fresh Makgeolli with significant amounts of lactic acid bacteria such as Lactobacillus, as well as starch, proteins, dietary fibers, free amino acids, vitamin nutrients and bioactive components are considered to be benefial to health, but it should be considered within that frame, since it is still an alcohol. The Makgeolli is considered as a probiotic liquor and claim detonated health benefits, often compared to yoghurt. In this short review, we mainly emphasize the composition of Makgeolli and offer a glimpse to its potential health benefits.
... R. oligosporus was isolated from our previous study [26,27,37] and cultured on potato dextrose agar (PDA, Difco, Detroit, MI, USA) medium at 30 • C for 3 days to obtain spores. Wild ginseng powder was sterilized at 121 • C for 15 min. ...
Article
Full-text available
We conducted this study to investigate the beneficial effects of Rhizopus oligosporus fermentation of wild ginseng on ginsenosides, l-carnitine contents and its biological activity. The Rhizopus oligosporus fermentation of wild ginseng was carried out at 30 °C for between 1 and 14 days. Fourteen ginsenosides and l-carnitine were analyzed in the fermented wild ginseng by the ultra high pressure liquid chromatography–mass spectrometry (UPLC–MS) system. Our results showed that the total amount of ginsenosides in ginseng increased from 3274 to 5573 mg/kg after 14 days of fermentation. Among the 14 ginsenosides tested, the amounts of 13 ginsenosides (Rg1, Rb2, Rb3, Rc, Rd, Re, Rf, Rg2, Rg3, Rh1, compound K, F1 and F2) increased, whereas ginsenoside Rb1 decreased, during the fermentation. Furthermore, l-carnitine (630 mg/kg) was newly synthesized in fermented ginseng extract after 14 days. In addition, both total phenol contents and DPPH radical scavenging activities showed an increase in the fermented ginseng with respect to non-fermented ginseng. These results show that the fermentation process reduced the cytotoxicity of wild ginseng against RAW264.7 cells. Both wild and fermented wild ginseng showed anti-inflammatory activity via inhibition of nitric oxide synthesis in RAW264.7 murine macrophage cells.
Article
Buckwheat, a nutrient-rich pseudocereal, is known for its various biological properties, but its antinutritional factors, such as phytic acid and tannins, can hinder nutrient absorption. Fermentation improves buckwheat's nutritional profile by enhancing bioactive compounds, increasing digestibility, and reducing antinutritional factors. This review comprehensively examines the effects of fermentation and microbial strains on the nutritional composition and functional properties of buckwheat, highlighting their impact on health benefits and potential applications in diverse food products. Fermentation significantly boosts essential nutrients, including amino acids, vitamins, minerals, and bioactive compounds, while reducing antinutritional factors like phytic acid and protease inhibitors. It also enhances antioxidant, antidiabetic, hypolipidemic, anti-inflammatory, and gut microbiota-regulating properties. However, there are notable gaps in research, including limited understanding of fermentation process control, heavy metal transformation, and pathogenic microorganism effects during fermentation. Addressing these gaps is crucial for optimizing the functional properties and ensuring the safety of fermented buckwheat in the food industry. Overall, fermented buckwheat holds significant potential as a functional ingredient for gluten-free foods, nondairy beverages, and other health-promoting products that cater to specific dietary needs.
Chapter
Buckwheat sprouts (Fagopyrum esculentum) is an ancient pseudo crop considered as functional food due to the higher accumulation of bioactive components such as total phenolic content (TPC), and flavonoids after germination. The bioavailability of high-quality protein is hindered due to the presence of antinutritional compounds such as phytic acid, condensed tannins, trypsin inhibitors and saponin. Germination is considered as one of the best methods to reduce the negative effect caused by these components and increase the level of bioactive components exponentially. The sprouting process performed under controlled conditions at optimum time, temperature, light and water. Abiotic stress is produced to enhance the biochemical composition by treating the seeds with sodium bicarbonate solution, laser lights, sucrose, and calcium chloride solution, elicitors, growth hormones, ultrasound assisted solvent extraction, and slightly acidic electrolysed water. There is a distinct and significant accumulation of functional compounds and prevent the bacterial contamination during germination. Rutin, a representative flavonoid component present only in buckwheat sprouts and contents are higher than other cereals comparatively. Buckwheat sprouts have higher nutritional value, increased protein digestibility, improved phenolic components, and development of aromatic compounds. There is an elevation in phenolic compound due to the biochemical changes occurring in phenylpropanoid pathway and possess antioxidant and anti-inflammatory activity. The sprouts of this functional food crop help in the prevention of degenerative diseases like cardiovascular, cancer, diabetes, and cataract.
