BookPDF Available

A Textbook of Inorganic Chemistry - Volume 1

Authors:

Abstract

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. . This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry - Volume I, II, III, IV". ║ Chapter 1: Stereochemistry and Bonding in Main Group Compounds ║ Chapter 2: Metal-Ligand Equilibria in Solution ║ Chapter 3: Reaction Mechanism of Transition Metal Complexes-I ║ Chapter 4: Reaction Mechanism of Transition Metal Complexes-II ║ Chapter 5: Isopoly and Heteropoly Acids and Salts ║ Chapter 6: Crystal Structures ║ Chapter 7: Metal-Ligand Bonding ║ Chapter 8: Electronic Spectra of Transition Metal Complexes ║ Chapter 9: Magantic Properties of Transition Metal Complexes ║ Chapter 10: Metal Clusters ║ Chapter 11: Metal-π Complexes ║
A TEXTBOOK OF INORGANIC
CHEMISTRY
Volume I
Mandeep Dalal
Publisher:
Dalal Institute, Main Market, Sector 14, Rohtak, Haryana 124001, India
(info@dalalinstitute.com, +91-9802825820)
www.dalalinstitute.com
Copyright Notice:
No part of this book may be reproduced in any written, electronic, recording, or photocopying without written
permission of the publisher or author. The exception would be in the case of brief quotations embodied in the
critical articles or reviews and pages where permission is specifically granted by the publisher or author.
Copyright Owner:
A Textbook of Inorganic Chemistry Volume 1 / Mandeep Dalal (First Edition)
Copyright © 2017 by Mandeep Dalal. All Rights Reserved
First published: 2017, Paperback Identifiers: 9788193872000 (ISBN-13), 8193872002 (ISBN-10)
Disclaimer:
Although every precaution has been taken to verify the accuracy of the information contained herein, the author
and publisher assume no responsibility for any errors or omissions. No liability is assumed for damages that
may result from the use of the information contained within.
Credits:
The dedication image is a derivative work of the famous painting “Innocence” by William-Adolphe
Bouguereau, whereas the image on the front cover is a derivative work of Dimitris Christou’s “Precious
Diamond”.
Dedicated to my mother “Darshana Devi
This Page is Intentionally Left Blank
PREFACE
The preface writing has always been a wonderful feeling that cannot be expressed in words as it
relates you to your audience through your work. I conceived the idea of writing a new advanced-level textbook
in inorganic chemistry during my Ph.D pursuit when I saw post-graduate chemistry students who were tired
in search of the syllabus topics because of their ill-resourced university or college library. I also decided to
write the textbooks of physical and organic chemistry because I think that someone who wants to teach or text
one stream must have the core conceptual understanding of all the three streams of chemical science otherwise
one would not be able to connect and explain the interdisciplinary topics in a comprehensive manner.
Out of the series of three textbooks, the present book, entitled “A Textbook of Inorganic Chemistry
– Volume 1”, is the first installment of “A Textbook of Inorganic Chemistry” which is a four-volume set in
all. All the students and teachers are advised to read and consult all the four volumes in a subsequent pattern
for a more efficient understanding of the subject of inorganic chemistry.
I also celebrate this opportunity for expressing the bottom hearted gratitude towards the people who
supported me at all stages of my work. First of all, I would like to express my sincere gratitude to my doctoral
supervisors, Prof. S. P. Khatkar and Prof. V.B. Taxak for their continuous support and guidance from day one.
Then I would like to record appreciation to my lovely sister, Jyoti Dalal, for her unconditional love, support
and for being the guiding light when life threw me in the darkest of corners. I am very much thankful to my
beautiful wife, Anita Sangwan, who always stands shoulder to shoulder with me in my good and bad times. I
especially want to thank my brother Sandeep Dalal for his positive criticism, encouragement, motivation and
truly selfless support. A special thanks to my dearest sister Garima Sheoran for her love, care, and all-time
encouragement. I also wish to thank my entire family, friends and teachers for providing a loving environment
for me.
Lastly, and most importantly, I wish to thank my mother, Darshana Devi, who bore me, raised me,
supported me, taught me, and loved me.
