Preprint

Higher angular momentum band inversions in two dimensions

Authors:
Preprints and early-stage research may not have been peer reviewed yet.
To read the file of this research, you can request a copy directly from the authors.

Abstract

We study a special class of topological phase transitions in two dimensions described by the inversion of bands with relative angular momentum higher than 1. A band inversion of this kind, which is protected by rotation symmetry, separates the trivial insulator from a Chern insulating phase with higher Chern number, and thus generalizes the quantum Hall transition described by a Dirac fermion. Higher angular momentum band inversions are of special interest, as the non-vanishing density of states at the transition can give rise to interesting many-body effects. Here we introduce a series of minimal lattice models which realize higher angular momentum band inversions. We then consider the effect of interactions, focusing on the possibility of electron-hole exciton condensation, which breaks rotational symmetry. An analysis of the excitonic insulator mean field theory further reveals that the ground state of the Chern insulating phase with higher Chern number has the structure of a multicomponent integer quantum Hall state. We conclude by generalizing the notion of higher angular momentum band inversions to the class time-reversal invariant systems, following the scheme of Bernevig-Hughes-Zhang (BHZ). Such band inversions can be viewed as transitions to a topological insulator protected by rotation and inversion symmetry, and provide a promising venue for realizing correlated topological phases such as fractional topological insulators.

No file available

Request Full-text Paper PDF

To read the file of this research,
you can request a copy directly from the authors.