Article
Unlabelled: Recently, unconventional yeasts have become popular as fermentation starters in the brewing industry due to the growing consumer demand for aromatic diversity. Specifically, Schizosaccharomyces japonicus has been explored as a potential starter culture for beer and wine production because of its distinct brewing characteristics; however, its application in makgeolli fermentation has not been tested. Therefore, in the present study, two Sz. japonicus strains (SZJ-1 and SZJ-2) were isolated from natural sources, and their brewing characteristics for makgeolli fermentation were compared with those of commercial S. cerevisiae strain. Although the tested isolates showed a lower fermentation and carbon source consumption rate than control-, their overall alcohol fermentation characteristics were suitable for makgeolli production. Regarding flavor composition, Sz. japonicus-fermented makgeolli possessed more ester compounds (e.g., 2-phenylethyl acetate, ethyl acetate, and ethyl decanoate) than S. cerevisiae-fermented makgeolli. Therefore, Sz. japonicus can be used as an alternative culture starter in makgeolli fermentation. Supplementary information: The online version contains supplementary material available at 10.1007/s10068-023-01265-6.
Article
Full-text available
The separation of oil by a suitable technique from the Pacific oyster muscle is important for the utilization of the oil as a ω-3 polyunsaturated fatty acids (ω-3 PUFAs) source and production of bio-functional peptides/ oligosaccharides from oil-free residue. This study was conducted to prepare ω-3 PUFAs concentrate from supercritical carbon dioxide (SC-CO2) extracted Pacific oyster oil by enzyme-catalyzed ethanolysis reactions. SC-CO2 extractions were done at different temperatures and pressures to optimize suitable extraction conditions and extracted oils were compared with Soxhlet (n-hexane) extracted oil to evaluate the yield and quality. Oil extracted by SC-CO2 at optimized conditions was used for ethanolysis reaction catalyzed by immobilized sn-1,3 specific lipases, namely Novozymes-435, Lipozyme TLIM, and Lipozyme RMIM to produce 2-monoacylglycerols (2-MAG) rich in ω-3 PUFAs. The optimum temperature and pressure for SC-CO2 extractions of oyster oil was 50°C and 30 MPa. In this condition, the yield of oil was 5.96% and the acid, peroxide, free fatty acid, and p-anisidine values were 4.49 mg KOH/g, 4.72 meq/kg, 3.42%, and 10.03, respectively. The ω-3 PUFAs content significantly increased in 2-MAG obtained from Novozymes 435, Lipozyme TLIM, and Lipozyme RMIM to 43.03 ± 0.36, 45.95 ± 0.29, and 40.50 ± 0.77%, respectively (p < 0.05). A thin layer chromatography (TLC) analysis confirmed the production and separation of 2-MAG in the ethanolysis process. The ratio of total ω-3 to ω-6 fatty acids was almost twice in 2-MAG of SC-CO2 extracted oyster oil. SC-CO2 extracted Pacific oyster oil can be used for sn-1,3 specific lipases catalyzed ethanolysis to produce ω-3 PUFAs rich in 2-MAG.
