ChapterPDF Available

The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive Immunity Effectors

Authors:
Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)
Interested in publishing with us?
Contact book.department@intechopen.com
Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com
Open access books available
Countries delivered to Contributors from top 500 universities
International authors and editor s
Our authors are among the
most cited scientists
Downloads
We are IntechOpen,
the world’s leading publisher of
Open Access books
Built by scientists, for scientists
12.2%
108,000
1.7 M
TOP 1%
151
3,500
Chapter 5
The Impact of Adjuvanted and Non-Adjuvanted
Influenza Vaccines on the Innate and Adaptive
Immunity Effectors
Mikhail Petrovich Kostinov,
Nelli Kimovna Akhmatova,
Ekaterina Alexandrovna Khromova,
Svetlana Anatolyevna Skhodova,
Vera Nikolaevna Stolpnikova,
Alexander Petrovich Cherdantsev and
Anna Egorovna Vlasenko
Additional information is available at the end of the chapter
http://dx.doi.org/10.5772/intechopen.77006
© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
Inluenza Vaccines on the Innate and Adaptive
Immunity Efectors
Mikhail PetrovichKostinov,
NelliKimovnaAkhmatova,
EkaterinaAlexandrovnaKhromova,
Svetlana AnatolyevnaSkhodova,
VeraNikolaevnaStolpnikova,
Alexander PetrovichCherdantsev and
Anna EgorovnaVlasenko
Additional information is available at the end of the chapter
Abstract
-
bodies formation is proved. However, cellular mechanisms, including parameters of
the innate immunity, involved in the vaccine-induced immune response are not well
studied. The human study of inactivated vaccines showed that both subunit vaccine
and split vaccine induced cellular immune response, but adjuvanted vaccine containing


can trigger intracellular signals leading to the induction of antiviral mechanisms and to
the activation of the body’s protective resources against microbial infections. To assess the

necessary to evaluate activation of cellular mechanisms of innate and adaptive immunity.
Keywords:
subpopulations, toll-like receptors
© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.
1. Introduction
  

inactivated (whole-virion, split-virion and subunit) vaccines. Currently, inactivated split and
             

domain of hemagglutinin protein and neuraminidase protein of contemporary serotypes of
 
        
enough for certain categories of vaccinated people [1–7]. Some of them are not able to protect
8–11].
     

great interest [12
-

of vaccines meant to activate all the components of the immune system. According to the

-
vate of not only adaptive, but also innate immunity, have been conducted. In addition, unlike
 



          
-
ratory infections in the postvaccinal period [13–15].
            
   16], and must meet at least one of the three
criteria:
seroconversion (percentage of subjects with a fourfold increase in antibody titers after vac-

seroprotection (percentage of subjects with a protective antibody titers before and

• multiplicity factor for the increase of antibody titers compared to baseline—at least 2.5.
Taking into account a new type of vaccine (adjuvanted), not only humoral, but also cellular
 
of cellular immunity parameters, important to the formation of immunological memory, may

Influenza - Therapeutics and Challenges84
             

the number of cells with toll-like receptor expression in vitro.
2. Materials and methods
2.1. Clinical characteristics of patients
-
 

previous 6 months.
2.2. Legal basis of the study
Once the signed informed consent for study participation was obtained, venous blood






        in vitro in healthy
            
USA), using anti-CD45/CD3, anti-CD45/CD3/CD4, anti-CD45/CD3/CD8, anti-CD16/56, anti-CD3/


2.4. Toll-like receptors
           
          

-
6
       
corresponding vaccine for 72 hours.
2.5. Study vaccines
         
   
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
85
          
       



-



baseline serum
antibody levels
HAI assay. The 4+ system was applied to HAI assay: an antigen titer, i.e., 1 HAU, was highest


2.6. Statistical analysis

    -

17
was used to account for multiple comparison (false discovery rate control) [18]. The obtained

3. Study results
   



               
infection in the unvaccinated volunteers could have been masked under the guise of another

          

and activated cells (Table 1).