Mandeep Dalal
This Page is Intentionally Left Blank
Table of Contents
CHAPTER 1 ..................................................................................................................................... 11
Stereochemistry and Bonding in Main Group Compounds: ........................................................ 11
VSEPR Theory ................................................................................................................................ 11
dπ–pπ Bonds .................................................................................................................................... 23
Bent Rule and Energetic of Hybridization....................................................................................... 28
Problems .......................................................................................................................................... 42
Bibliography .................................................................................................................................... 43
CHAPTER 2 ..................................................................................................................................... 44
Metal-Ligand Equilibria in Solution:................................................................................................. 44
Stepwise and Overall Formation Constants and Their Interactions ................................................ 44
Trends in Stepwise Constants .......................................................................................................... 46
Factors Affecting Stability of Metal Complexes with Reference to the Nature of Metal Ion and
Ligand .............................................................................................................................................. 49
Chelate Effect and Its Thermodynamic Origin ................................................................................ 56
Determination of Binary Formation Constants by pH-metry and Spectrophotometry .................... 63
Problems .......................................................................................................................................... 68
Bibliography .................................................................................................................................... 69
CHAPTER 3 ..................................................................................................................................... 70
Reaction Mechanism of Transition Metal Complexes – I: ............................................................ 70
Inert and Labile Complexes ............................................................................................................. 70
Mechanisms for Ligand Replacement Reactions ............................................................................ 77
Formation of Complexes from Aquo Ions ....................................................................................... 82
Ligand Displacement Reactions in Octahedral Complexes- Acid Hydrolysis, Base Hydrolysis .... 86
Racemization of Tris Chelate Complexes ....................................................................................... 89
Electrophilic Attack on Ligands ...................................................................................................... 92
Problems .......................................................................................................................................... 94
Bibliography .................................................................................................................................... 95
CHAPTER 4 ..................................................................................................................................... 96
Reaction Mechanism of Transition Metal Complexes – II: ...................................................... 96
Mechanism of Ligand Displacement Reactions in Square Planar Complexes ................................ 96
The Trans Effect .............................................................................................................................. 98
Theories of Trans Effect ................................................................................................................ 103
Mechanism of Electron Transfer Reactions – Types; Outer Sphere Electron Transfer Mechanism and
Inner Sphere Electron Transfer Mechanism .................................................................................. 106
Electron Exchange ......................................................................................................................... 117
Problems ........................................................................................................................................ 121
Bibliography .................................................................................................................................. 122
CHAPTER 5 ................................................................................................................................... 123
Isopoly and Heteropoly Acids and Salts: ........................................................................................ 123
Isopoly and Heteropoly Acids and Salts of Mo and W: Structures of Isopoly and Heteropoly
Anions ............................................................................................................................................123
Problems ........................................................................................................................................ 152
Bibliography .................................................................................................................................. 153
CHAPTER 6 ................................................................................................................................... 154
Crystal Structures: ............................................................................................................................... 154
Structures of Some Binary and Ternary Compounds Such as Fluorite, Antifluorite, Rutile, Antirutile,
Crystobalite, Layer Lattices - CdI2, BiI3; ReO3, Mn2O3, Corundum, Pervoskite, Ilmenite and
Calcite.............................................................................................................................................154
Problems ........................................................................................................................................ 178
Bibliography .................................................................................................................................. 179
CHAPTER 7 ................................................................................................................................... 180
Metal-Ligand Bonding: ....................................................................................................................... 180
Limitation of Crystal Field Theory ................................................................................................ 180
Molecular Orbital Theory – Octahedral, Tetrahedral or Square Planar Complexes ...................... 184
π-Bonding and Molecular Orbital Theory ..................................................................................... 198
Problems ........................................................................................................................................ 212
Bibliography .................................................................................................................................. 213
CHAPTER 8 ................................................................................................................................... 214
Electronic Spectra of Transition Metal Complexes: .................................................................... 214
Spectroscopic Ground States ......................................................................................................... 214
Correlation and Spin-Orbit Coupling in Free Ions for 1st Series of Transition Metals ................. 243
Orgel and Tanabe-Sugano Diagrams for Transition Metal Complexes (d1d9 States) ................ 248
Calculation of Dq, B and β Parameters ......................................................................................... 280
Effect of Distortion on the d-Orbital Energy Levels ..................................................................... 300
Structural Evidence from Electronic Spectrum ............................................................................. 307
Jahn-Tellar Effect .......................................................................................................................... 312
Spectrochemical and Nephelauxetic Series ................................................................................... 324
Charge Transfer Spectra ................................................................................................................ 328
Electronic Spectra of Molecular Addition Compounds ................................................................. 336
Problems ........................................................................................................................................ 340
Bibliography .................................................................................................................................. 341
CHAPTER 9 ................................................................................................................................... 342
Magnetic Properties of Transition Metal Complexes: ................................................................. 342
Elementary Theory of Magneto-Chemistry ................................................................................... 342
Guoy’s Method for Determination of Magnetic Susceptibility ..................................................... 351
Calculation of Magnetic Moments ................................................................................................ 354
Magnetic Properties of Free Ions ................................................................................................... 359
Orbital Contribution: Effect of Ligand-Field ................................................................................ 362
Application of Magneto-Chemistry in Structure Determination ................................................... 370
Magnetic Exchange Coupling and Spin State Cross Over ............................................................ 375
Problems ........................................................................................................................................ 384
Bibliography .................................................................................................................................. 385
CHAPTER 10 ................................................................................................................................. 386
Metal Clusters: ...................................................................................................................................... 386
Structure and Bonding in Higher Boranes ..................................................................................... 386
Wade’s Rules ................................................................................................................................. 401
Carboranes ..................................................................................................................................... 407
Metal Carbonyl Clusters- Low Nuclearity Carbonyl Clusters....................................................... 412
Total Electron Count (TEC) .......................................................................................................... 417
Problems ........................................................................................................................................ 424
Bibliography .................................................................................................................................. 425
CHAPTER 11 ................................................................................................................................. 426
Metal-Π Complexes: ............................................................................................................................ 426
Metal Carbonyls: Structure and Bonding ...................................................................................... 426
Vibrational Spectra of Metal Carbonyls for Bonding and Structure Elucidation .......................... 439
Important Reactions of Metal Carbonyls ....................................................................................... 446
Preparation, Bonding, Structure and Important Reactions of Transition Metal Nitrosyl, Dinitrogen
and Dioxygen Complexes .............................................................................................................. 450
Tertiary Phosphine as Ligand ........................................................................................................ 463
Problems ........................................................................................................................................ 469
Bibliography .................................................................................................................................. 470
INDEX ............................................................................................................................................. 471
LEGAL NOTICE
This document is an excerpt from the book entitled “A
Textbook of Inorganic Chemistry – Volume 1 by
Mandeep Dalal”, and is the intellectual property of the
Author/Publisher. The content of this document is
protected by international copyright law and is valid
only for the personal preview of the user who has
originally downloaded it from the publisher’s website
(www.dalalinstitute.com). Any act of copying (including
plagiarizing its language) or sharing this document will
result in severe civil and criminal prosecution to the
maximum extent possible under law.
This is a low resolution version only for preview purpose. If you
want to read the full book, please consider buying.
Buy the complete book with TOC navigation, high resolution
images and no watermark.