Article
Full-text available
Background: Quercetin, a flavonol contained in various vegetables and fruits, has numerous biological activities which include anticancer, antiviral, anti-diabetic, and anti-oxidative properties. However, quercetin also has low oral bioavailability, due to its insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines. Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CL pro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase, which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture containing 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8), and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/ml as rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also demonstrated 1.2 and 1.9 folds higher inhibition activity against 3CL pro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with rebaudioside or rubusoside treatment. As Ru concentration increases, the solubility of quercetin in water increases. The solubilization of quercetin in Ru solution did not reduce its biological functions such as the DPPH radical-scavenging and mushroom tyrosinase activity. Additionally, quercetin-rubusoside increased the inhibition activity against the 3CL pro of SARS and human intestinal maltase, when compared with the activity of quercetin in DMSO. Therefore, rubusoside and rebaudioside are promising compounds which enhance the solubility of poorly water soluble compounds. Keywords: rubusoside, rebaudioside, flavonol, quercetin, human maltase, 3CLpro
Article
In this study, sulfamic acid-catalyzed pretreatment and subsequent enzymatic hydrolysis was conducted to produce biosugar from the marine macro-alga Gracilaria verrucosa. Sulfamic acid has dual active sites and is a green catalyst. Optimized sulfamic acid pretreatment at 130°C with 7.5% biomass and 100 mM sulfamic acid for 90 min yielded 39.9% total reducing sugar (TRS). Subsequent enzymatic hydrolysis yielded 69.1% TRS. These results indicate the potential of sulfamic acidcatalyzed pretreatment and subsequent enzymatic hydrolysis in producing biosugars using a biorefinery process.
Article
In this study, we compared the antioxidant activities of curcumin (Cur) and a Cur formulation using a fluorescence analysis assay. The Cur formulation was prepared by a simple incorporation of Cur into exosomes (EXO) to produce Cur/EXOs. Free Cur had a low fluorescence intensity in aqueous solution because of its poor stability as a result of its autoxidation, whereas a significantly higher fluorescence intensity was observed for Cur/EXOs. Compared to free Cur, the increased level of intact Cur in EXOs allowed for enhanced antioxidant activity in H2O2 scavenging activity and DPPH assays. Compared to Cur at high concentration (200 μM), Cur/ EXOs were significantly less cytotoxic. The antioxidant activity of Cur or Cur/EXOs in cells could be easily demonstrated by monitoring decreases in their fluorescence intensity. Following subcutaneous injection, the fluorescence intensities of Cur/EXOs were much higher than that of Cur, suggesting that Cur/EXOs improve Cur stability in vivo. Taken together, we have demonstrated the superiority of Cur/EXOs over free Cur in terms of aqueous stability and antioxidant activity using fluorescence monitoring both in vitro and in vivo.
Book
In the past half century, filamentous fungi have grown in commercial importance not only in the food industry but also as sources of pharmaceutical agents for the treatment of infectious and metabolic diseases and of specialty proteins and enzymes used to process foods, fortify detergents, and perform biotransformations. The commercial impact of molds is also measured on a negative scale since some of these organisms are significant as pathogens of crop plants, agents of food spoilage, and sources of toxic and carcinogenic compounds. Recent advances in the molecular genetics of filamentous fungi are finding increased application in the pharmaceutical, agricultural, and enzyme industries, and this trend promises to continue as the genomics of fungi is explored and new techniques to speed genetic manipulation become available. This volume focuses on the filamentous fungi and highlights the advances of the past decade, both in methodology and in the understanding of genomic organization and regulation of gene and pathway expression.
Article
Background: The potential of fermented buckwheat as feed additives was studied to increase L-carnitine and gamma-aminobutyric acid (GABA) in designer eggs. Buckwheat contains high levels of lysine, methionine, and glutamate, which are precursors for the synthesis of L-carnitine and GABA. Rhizopus oligosporus was used for the fermentation of buckwheat to produce L-carnitine and GABA that exert positive effects like enhanced metabolism, antioxidant activities, immunity, and blood pressure control. Results: A novel analytical method for simultaneously detecting L-carnitine and GABA was developed using LC/MS and LC/MS/MS. The fermented buckwheat extract contained 4 and 34 fold-increased L-carnitine and GABA, respectively, than normal buckwheat. Compared to control, the fermented buckwheat extract-fed group showed enriched L-carnitine (13.6%) and GABA (8.4%) in the yolk. However, only L-carnitine was significantly different (p < 0.05). Egg production (9.4%), albumen weight (2.1%), and shell weight (5.8%) were significantly increased (p < 0.05). There was no significant difference in yolk weight, total cholesterol (1.9%) and triglyceride (4.9%) in the yolk was lowered (p < 0.05). Conclusion: Fermented buckwheat as feed additives has the potential to produce L-carnitine and GABA enriched designer eggs with enhanced nutrition and homeostasis. The L-carnitine and GABA enriched designer eggs pose significance to be utilized in superfood production and supplement industries.