Figure 1). It should be
-
cyte number except subunit vaccine, which caused a decrease in the percent of T lympho-
    
not change. These results may indicate a shift in the number of cells due to an increase in the
number of other subpopulations.
Influenza - Therapeutics and Challenges86
Lymphocyte
subpopulations
N % in comparison groups – Me(Q1–Q3) F p q
Control Subunit
V
Adjuvanted
V
Split-
product V
T lymphocytes

18 
(74.17–
83.35)
71.25
(64.7–

74.6



78.22)
  
Helper T cells

21 43.5

37.5
(32.7–
43.8)

(31.8–46.5)

(35.6–47.7)
  
Cytotoxic


21 23.5
(17.3–24.7)
21.2
(17.4–
23.6)
22.5

21.5
(18.4–5.8)
  


(CD16/56+)
24 4.85

13.2
(11.15–
14.85)
17.25

15
(13.8–16.25)
  


(CD3/CD16/56+)
24 1.6
(1.3–2.25)
3.6
(2.775–
5.825)
7.5
(6.675–8.225)
5
(4.625–6.75)
57.52  


24 5.15
(4.475–
6.725)
16.36
(15.47–
17.7)
21.15

18.1
(15.88–

167.44  
Activated
cytotoxic
T lymphocytes,

 



1.6
(1.2–2.4)
1.35


13.36  
Activated
T lymphocytes

12 

2.7
(1.875–
3.375)

(3.775–7.1)
2.6

  
Activated
lymphocytes
(CD45/CD25+)
16 1.45
(1–1.775)
3.7
(2.6–4.85)
4.15

4.15

5.275)
  

Tregs

13 2.7

3.5

3.7
(3.2–5.5)
4.2
(2.2–4.5)
4.27  

(CD4/CD8)
 1.825
(1.5–3.275)
1.85
(1.45–
2.325)
1.85
(1.4–2.5)
1.65
(1.475–.525)
1.26  
6
  2     


Table 1.
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
87


Figure 1-
   


Figure 2).
Figure 1.     
   

Figure 2.   
               

Influenza - Therapeutics and Challenges88
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
89
 
higher after in vitro
-

      
           
-


              








Table 1, Figure 1).
              
         
              
Figure 2
-


            
      
  
compared to control. Immunoadjuvant-containing vaccine had the greatest potential for
  

     -


-

              
         
  Table 1, Figure 1).
Influenza - Therapeutics and Challenges90
        
        
        
            


However, changes in the number of activated cytotoxic T lymphocytes in vitro between vac-
       
Figure 2
             

    

Table 1, Figure 1





Figure 2

-
           
Figure 2).
-

Table 1, Figure 1).All types of vaccines increased number

  





Figure 2).
    
          

          


The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
91


Table 1, Figure 1). Immunoadjuvant-containing
           


     
Figure 2




Table 2.

 Table 2, Figure 3    -
   
             
-

between vaccine types.
        


      Figure 4    
TLR N TLR-expressing granulocytes, %, Me (Q1-Q3) F p q
Control Subunit Adjuvanted Split
2 24 16.6
(14.2–18.38)
38.2


(37.73–42.4)
37.5

  
4 24 22.3

26.85

24.45

23.35
(21.5–25.35)
  
3 24 



 24.15

  
24 



25.45 (24–26.32) 26.4
(24.48–28.23)
86.57  
8 24 
(18.68–22.4)
 42.5 (37–45.1)    
6 23       
Table 2.
Influenza - Therapeutics and Challenges92
         
(phh
incubation with split vaccine (ph

fold for subunit and split vaccines (phh
compared with control.

after incubation with subunit vaccine (ph 
vaccine (phh
control.
                
           
Table 2, Figure 3).


Figure 4) between vaccine types

number of these cells increased 1.1-fold after incubation with subunit vaccine compared to
control (ph
Figure 3.


The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
93
Table 2, Figure 3


   


expressing cells (Figure 4

-
tion with split vaccine (1.3-fold, phh
Analysis also revealed (Table 2, Figure 3

          






Figure 4). In women with

Figure 4.         