D DALAL
INSTITUTE
Home
Classes
Books
Videos
Location
Contact
Us
About
Us
°'
Followus:
OOOGO
CLASSES
NET-JRF,
llT-GATE, M.Sc Entrance &
llT-JAM
Want
to
study
chemistry
for
CSIR
UGC
-
NET
JRF,
llT-GATE, M.Sc Entrance, llT-JAM,
UPSC,
ISRO,
II
Sc,
TIFR,
DRDO,
BARC,
JEST,
GRE,
Ph.D
Entrance
or
any
other
competitive
examination
where
chemistry
is a
paper?
READ
MORE
Home
BOOKS
Publications
Are
you
interested
in
books
(Print
and Ebook)
published
by
Dalal
Institute?
READ
MORE
Share
this
article/info
with
your
classmates and
friends
VIDEOS
Video Lectures
Want
video
lectures
in
chemistry
for
CSIR
UGC
-
NET
JRF.
llT-GATE. M.Sc Entrance, llT-JAM,
UPSC,
ISRO,
II
Sc,
TIFR,
DRDO,
BARC,
JEST,
GRE,
Ph.D Entrance
or
any
other
competitive
examination
where
chemistry
is a
paper?
READ
MORE
--------
join
the
revolution
by
becoming
a
part
of
our
community
and
get
all
of
the
member
benefits
like
downloading
any
PDF
document
for
your
personal
preview
.
Sign Up
Copyright©
2019 Dalal
Institute
Home: https://www.dalalinstitute.com/
Classes: https://www.dalalinstitute.com/classes/
Books: https://www.dalalinstitute.com/books/
Videos: https://www.dalalinstitute.com/videos/
Location: https://www.dalalinstitute.com/location/
Contact Us: https://www.dalalinstitute.com/contact-us/
About Us: https://www.dalalinstitute.com/about-us/
Postgraduate Level Classes
(NET-JRF & IIT-GATE)
Admission
Regular Program Distance Learning
Test Series Result
Undergraduate Level Classes
(M.Sc Entrance & IIT-JAM)
Admission
Regular Program Distance Learning
Test Series Result
A Textbook of Inorganic Chemistry – Volume 1
“A Textbook of Inorganic Chemistry – Volume 1 by Mandeep Dalal” is now available globally; including India,
America and most of the European continent. Please ask at your local bookshop or get it online here.
READ MORE
Join the revolution by becoming a part of our community and get all of the member benefits
like downloading any PDF document for your personal preview.
Sign Up
Copyright © Mandeep Dalal
INDEX
A
Acid hydrolysis ................................................... 86
Effect of the leaving group ............................. 87
Solvation energy of the intermediate .............. 87
Steric hindrance .............................................. 87
Antiferromagnetic coupling .............................. 379
Antiferromagnetic materials ............................. 351
Application of magnetochemistry .................... 370
Determination of electronic configuration ... 371
Determination of oxidation state .................. 370
Determination of stereochemistry ................ 371
B
Base hydrolysis ................................................... 87
Hydroly of the complex ions without acidic
protons ........................................................ 89
Hydrolysis of anionic complexes ................... 89
Nucleophilic strength ...................................... 89
Bent’s Rule ......................................................... 36
Bond angles .................................................... 37
Bond lengths ................................................... 38
Coupling constants ......................................... 39
Exceptions ...................................................... 41
Inductive effect ............................................... 40
Berry-pseudorotation .......................................... 81
Body centred close packing .............................. 158
Bonding in main group compounds .................... 11
C
Calculation of magnetic moments ................... 354
Experimental magnetic moments ................ 354
Theoretical magnetic moments .................... 357
Carboranes ....................................................... 407
Arachno ....................................................... 409
Closo ............................................................ 407
Nido ............................................................. 408
Structural correlation between closo, nido and
arachno carboranes .................................. 410
Charge transfer spectra .................................... 328
Ligand to ligand charge transfer (LLCT) .... 335
Ligand to metal charge transfer (LMCT) .... 328
Metal to ligand charge transfer (MLCT) ..... 333
Metal to metal charge transfer (MMCT) ..... 334
Chelate effect or chelation ................................. 56
Applications of chelate complexes ................ 63
Characteristic features of chelates ................. 56
Ligand type .................................................... 56
Stability of chelates........................................ 58
Thermodynamic origin of chelation .............. 60
Correlation and spin-orbit coupling in free ions
for 1st series of transition metals ................. 243
d1 and d9 ions ............................................... 243
d2 and d8 ions ............................................... 244
d3 and d7 ions ............................................... 245
d4 and d6 ions ............................................... 246
d5 ions .......................................................... 247
472 A Textbook of Inorganic Chemistry Volume I
Copyright © Mandeep Dalal
Correlation diagrams ........................................ 248
d1 and d9 systems .......................................... 251
d2 and d8 systems .......................................... 252
d3 and d7 systems .......................................... 254
d4 and d6 systems .......................................... 256
d5 systems ..................................................... 258
Cross exchange reactions ................................. 117
Crystal structure of some binary compounds ... 154
Antifluorite ................................................... 160
Antirutile....................................................... 162
BiI3 ................................................................ 167
CdI2 ............................................................... 165
Corundum ..................................................... 172
Cristobalite ................................................... 163
Fluorite ......................................................... 159
Mn2O3 ........................................................... 170
ReO3 ............................................................. 169
Rutile ............................................................ 161
Crystal structure of some ternary compounds .. 154
Calcite ........................................................... 176
Ilmenite ......................................................... 175
Peroveskite ................................................... 173
Cubic close packing .......................................... 157
Curie temperature ..................................... 345, 377
Curie-Weiss law ............................................... 345
D
Decarboxylation ................................................. 92
Determination of binary formation constants ..... 63
Job's method ................................................... 65
Method of variation ........................................ 65
pH-metric method ........................................... 63
Spectroscopic methods .................................. 64
Diamagnetic materials ..................................... 349
dπ–pπ Bonds ...................................................... 23
Molecules with d-valence shell ..................... 23
Molecules with p-valence shell ..................... 26
E
Effect of distortion on d-orbital energy levels . 300
4-coordinated complexes ............................. 304
6-coordinated complexes ............................. 300
Rhombic distortion ...................................... 303
Tetragonal distortion .................................... 301
Trigonal distortion ....................................... 304
Electron exchange reactions ............................ 117
Electron transfer reactions ............................... 106
Inner sphere electron transfer mechanism ... 112
Outer sphere electron transfer mechanism... 106