ResearchGate has not been able to resolve any citations for this publication.
Article
Measurements of the Hall voltage of a two-dimensional electron gas, realized with a silicon metal-oxide-semiconductor field-effect transistor, show that the Hall resistance at particular, experimentally well-defined surface carrier concentrations has fixed values which depend only on the fine-structure constant and speed of light, and is insensitive to the geometry of the device. Preliminary data are reported.
Article
The control of intrinsic anomalous Hall effect (AHE) in metallic ferromagnets by Berry phases was described. The Berry phases, which is a Fermi liquid property, is found to be accumulated by adiabatic motion of quasiparticles on the Fermi surface. It was found that in the absence of BCS pairing processes, breakdown of extra conservation laws occurred only through nonadiabatic impurity or surface scattering. The addition of quasiparticle Berry phases as a topological ingredient to the Landau Fermi-liquid theory was proposed, in the presence of broken inversion or time-reversal symmetry.
Article
We study the effects of spin orbit interactions on the low energy electronic structure of a single plane of graphene. We find that in an experimentally accessible low temperature regime the symmetry allowed spin orbit potential converts graphene from an ideal two-dimensional semimetallic state to a quantum spin Hall insulator. This novel electronic state of matter is gapped in the bulk and supports the transport of spin and charge in gapless edge states that propagate at the sample boundaries. The edge states are nonchiral, but they are insensitive to disorder because their directionality is correlated with spin. The spin and charge conductances in these edge states are calculated and the effects of temperature, chemical potential, Rashba coupling, disorder, and symmetry breaking fields are discussed.
Article
We study three-dimensional generalizations of the quantum spin Hall (QSH) effect. Unlike two dimensions, where a single Z2 topological invariant governs the effect, in three dimensions there are 4 invariants distinguishing 16 phases with two general classes: weak (WTI) and strong (STI) topological insulators. The WTI are like layered 2D QSH states, but are destroyed by disorder. The STI are robust and lead to novel "topological metal" surface states. We introduce a tight binding model which realizes the WTI and STI phases, and we discuss its relevance to real materials, including bismuth.
  • N Read
  • D Green
N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
  • B A Bernevig
  • T L Hughes
  • S.-C Zhang
B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science 314, 1757 (2006).
  • L Fu
  • C L Kane
L. Fu and C. L. Kane, Phys. Rev. B 76, 045302 (2007).
  • M Z Hasan
  • C L Kane
M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
  • X.-L Qi
  • S.-C Zhang
X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
  • A P Schnyder
  • S Ryu
  • A Furusaki
  • A W W Ludwig
A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Phys. Rev. B 78, 195125 (2008).
  • C.-K Chiu
  • J C Y Teo
  • A P Schnyder
  • S Ryu
C.-K. Chiu, J. C. Y. Teo, A. P. Schnyder, and S. Ryu, Rev. Mod. Phys. 88, 035005 (2016).
  • A W W Ludwig
  • M P A Fisher
  • R Shankar
  • G Grinstein
A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, Phys. Rev. B 50, 7526 (1994).
  • C Fang
  • M J Gilbert
  • X Dai
  • B A Bernevig
C. Fang, M. J. Gilbert, X. Dai, and B. A. Bernevig, Phys. Rev. Lett. 108, 266802 (2012).
  • B Bradlyn
  • L Elcoro
  • J Cano
  • M G Vergniory
  • Z Wang
  • C Felser
  • M I Aroyo
  • B A Bernevig
B. Bradlyn, L. Elcoro, J. Cano, M. G. Vergniory, Z. Wang, C. Felser, M. I. Aroyo, and B. A. Bernevig, Nature 547, 298 (2017).
  • H C Po
  • A Vishwanath
  • H Watanabe
H. C. Po, A. Vishwanath, and H. Watanabe, Nat. Commun. 8, 50 (2017).
  • J Kruthoff
  • J De Boer
  • J Van Wezel
  • C L Kane
  • R.-J Slager
J. Kruthoff, J. de Boer, J. van Wezel, C. L. Kane, and R.-J. Slager, Phys. Rev. X 7, 041069 (2017).
  • T L Hughes
  • E Prodan
  • B A Bernevig
T. L. Hughes, E. Prodan, and B. A. Bernevig, Phys. Rev. B 83, 245132 (2011).
  • C Fang
  • M J Gilbert
  • B A Bernevig
C. Fang, M. J. Gilbert, and B. A. Bernevig, Phys. Rev. B 86, 115112 (2012).
  • F D M Haldane
F. D. M. Haldane, Phys. Rev. Lett. 61, 2015 (1988).
  • D J Thouless
  • M Kohmoto
  • M P Nightingale
  • M Den Nijs
D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
  • N Regnault
  • B A Bernevig
N. Regnault and B. A. Bernevig, Phys. Rev. X 1, 021014 (2011).
  • S A Parameswaran
  • R Roy
  • S L Sondhi
S. A. Parameswaran, R. Roy, and S. L. Sondhi, Comptes Rendus Physique 14, 816 (2013).
  • T Neupert
  • C Chamon
  • T Iadecola
  • L H Santos
  • C Mudry
T. Neupert, C. Chamon, T. Iadecola, L. H. Santos, and C. Mudry, Physica Scripta 2015, 014005 (2015).
  • Z Liu
  • E J Bergholtz
Z. Liu and E. J. Bergholtz, Int. J. Mod. Phys. B 27, 1330017 (2013).
  • X Liu
  • Z Wang
  • X C Xie
  • Y Yu
X. Liu, Z. Wang, X. C. Xie, and Y. Yu, Phys. Rev. B 83, 125105 (2011).
  • K Sun
  • H Yao
  • E Fradkin
  • S A Kivelson
K. Sun, H. Yao, E. Fradkin, and S. A. Kivelson, Phys. Rev. Lett. 103, 046811 (2009).
  • F Zhang
  • H Min
  • M Polini
  • A H Macdonald
F. Zhang, H. Min, M. Polini, and A. H. MacDonald, Phys. Rev. B 81, 041402 (2010).
  • O Vafek
  • K Yang
O. Vafek and K. Yang, Phys. Rev. B 81, 041401 (2010).
  • R Nandkishore
  • L Levitov
R. Nandkishore and L. Levitov, Phys. Rev. B 82, 115124 (2010).
  • S Uebelacker
  • C Honerkamp
S. Uebelacker and C. Honerkamp, Phys. Rev. B 84, 205122 (2011).
  • J M Murray
  • O Vafek
J. M. Murray and O. Vafek, Phys. Rev. B 89, 201110 (2014).
  • B Dóra
  • I F Herbut
  • R Moessner
B. Dóra, I. F. Herbut, and R. Moessner, Phys. Rev. B 90, 045310 (2014).
  • Y Hu
  • J W F Venderbos
  • C L Kane
Y. Hu, J. W. F. Venderbos, and C. L. Kane, Phys. Rev. Lett. 121, 126601 (2018).
  • D Jérome
  • T M Rice
  • W Kohn
D. Jérome, T. M. Rice, and W. Kohn, Phys. Rev. 158, 462 (1967).
  • F Wang
  • Y Ran
F. Wang and Y. Ran, Phys. Rev. B 84, 241103 (2011).
  • Y.-F Wang
  • H Yao
  • C.-D Gong
  • D N Sheng
Y.-F. Wang, H. Yao, C.-D. Gong, and D. N. Sheng, Phys. Rev. B 86, 201101 (2012).
  • S Yang
  • Z.-C Gu
  • K Sun
  • S Das Sarma
S. Yang, Z.-C. Gu, K. Sun, and S. Das Sarma, Phys. Rev. B 86, 241112 (2012).
  • M Trescher
  • E J Bergholtz
M. Trescher and E. J. Bergholtz, Phys. Rev. B 86, 241111 (2012).
  • S Kourtis
S. Kourtis, Phys. Rev. B 97, 085108 (2018).
  • C Nayak
C. Nayak, Phys. Rev. B 62, 4880 (2000).
  • N Nagaosa
  • J Sinova
  • S Onoda
  • A H Macdonald
  • N P Ong
N. Nagaosa, J. Sinova, S. Onoda, A. H. MacDonald, and N. P. Ong, Rev. Mod. Phys. 82, 1539 (2010).
  • J Dubail
  • N Read
J. Dubail and N. Read, Phys. Rev. B 92, 205307 (2015).
  • M Barkeshli
  • X.-L Qi
M. Barkeshli and X.-L. Qi, Phys. Rev. X 2, 031013 (2012).
  • B A Bernevig
  • S.-C Zhang
B. A. Bernevig and S.-C. Zhang, Phys. Rev. Lett. 96, 106802 (2006).
  • M Levin
  • A Stern
M. Levin and A. Stern, Phys. Rev. Lett. 103, 196803 (2009).
  • A Karch
  • J Maciejko
  • T Takayanagi
A. Karch, J. Maciejko, and T. Takayanagi, Phys. Rev. D 82, 126003 (2010).
  • Y.-M Lu
  • Y Ran
Y.-M. Lu and Y. Ran, Phys. Rev. B 85, 165134 (2012).
  • A Chan
  • T L Hughes
  • S Ryu
  • E Fradkin
A. Chan, T. L. Hughes, S. Ryu, and E. Fradkin, Phys. Rev. B 87, 085132 (2013).
  • J Maciejko
  • G A Fiete
J. Maciejko and G. A. Fiete, Nature Physics 11, 385 (2015).
  • T Neupert
  • L Santos
  • S Ryu
  • C Chamon
  • C Mudry
T. Neupert, L. Santos, S. Ryu, C. Chamon, and C. Mudry, Phys. Rev. B 84, 165107 (2011).