Influenza - Therapeutics and Challenges94
h
-
h 
ph     h h  
split vaccine caused 2.3- and 1.8-fold increase (ph h   

Table 2, Figure 3). This receptor


               -
       






Figure 4 
induced 1.7-fold (phhh
hhh
increase, respectively, and split vaccine caused 1.8-fold (ph  h
1.7-fold (ph
           
           h   
phhh

hh
hh
Table 2, Figure 3).
 -
 
increased 1.5-fold after incubation with subunit vaccine, 1.3-fold after incubation with adju-


  

                     
(Figure 4
fold (phh
1.2-fold (phh
1.3-fold (phh-
ber, respectively, compared to control.
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
95

only after incubation with split vaccine (ph
4. Discussion

in certain patients [1–78–11]), there is a need

on the cellular and molecular immunologic mechanisms remains poorly studied.

 
-
in vitro.



           
             


tumor and virus-infected cells and to regulate innate and adaptive immune responses [, ].


reported to stimulate cellular immune response, regulate eosinophil maturation, and protect
respiratory epithelium [21]. When interacting with peripheral mononuclear cells, PO, a com-
 

       
normal limit or decreased [22].

23].
Cytotoxic T lymphocytes identify and kill virus-infected cells. Infected cells present virus
-
24, 25].
           
virus, but they can restrict virus reproduction and enhance virus elimination out of the body.
 -
26, 27].

immune response, as recommended in WHO guidelines. We think that this assessment
Influenza - Therapeutics and Challenges96
            
is essential to also study the cellular immunity. Immunodominance, which means that the
immune system chooses one or more key epitopes for recognition, is an important factor for
the development of vaccines stimulating the cellular immune response [28]. Vaccines aimed
 -
cantly narrow the cross-reactive range of immune response to various virus strains. The role
of antigen delivery route and presentation should also be considered when developing such
vaccines. To stimulate a strong cytotoxic immune response, an antigen should be processed
and presented by dendritic cells and coupled to MHC class I molecules. These may occur
either at the moment dendritic cells are being infected or transduced or when dendritic cells
engulf apoptotic bodies from other infected cells. Thus, the induction of cytotoxic immune

inactivated whole-virion and subunit vaccines) [21].


-
tributes to virion phagocytosis and to stimulation of antibody-dependent cellular cytotoxicity.


       -
    
antibodies also stimulate antibody-dependent cellular cytotoxicity. In addition, anti-neuramini-
].
 
 


              
while no production of IgM antibodies was observed in secondary infection. IgM antibodies
21, ].

the body, and are indicative of recent virus exposure. Immunoglobulins G ensure the longest
21, ].
-


      
respectively. The studied vaccines were not found to activate other cell types.
-

of the best documented cell population. Increased Treg number can possibly be explained by the

The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
97

31, 32].
Innate immune mechanisms are key to protection against pathogens, since they ensure


33–36].


dendritic cells, which prepare the second line of immune response to the infection, known as

37, 38


immune response to infections caused by bacteria, fungi, and viruses [
known to be directly associated primarily with neutrophils, which express almost all identi-


            
accompanied by respiratory burst and changed expression of adhesion molecules [, 41].
      
gave the following results.
in vitro
-

             

non-stimulated cells.
Subunit vaccine

to be an important regulator of neutrophil survival [–42].
Split vaccine

           
generated during replication [43
to be accompanied by their activation, which allows them to get directly involved in various
types of immune response [44].

       
         
         45, 46].
         47].
Influenza - Therapeutics and Challenges98

infection—dendritic cells, both myeloid and lymphoid lineages [48
, ]. They
  
51].
Adjuvanted vaccine
     

      45, 52]. The

of the adjuvant in the adjuvanted vaccine.

-
phocyte activation) [53

protective immune response to main antigens (hemagglutinin) [54].
    