Electronic spectra of molecular addition
compounds ................................................... 336
Electronic spectra of transition metal complexes
..................................................................... 214
Electrophilic attack on ligands ........................... 92
Elementary theory of magneto-chemistry........ 342
Basic terminology ........................................ 343
Classes of magnetic materials ...................... 349
Classical concept of magnetism ................... 344
Quantum mechanical concept of magnetism 346
Evidences for the covalent character in metal
ligand bond .................................................. 180
EPR spectra .................................................. 181
Lande's splitting factor ................................. 181
Nephelauxetic effect .................................... 180
INDEX 473
Copyright © Mandeep Dalal
NMR spectra ................................................. 181
Nuclear quadrupole resonance...................... 182
Superexchange .............................................. 182
F
Factors affecting stability of metal complexes ... 49
Backbonding by ligand ................................... 53
Basicity of the ligand ...................................... 53
Charge on the ligand ....................................... 52
Charge on the metal ion .................................. 50
Chelating effect of ligand ............................... 54
Class of the metal ion ..................................... 51
Concentration of ligand .................................. 55
Dipole moment of ligand ................................ 54
Ionic Potential ................................................. 50
Macrocyclic effect of ligand ........................... 55
Nature of the ligand ........................................ 52
Nature of the metal ion ................................... 49
Size of the ligand ............................................ 52
Size of the metal ion ....................................... 49
Special configuration of ligand....................... 54
Steric effect of ligand ..................................... 53
Factors affecting the stability of chelate
complexes ....................................................... 60
Charge on the ligand ....................................... 62
Lewis base strength of the ligand ................... 62
Nature of the metal ion ................................... 61
Number of chelate rings ................................. 61
Resonance effect ............................................. 61
Size of the chelate ring ................................... 60
Steric hindrance of the ligands ....................... 62
Steric strain in the ligand ................................ 62
Ferrimagnetic materials ................................... 381
Ferromagnetic coupling ................................... 376
Ferromagnetic materials .................................. 350
Formation constants ........................................... 44
Overall formation constants ........................... 44
Stepwise formation constants ........................ 44
Trends in stepwise constants ......................... 46
Frank-Condon principal ................................... 108
G
Gouy balance ................................................... 351
Guoy's method for measuring magnetic
susceptibility ................................................ 351
H
Heteropoly acids and salts ........................123, 144
1:12 (icosahedral heteroatom) ..................... 150
1:12 (tetrahedral heteroatom) ...................... 145
1:6 (octahedral heteroatom) ......................... 147
1:9 (octahedral heteroatom) ......................... 148
2:18 (tetrahedral heteroatom) ...................... 146
Heteropoly anions
[As2M18O62]6− ............................................... 146
[CoW12O40]6− ............................................... 146
[CoW12O50]5− ............................................... 146
[GeM12O40]4− ................................................ 145
[NaP5W36O110]14− ......................................... 151
[NiMo9O32]6− ................................................ 148
[P2M18O62]6− ................................................. 146
[SiM12O40]4− ................................................. 145
Hexagonal close packing ................................. 154
High nuclearity carbonyl clusters .................... 418
474 A Textbook of Inorganic Chemistry Volume I
Copyright © Mandeep Dalal
Electron counting scheme ............................. 418
Hybridization ...................................................... 28
BeCl2............................................................... 31
BF3 .................................................................. 32
CCl2Me2 .......................................................... 37
CH4 ................................................................. 32
dsp2 ................................................................. 34
H2O ................................................................. 36
Main features .................................................. 31
PbF2Me2 .......................................................... 37
PF5 .................................................................. 33
SF4 .................................................................. 37
SF6 .................................................................. 33
SiCl2Me2 ......................................................... 37
SOF4 ............................................................... 37
sp .....................................................................31
sp3 ................................................................... 32
sp3d ........................................................... 33, 35
sp3d2 .......................................................... 33, 35
sp3d3 .......................................................... 34, 35
TiMe2Cl2 ......................................................... 41
Types of hybridization .................................... 31
I
Inert and labile complexes .................................. 70
Evidences for the lability and inertness .......... 72
Factors affecting the kinetic stability or lability
of non-transition metal complexes ............. 75
From crystal field theory ................................ 71
From valence bond theory .............................. 71
Inert complexes .............................................. 72
Inner orbital complexes .................................. 71
Labile complexes ........................................... 71
Outer orbital complexes ................................. 71
SN1 or dissociative pathway .......................... 72
SN2 or associative pathway............................ 74
Inner sphere electron transfer mechanism ....... 112
Bridging complex ........................................ 114
Electronic configuration .............................. 115
Nature of the bridging ligand ....................... 116
Intensity of magnetization ............................... 343
Irving-William series ......................................... 49
Isopoly acids and salts ..................................... 123
Decamolybdate ............................................ 133
Dimolybdate ................................................ 127
Heptamolybdate ........................................... 128
Hexamolybdate ............................................ 132
Hexatungstate .............................................. 143
Metamolybdate ............................................ 128
Metatungstate ............................................... 140
Mo36-polymolybdate .................................... 135
Octamolybdate ............................................. 129
Paramolybdate ............................................. 128
Paratungstate ................................................ 137
Paratungstate B ............................................ 139
