Lewis pair (LP) chemistry has shown broad applications in the catalysis field. However, one significant challenge has been recognized as the instability for most homogeneous LP catalysts upon recycling, thus inevitably leading to dramatic loss in catalytic activity. Additionally, current heterogeneous LP catalysts suffer from low surface area, which largely limits their catalytic efficiency, thereby restricting their potential applications. In this work, we report the successful introduction of LPs, classical and frustrated, into a metal-organic framework (MOF) that features high surface and ordered pore structure via a stepwise anchoring strategy. Not only can the LP be stabilized by the strong coordination interaction between the LP and MOF, but the resultant MOF-LP also demonstrates excellent catalysis performance with interesting size and steric selectivity. Given the broad applicability of LPs, our work therefore paves a way for advancing MOF-LP as a new paradigm for catalysis.