           

-

the activation of both intracellular signaling systems. Thus, there are two important types
 

with interferon being the primary antiviral mediator in innate immunity [55].
5. Conclusion

well as induce humoral immune response. PO-containing adjuvanted vaccine showed the
strongest capability of inducing the cellular response, among the three vaccines studied.
  in vitro           




         


The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
99
           
defense mechanisms against microbial infection.


death of hundreds of thousands of people each year [56]. Complications leading to morbidity
and mortality following infection are predominantly observed in high-risk groups: children
of early age, people with chronic diseases and pregnant women [57]. According to WHO,
-
58].

-
 

     

of population groups - small children, pregnant women, the elderly, people with various

-

       
world, especially in the event of a pandemic [–61].
  -
vants) have been proposed. With the use of adjuvants, it is possible to increase the immuno-


-

as well as reduce the dose of the antigen (hemagglutinin). This is especially important for
pre-pandemic vaccines, because with the same production capacity, more vaccines will be
, 61].
The action of most adjuvants is based on the prolongation of the AG action, which is provided
       
AG on certain carriers, the antigen is held in places necessary for exposure of the antigen to

immunostimulating complexes, an oil microemulsion [62].
63]. Adjuvants that
-
ing PO. Structural association of the AG and polymer-immunostimulant enhances the
migration of phagocytes, the functional activity of macrophages in tissues and increases
their processing activity [64].
Influenza - Therapeutics and Challenges100
The action of adjuvants depends on the initial immune status of the organism preceding the
vaccination. Adjuvants accelerate development and increase the level of immune response,

vaccination immunity is characteristic of adjuvanted vaccines. At the same time, a reliable
immune response is achieved with the help of small doses of AG and a small number of
injections of the vaccine [63].



does interact with three lymphocyte subclasses, predominantly binds with monocytes and
neutrophils and to a lesser extent with lymphocytes, enhancing intracellular H2O2 produc-

factor that is the participant of the cytokines synthesis regulation. The enhancement of the
  


similarly to that as it occurs in natural way [65].
    -
noadjuvant in new generation vaccines and is a compound in subunit adjuvanted Grippol
            
Due to Polyoxidonium, all Grippol family vaccines contain 3-times lower antigen content in


Today Grippol vaccines are approved and especially recommended for vaccination of cohorts
that previously were considered to be not vaccinated (patients with allergic conditions, sub-
-
dren from 6 months of age, and pregnant women. These recommendations were made based
on relevant clinical trials results followed by many years practical mass vaccine application
experience [66, 67].
    

antibody response. In addition to the development of protective antibodies after vaccina-
tion, the induction of cell-mediated immunity is considered to be of critical importance [68].


strongly impaired, a T cell response against the vaccine was detected in most patients [].
  
           
why previous pandemics have emerged when new HAs have appeared in circulating human

      

T cell responses and needs to be combined with an adjuvant facilitating this response [].
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
101
-
        
partially and predominantly suppressed after depletion of CD8+ and CD4+ T cells (induced
by intraperitoneal injection of the corresponding antibodies), respectively, suggesting that
CD4+ T cells predominantly and CD8+ T cells partially contribute to the protective immunity
71]. These results suggest that adjuvants

cross-presentation, and induces cell-mediated immune responses against antigen.
           

to ameliorate disease [72]. Activation of the parameters of innate immunity is critical for the

-
73].
            
promising task. Such universal vaccines are expected to contain both antibody production

immunity being involved. Adjuvants may play an important part, their functions being aimed
both at enhancing immune response to an antigen and at regulating that response [74]. Thus,
due to the emergence of a new type of vaccine (adjuvant), in assessing the immunological



Abbreviations
 
PO polyoxidonium
 
 
 
HAI hemagglutination inhibition
HAU hemagglutination unit
 
Influenza - Therapeutics and Challenges102
V Vaccine
 
 
 
MHC Major histocompatibility complex
HA hemagglutinin
nTreg natural thymus-derived regulatory cells
 
 
 
 
 
AG antigen
 
 
APC antigen-presenting cell
Author details
Mikhail Petrovich 1,2 Akhmatova1, Ekaterina Alexandrovna 1,
Svetlana Anatolyevna Skhodova1,  Stolpnikova1,
Alexander Petrovich Cherdantsev3 and Anna Egorovna Vlasenko4
vaccinums@gmail.com