Tetramolybdate ............................................ 128
Tetratungstate .............................................. 144
Trimolybdate ............................................... 127
Tungstate Y .................................................. 141
Isopoly anions .................................................. 123
[Cr2O7]2− ...................................................... 123
[Cr3O10]2− ..................................................... 123
[Cr4O13]2− ..................................................... 123
[H2W12O40]6− ................................................ 140
INDEX 475
Copyright © Mandeep Dalal
[H2W12O42]10−................................................ 137
[Mo10O34]8− ................................................... 133
[Mo2O7]2− ...................................................... 127
[Mo3O10]2− .................................................... 127
[Mo4O13]2− .................................................... 128
[Mo6O19]2− .................................................... 133
[Mo7O24]6− .................................................... 128
[Mo8O26]4− ............................................ 128, 129
[Mo8O26]8− .................................................... 133
[W10O32]4 ..................................................... 141
[W4O16]8− ...................................................... 144
[W6O19]2 ...................................................... 143
[W7O24]6 .............................................. 135, 137
J
Jahn-Tellar effect .............................................. 312
Consequences of Jahn-Teller distortion ....... 322
Effect on the electronic spectra .................... 318
Energetics of Jahn-Teller distortion ............. 313
Static and dynamic distortion ....................... 321
K
Keggin structure ............................................... 145
Kinetic stability .................................................. 70
Non-transition metal complexes ..................... 75
Transition metal complexes ............................ 71
Kramers-Anderson superexchange ................... 182
L
Lability or inertness of non-transition metal
complexes ....................................................... 75
Charge on the central metal ion ...................... 75
Charge to ionic-size ratio ............................... 76
Geometry of the complex .............................. 76
Radii of central metal ion .............................. 75
Ligand cone angle ............................................ 465
Ligand displacement mechanism in octahedral
complexes ...................................................... 77
Interchange .................................................... 79
SN1 mechanism .............................................. 77
SN2 mechanism .............................................. 78
Ligand displacement mechanism in square planar
complexes .................................................80, 96
Normal SN2 pathway ..................................... 97
Solvent assisted SN2 pathway ........................ 96
Ligand field splitting........................................ 280
d1 complexes ................................................ 280
d2 complexes ................................................ 282
d3 complexes ................................................ 288
d4 complexes ................................................ 294
d5 complexes ................................................ 298
d6 complexes ................................................ 296
d7 complexes ................................................ 291
d8 complexes ................................................ 285
d9 complexes ................................................ 281
Limitations of crystal field theory ............180, 183
Lipscomb's model involving STYX numbers .. 391
Loadstone ..................................................342, 381
Low nuclearity carbonyl clusters ..................... 412
Dinuclear ..................................................... 413
Tetranuclear ................................................. 415
Trinuclear ..................................................... 414
476 A Textbook of Inorganic Chemistry Volume I
Copyright © Mandeep Dalal
M
Magnetic exchange coupling ............................ 375
Magnetic field strength ..................................... 343
Magnetic hysteresis loop .................................. 378
Magnetic induction ........................................... 343
Magnetic permeability ...................................... 343
Magnetic properties of free ions ....................... 359
Spin-orbial coupling in ground state is much
greater than thermal energy ...................... 359
Spin-orbital coupling in ground state is
comparable to thermal energy .................. 361
Spin-orbital coupling in ground state is much
less than thermal energy ........................... 361
Magnetic properties of transition metal complexes
...................................................................... 342
Magnetic susceptibility ..................................... 343
Magnetically dilute substances ......................... 375
Marcus theory of electron transfer .................... 119
Metal aquo complexes ........................................ 82
Acid-base reactions ........................................ 85
Eight coordinated ............................................ 83
Electron exchange .......................................... 84
Four coordinated ............................................. 83
Important reactions ......................................... 84
Ligand exchange ............................................. 84
Metal-metal bonding ...................................... 84
Nine coordinated ............................................ 83
Six-coordinated............................................... 82
Metal carbonyl clusters ............................. 412, 428
[Re4(CO)16]2 ................................................ 429
Co2(CO)8 ....................................................... 428
Co6(CO)16 ..................................................... 429
Fe2(CO)9 ...................................................... 428
Fe3(CO)12 ..................................................... 429
High nuclearity (HNCC) .............................. 412
Ir4(CO)12....................................................... 429
Low nuclearity (LNCC) ............................... 412
M4(CO)12 ...................................................... 429
M2(CO)10 ...................................................... 428
M3(CO)12 ...................................................... 429
Os4(CO)14 ..................................................... 429
Os4(CO)15 ..................................................... 429
Os4(CO)16 ..................................................... 429
Rh6(CO)16..................................................... 429
Metal carbonyls ............................................... 426
Bonding ....................................................... 431
Important reactions ...................................... 446
Methods of preparation ................................ 426
Structure ....................................................... 428
Metal clusters ................................................... 386
Metal dinitrogen complexes ............................ 455
Bonding ....................................................... 456
Preparation ................................................... 455
Reactions ..................................................... 459
Structure ....................................................... 458
Metal dioxygen complexes .............................. 459
Bonding ....................................................... 460
Preparation ................................................... 459
Reactions ..................................................... 463
Structure ....................................................... 462
Metal nitrosyl complexes ................................. 450