Article
Studies on standardization and quality upgrade of nuruk which is a basic component in brewing are required to increase the quality level of Korean traditional rice wines and to develop the technology for practical use of it. It is important to isolate best strains, to improve the properties and effectively preserve them for brewing industry. In this study, 16 commercial nuruk samples were obtained from the commercial markets located in Chungcheong areas in Korea. 174 fungal strains were isolated from the samples on DG18 medium using a dilution plating method and then screened for enzyme activity and acid production. The active strains were identified based on the morphological characteristics and ITS sequence analysis. Out of 174 strains, 12 strains showed high amylase activity. Especially, Rhizopus sp. CN084, CN174, Aspergillus sp. CN161 and Mycocladus sp. CN042 showed high saccharogenic power and dextrinogenic enzyme activity on cooked wheat bran medium. On the other hand, Aspergillus sp. CNOlO, CN161, Rhizopus sp. CN105, CN168 and Rhizomucor sp. CN088 produced high acid production on the same medium. Our results showed that the active strains may be used as microbial sources for nuruk starter with good quality in brewing.
Article
The use of tartary buckwheat flour as a source of dietary rutin has been limited because of the enzymatic degradation of rutin during the dough-making process, which results in a bitter taste. A variety of pretreatment regimes, including heating, steaming, boiling, and extruding, were evaluated in relation to the inactivation of the rutin-degrading enzyme responsible for rutin loss and color change during dough-making. Steaming (120 sec), boiling (90 sec) buckwheat grains, or extruding (180 rpm/min at 140°C) the flour resulted in the retention of >85% of the original rutin and eliminated the bitter taste in the hydrated flours. In contrast, dry heating at 140°C for 9 min or microwaving at 2,450 MHz for 3 min did not reduce the rutin loss, and the bitter taste remained. Unlike in the flour, the rutin degradation in water-soaked grains was insignificant at room temperature. Moreover, the samples treated by steaming, boiling, or extrusion were darker and more reddish in color.
Article
Makgeolli is a traditional alcoholic beverage prepared from rice, barley, wheat or malt grains by fermentation using a natural starter called nuruk. The makgeolli flavour depends mainly on the content of the metabolic products (free sugars, amino acids, organic acids and aromatic compounds) produced during the fermentation of rice by moulds and yeasts. Compared with other alcoholic beverages, makgeolli contains high concentrations of nutrients, organic acids and 6–8% alcohol. Makgeolli is nutritious and is composed of 80% water, 2% protein, 0.8% carbohydrates, 0.1% fat and 10% dietary fibre, along with vitamins B and C, as well as a significant amount of lactobacilli and yeast. It has been reported that makgeolli has medicinal effects including antioxidant, anti-hypertensive, anti-diabetes and anti-cancer activities. Since makgeolli is a good source of vitamins, minerals, sugars, proteins, organic acids and free amino acids, as well as having significant medicinal importance, it can be considered a functional, medicinal and probiotic beverage. Copyright © 2015 The Institute of Brewing & Distilling
Article
This study was examined the quality characteristics of 20 types of non-sterilized commercial Makgeolli. These samples are classified according to firm size, enterprise Makgeolli(4 samples), prize-winning Makgeolli(6) and local Makgeolli(10). The alcohol contents of Makgeolli was determinded as follows: enterprise Makgeolli(6.18%), local Makgeolli(7.11%), and award-winning( 7.87%). Enterprise Makgeolli(0.24%) showed higher total acidity than award-winning and local Makgeolli(0.21%). In addition, pH levels were as follows: local Makgeolli(3.75), award-winning Makgeolli(3.77), and enterprise Makgeolli(4.09). Enterprise Makgeolli had the lowest sugar content. According to the sensory evaluation, three grades were identified based on balance and taste(5 points). The upper grade(more than 3 points) showed a higher pH, reducing sugar, higher aminoacidity, more soluble solids, and larger color differences than other grades. There were no significant differences in the level of acidity across the grades. The alcohol and volatile acid contents of the upper grade were lower than the middle(2.0-2.9 points) and lower(under 2.0 points) grades. Further research should provide a quality analysis of leavening agents and fermentation conditions, and a sensory evaluation.