Bonding ....................................................... 451
Prepartion ..................................................... 450
Reactions ..................................................... 455
INDEX 477
Copyright © Mandeep Dalal
Structure ....................................................... 454
Metal-π complexes ........................................... 426
Molecular orbital theory ................................... 184
18-electron rule ............................................. 191
High-spin low-spin complexes ..................... 191
Jahn-Teller distortion .................................... 191
Octahedral complexes (pi-bonding) ............. 199
Octahedral complexes (sigma-bonding) ....... 185
Spin-only magnetic moment ......................... 191
Splitting of d-orbital ..................................... 191
Square planar complexes (pi-bonding) ......... 209
Square planar complexes (sigma-bonding) .. 195
Tetrahedral complexes (pi-bonding) ............ 206
Tetrahedral complexes (sigma bonding) ...... 192
Variation of ionic radii ................................. 192
N
Neel temperature .............................................. 346
Nephelauxetic ratio ........................................... 280
d1 complexes ................................................. 280
d2 complexes ................................................. 282
d3 complexes ................................................. 288
d4 complexes ................................................. 294
d5 complexes ................................................. 298
d6 complexes ................................................. 296
d7 complexes ................................................. 291
d8 complexes ................................................. 285
d9 complexes ................................................. 281
Nephelauxetic series ......................................... 326
Nephelauxetic order of ligands ..................... 328
Nephelauxetic order of metals ...................... 328
O
Orbital contribution to magnetic moment ........ 362
Effect of spin orbital coupling ..................... 367
Ligand field effect in octahedral complexes 363
Ligand field effect in tetrahedral complexes 365
Temperature independent paramagnetism ... 369
Orbital magnetic moment ................................ 347
Orbital magnetism ........................................... 362
A1 terms ....................................................... 367
A2 terms ....................................................... 368
E terms ......................................................... 368
Electronic configurations with orbital magnet in
octahedral complexes ............................... 364
Electronic configurations with orbital magnet in
tetrahedral complexes .............................. 366
Electronic configurations without orbital
magnet in octahedral complexes .............. 364
Electronic configurations without orbital
magnet in tetrahedral complexes ............. 366
Orgel diagrams .........................................248, 259
d1, d9, d4, d6 systems..................................... 259
d2, d8, d3, d7 systems..................................... 264
d5 systems .................................................... 269
Outer sphere electron transfer mechanism....... 106
Electronic configuration .............................. 111
Orbital overlap ............................................. 111
Orbital symmetry ......................................... 110
P
Paramagnetic materials .................................... 349
Pascal’s constants ............................................ 355
478 A Textbook of Inorganic Chemistry Volume I
Copyright © Mandeep Dalal
Pi-bonding and molecular orbital theory .......... 198
Octahedral complexes .................................. 199
Square-planar complexes .............................. 209
Tetrahedral complexes .................................. 206
Polyhedral skeletal electron pair theory (PSEPT)
...................................................................... 401
R
Racah parameter ............................................... 280
d1 complexes ................................................. 280
d2 complexes ................................................. 282
d3 complexes ................................................. 288
d4 complexes ................................................. 294
d5 complexes ................................................. 298
d6 complexes ................................................. 296
d7 complexes ................................................. 291
d8 complexes ................................................. 285
d9 complexes ................................................. 281
Racemization of tris chelate complexes ............. 89
Bailer twist...................................................... 90
Ray-dutt twist ................................................. 90
With breakage of metal ligand bond ............... 90
Without the breakage of metal ligand bond .... 90
Reactions of metal carbonyls ............................ 446
Disproportionation reaction .......................... 449
Formation of carbonylate anions .................. 447
Formation of carbonylate cations ................. 448
Formation of metal carbonyl nitrosyls or metal
nitrosyls .................................................... 449
Ligand displacement ..................................... 446
Synthesis of metal carbonyl halides or metal
halides ....................................................... 448
synthesis of metal carbonyl hydrides ........... 448
S
Self exchange reactions ................................... 117
Spectrochemical series..................................... 324
Spectrochemical order of ligands ................ 325
Spectrochemical order of metals ................. 325
Spectroscopic ground states ............................. 214
Atomic term symbols ................................... 219
Calculation of microstates ........................... 214
Derivation of term symbols when electrons are
present in same subshell .......................... 225
Determination of spectroscopic ground state
term .......................................................... 240
Spin magnetic moment .................................... 348
Spin state crossover ......................................... 382
Steric number ..................................................... 21
Structural evidence from electronic spectrum . 307
Molar absorptivity of assigned bands .......... 307
Splitting pattern of assigned bands .............. 309
Structure and bonding in higher boranes ......... 386
Classification of bonds present in higher
boranes ..................................................... 390
Decaborane-14 (B10H14) ............................... 398
Hexaborane-10 (B6H10) ................................ 397
Molecular orbital treatment of 3-centre-2-
electron bond ........................................... 387
Pentaborane-11 (B5H11) ............................... 396
Pentaborane-9 (B5H9) .................................. 395
Structural correlation between closo, nido and
arachno boranes ....................................... 399
Tetraborane-10 (B4H10) ................................ 394
INDEX 479
Copyright © Mandeep Dalal
Valence bond treatment of 3-centre-2-electron
bond .......................................................... 386
Symmetry adapted linear combinations of atomic
orbitals .................................................... 27, 186
T
Tanabe-Sugano diagrams ......................... 248, 271
d1 configuration ............................................ 272
d2 configuration ............................................ 273
d3 configuration ............................................ 274
d4 configuration ............................................ 275
d5 configuration ............................................ 276
d6 configuration ............................................ 277
d7 configuration ............................................ 278
d8 configuration ............................................ 279
d9 configuration ............................................ 272
Temperature independent paramagnetism ........ 369
Tertiary phosphine as ligand............................. 463
Bonding ........................................................ 464
Electronic properties ..................................... 465
Preparation .................................................... 463
Reactivity ...................................................... 463
Steric properties ............................................ 465
Structure ....................................................... 464
Tolman electronic parameter ............................ 466
Total electron count (TEC) ............................... 417
Correlation between TEC and SEP .............. 423
Isolobal analogy ............................................ 418
Trans effect ......................................................... 98
Applications of trans effect............................. 99
Kinetic trans effect ......................................... 98
Pi-bonding theory ......................................... 104
Polarization theory ....................................... 103
Theories of trans effect ................................ 103
Thermodynamic trans effect .......................... 99
Trans effect series .......................................... 98
V
Vibrational spectra of metal carbonyls ............ 439
Calculation of CO bond order ...................... 445
Differentiation of bridging and terminal
carbonyls .................................................. 444
Pi-basicity of metal centre ........................... 439
Structural prototype ..................................... 440
Study of reaction kinetics ............................ 446
Tolman electronic parameter ....................... 440
VSEPR Theory .................................................. 11
Application to molecular geometries ............. 14
AXE method .................................................. 21
Basic postulates ............................................. 13
BeCl2 molecule .............................................. 14
BF3 molecule ................................................. 14
BrF5 molecule ................................................ 19
CH4 molecule ................................................. 15
ClF3 molecule ................................................ 17
Five electron-pair domains ............................ 16
Four electron-pair domains ............................ 15
H2O molecule ................................................. 16
I3 molecular ion ............................................ 18
IF7 molecule ................................................... 20
Lewis concept of electron pair sharing .......... 11
Limitations of VSEPR model ........................ 23
Mendeleev’s periodic table ............................ 11
NH3 molecule ................................................. 15
480 A Textbook of Inorganic Chemistry Volume I
Copyright © Mandeep Dalal
PF5 molecule ................................................... 16
Points on the sphere model ............................. 12
Seven electron-pair domains .......................... 20
SF4 molecule ................................................... 16
SF6 molecule ................................................... 18
Six electron-pair domains ............................... 18
SO2 molecule .................................................. 14
Tangent sphere model ..................................... 12
Three electron-pair domains ........................... 14
Two electron-pair domains ............................. 14
XeF4 molecule ............................................... 19
XeF5 molecular ion ....................................... 21
XeOF5 molecular ion .................................... 20
W
Wade's rules ..................................................... 401
4n rule .......................................................... 401
5n rule .......................................................... 405
6n rule .......................................................... 406
Water molecule .............................................16, 36
... Specifically, among the five M nd orbitals, the two e g orbitals will form strong s-overlap with O 2p(s) orbitals resulting in highly energy-splitted e g and e g à orbitals, whereas the three M t 2g orbitals will weakly interact with O 2p (p) orbitals forming less-splitted t 2g à and t 2g orbitals. 88 The electrons from metal nd and O 2p states can therefore be accommodated into these molecular orbitals according to their energy levels, hence generating a band structure that can be schematically shown in different from what we formally called as "anionic redox," the latter originating from the O 2p NB/lone-pair states, as will be elaborated next. ...
... The concept arises from the deduction of the molecular orbitals based on group theory if we consider the existence of p-type interactions between metal nd and O 2p states. 88 Unlike layered LiMO 2 compounds in which the MO 6 octahedra shows a conventional O h symmetry, the MO 6 units in Li 2 MO 3 show a C 2 or C 2v symmetry. 92,93 This symmetry led researchers to deduce a symmetry-allowed interactions between M and O, including both sand p-type interactions. ...
... symmetrized Mn-O system. 64 Nevertheless, some reports show that the symmetry adapted linear combinations of the three O 2p orbitals also generate some unmatched symmetrized orbitals that remain as non-bonding states, 88,93 which is missing in other reports solely considering p-type interactions, leading to confusions that remain to be reconciled. ...
Chapter
Full-text available
For decades, Li-ion batteries are serving as a transformative technology in propelling off-network energy use as exemplified by the prosperity of portable electronics and electric vehicles. However, they are suffering from the shortage of energy density for modern-society energy storage, as the conventional way of Li-ion batteries work solely relies on redox reaction of transition metal (cationic redox) upon Li removal/uptake. This situation has been changed since the emergence of anionic redox, i.e., anions is redox center, that offers extra capacity in Li-rich electrode materials. In this chapter, we aim to briefly introduce how anionic redox chemistry concept rises and revolutionizes the cathode materials design in Li(Na)-ion batteries. We revisit the fundamental science behind anionic redox, and indicate how these knowledge opened new dimensionalities of electrode material design. We also summarize the progresses in understanding and solving the practical roadblocks for anionic redox, and highlight the remaining issues deserving to be explored in the future.
... Since the measured magnetic moments of Cu(II), Cr(III) and Fe(III) complexes agree with µ s.o., the orbital contribution to magnetic moment is minimal. This can be ascribed to the symmetrical occupation of the electronic configuration of t 2 g in octahedral geometries [24,25]. The unsymmetrical t 2 occupation of electrons in tetrahedra Cu(II) and Cr(III) (e 4 t 2 5 and e 2 t 2 1 , respectively) results in an orbital contribution to the magnetic moment [25], thus the tetrahedral geometry for Cu(II) and Cr(III) complexes may be not plausible. ...
... This can be ascribed to the symmetrical occupation of the electronic configuration of t 2 g in octahedral geometries [24,25]. The unsymmetrical t 2 occupation of electrons in tetrahedra Cu(II) and Cr(III) (e 4 t 2 5 and e 2 t 2 1 , respectively) results in an orbital contribution to the magnetic moment [25], thus the tetrahedral geometry for Cu(II) and Cr(III) complexes may be not plausible. On the other hand, symmetrically occupied e 2 t 2 3 in a tetrahedral Fe(III) configuration does not possess orbital magnetism and, thus, tetrahedral geometry for Fe(III) complexes is possible. ...
Article
Full-text available
Schiff bases have played significant roles in the development of inorganic or coordination chemistry. Three Schiff base (NB, CB and HB) ligands, prepared for the reaction of 2-amino-6-methoxy-benzothiazole with 2-Nitrobenzaldehyde, 2-chlorobenzaldehyde and 2,4-Dihydroxybenzaldehyed, respectively, were investigated for their transition metal complexes, which were prepared by reacting the ligand (2:1 molar ratio) with Co(II), Ni(II), Cu(II), Cd(II), Cr(III) and Fe(III) chlorides. The nature of the interaction between the metal ions and ligands (L) was studied with the aid of magnetic susceptibility, elemental analysis, FTIR and 1H-NMR spectroscopy. Based on the magnetic superstability and elemental analysis results, octahedral structures of the complexes, such as [ML2Cl2] or [ML2Cl(OH)], were proposed for Cu(II), Cd(II), Co(II) and Ni(II) in which the ligand (L:NB, CB or HB) is bidentate through the azomethine and benzothiazole nitrogen. For Cr(III) and Fe(III) complexes, octahedral ML2Cl(OH)2 or ML2(OH)3 structures were proposed, where one ligand is monodentate and the other is bidentate. The azomethine ν(-HC=N-) and 1H-NMR peaks of NB and CB were shifted to a higher frequency and downfield, respectively, upon complexation with metal ions. The bonding of OH groups of HB to Co(II), Cu(II) and Ni(II) enables π-backdonation from these metals to the azomethine of Schiff bases and the consequent shift of ν(-HC=N-) to a lower frequency and changes in the intensity of the 1H-NMR peak of OH. On the other hand, this backdonation was not evidenced in the FTIR of HB complexes with high-charge Cr(III) and Fe(III) ions.
... The nephelauxetic ratios (β) of Cr 3+ complexes were found to be 0.762, and that of Co 2+ complexes was 0.889, which indicates the covalency between the metal ions and their ligands. Both the Cr 3+ and Co 2+ complexes presented nephelauxetic ratios (β) value of less than one, which is due to the decrease in inter-electronic repulsion from electronic delocalization during the complexation process (Dalal, 2017). Because the nephelauxetic ratios (β) of the free metal ions are more than one. ...
Article
Full-text available
Metal complexes consist of metal ions chelated by a group of oppositely charged ions or neutral ligands. These compounds have various applications in stereochemistry, spectroscopy, catalysis, electrochemistry, agriculture, and the medical field; all play some significant roles. This work reports the complexes of Cr3+, Co2+, and Zn2+ metal ions derived from a 1H-imidazole ligand system. The complexes were characterized using EA, conductivity measurement, UV-Vis, FTIR, TGA, PXRD, HRMS, SEM-EDX, and 1H and 13C{H}NMR for the Zn2+ complex. Based on these characterizations, the ligand was found to act as a monodentate and formed a complex with the metal ions via a nitrogen atom. An octahedral geometry was obtained for Cr3+ and Co2+, with composition as [Cr(IM)4(H2O)2](NO3)3 and [Co(IM)6]Cl2, and tetrahedral geometry for Zn2+ as [Zn(IM)2(H2O)2]. Redox conduct of the free chelate and the complexes was studied using cyclic voltammetry (CV). The result showed that Cr3+ and Co2+ compounds displayed a reductive wave of a one-electron irreversible system for Cr3+ to Cr2+ and Co2+ to Co+ . The ligand shows a comparable electrochemical response to Cr3+ and Co2+ complexes with a reduction peak denoting a reduction involving one-electron transfer, while the Zn2+ complex shows neither oxidative nor reductive waves. The free ligand and the complexes were evaluated for antimicrobial activity against Gram-positive: (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative: (Escherichia coli and Klebsiella pneumoniae). From the result obtained, the complexes demonstrated enhanced activity compared to the ligand. The order of the activities among complexes on the organisms can be arranged as follows: Co2+ > Cr3+ > Zn2+
Article
Full-text available
The effect of Er³⁺ and Y³⁺ ion-co-substituted Mn0.5Zn0.5ErxYxFe2–2xO4 (MZErYF) (x ≤ 0.10) spinel nanoferrites (SNFs) prepared by a sonochemical approach was investigated. Surface and phase analyses were carried out using SEM, TEM, and XRD. Hyperfine parameters were determined by fitting room-temperature (RT) Mossbauer spectra. Magnetic field-dependent magnetization data unveiled the superparamagnetic nature at RT and ferrimagnetic nature at 10 K. RT saturation magnetization (MS) and calculated magnetic moments (nB) are 34.84 emu/g and 1.47 μB, respectively, and have indirect proportionalities with increasing ion content. MS and nB data have a similar trend at 10 K including remanent magnetizations (Mr). The measured coercivities (HC) are between 250 and 415 Oe. The calculated squareness ratios are in the range of 0.152–0.321 for NPs and assign the multidomain nature for NPs at 10 K. The extracted effective magnetocrystalline constants (Keff) have an order of 10⁴ erg/g except for Mn0.5Zn0.5Er0.10Y0.10Fe1.80O4 SNFs that has 3.37 × 10⁵ erg/g. This sample exhibits the greatest magnetic hardness with the largest magnitude of HC = 415 Oe and an internal anisotropy field Ha = 1288 Oe among all magnetically soft NPs.
182 L Lability or inertness of non-transition metal complexes
  • .............. . Kramers-Anderson Superexchange
Kramers-Anderson superexchange................... 182 L Lability or inertness of non-transition metal complexes....................................................... 75
368 Electronic configurations with orbital magnet in octahedral complexes
  • . . . E Terms
E terms......................................................... 368 Electronic configurations with orbital magnet in octahedral complexes............................... 364
446 Synthesis of metal carbonyl halides or metal halides
  • ................................ . Ligand Displacement
Ligand displacement..................................... 446 Synthesis of metal carbonyl halides or metal halides....................................................... 448 synthesis of metal carbonyl hydrides........... 448 S Self exchange reactions................................... 117
386 Classification of bonds present in higher boranes
  • . . . . Structure
Structure and bonding in higher boranes......... 386 Classification of bonds present in higher boranes..................................................... 390