The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
103
References
[1]       -

123(7):518-527
[2] 
    
   8

[3]    
          
25(6):471-476
[4] 
           -
         
9:51-56
[5] 

12:37
[6]            
82
[7] 
4:171
[8] 

351
 
          

10
     

305
[11] 
14(3):167-182
[12]             
33

Influenza - Therapeutics and Challenges104
[13] 

[14]         

[15]          

[16] -

[17] 

[18]      

           

            
15:45-51
[21] 

  
          
186
[22] 
13(2):

[23] 
25:161-167
[24]            
6:255
[25] 
5
[26]             -
       309  

[27] 
159
[28] 
17:51-88
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
105
    
          
      4  

     
      
81
[31] 
3
[32]          
of the immune system in normal pregnancy and their correlation with vaccination.
18
[33] -
      
94
[34] 
9
[35] 
34
[36] 
dynamics of Toll-like receptor dimers through moleculardynamics simulations and pro-

[37] 


. 5
[38] -
           
17(1):27-36
              

4
  Gene expression analysis illuminates
the transcriptional programs un-derlying the functional activity of ex vivo-expanded
granulo-cytes. Physiological Genomics. 31(1):114-125
[41] -
5(3):422-427
Influenza - Therapeutics and Challenges106
[42] 
 
170
[43] 
 
8
[44]            
Engagement of Toll-like receptor-2 on cytotoxic T-lymphocytes occurs in vivo and aug-
22
[45] 
11(5):373-384
[46] 
27
[47]     -
21
[48]          
-


              
433
 
             
     1  

[51] -
-
193
[52]              -

26
[53] -
6
[54]             
178
[55] 
1
The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
107
[56]            
2(3):276-

[57] 
 
303:1517-1525
[58] 
      
87(47):461-476
 
80
[61] 

[62] -
9
[63] 
[64]     11

[65] 
polyoxidonium immunomodulator and the human immune system cells. International
4
[66] 

[67] 
          


under dispensary observation in outpatient clinics: prospective follow-up monitoring
   12 

[68]      
32:3725-3731
 


34(21):2417-2423
            
         
Influenza - Therapeutics and Challenges108

8
[71]             -
 
            
13
[72] Ascough S, Paterson S, Chiu C. Induction and subversion of human protective immu-
         
9
[73] 
9(2):111-125.

[74] 
    6  

The Impact of Adjuvanted and Non-Adjuvanted Influenza Vaccines on the Innate and Adaptive…
http://dx.doi.org/10.5772/intechopen.77006
109
... Показано, каким образом вакцины против гриппа активируют 1-ю и 2-ю линии защиты от инфекции [20]. Так, отмечено, что у вакцинированных от гриппа до появления симптомов COVID-19 вероятность летального исхода снижалась на 17-20 %. ...
... и др. Хроническая обструктивная болезнь легких и COVID-19 вые эффекторы врожденного (дендритные клетки, натуральные клетки-киллеры и NKT-лимфоциты) и адаптивного (цитотоксические Т-клетки киллеры, B-лимфоциты) иммунитета, которые обеспечивают противовирусный эффект и индуцируют собственные защитные механизмы организма [20]. ...
... По предварительным подсчетам, при своевременной вакцинации против пневмококка удалось бы избежать примерно 10 % всех смертей от COVID-19 за счет предотвращения появления пневмококковой суперинфекции [24]. При использовании конъюгированной 13-валентной пневмококковой вакцины у пациентов с ХОБЛ отмечено значимое повышение фагоцитоза, СD3 + СD4 + , СD3 + СD8 + , СD3 + СD16 + СD56 + , CD3 + HLADR + , CD19 + , уровня IgM и IgG, иммунологической памяти и адаптивного иммунитета [20]. ...
Article
Recently, single studies have described the picture of COVID-19 in patients with chronic obstructive pulmonary disease (COPD). Further study of this comorbid condition will help to assess the course and prognosis of each condition correctly, develop an effective plan for the management of patients with COPD during the pandemic caused by SARS-CoV-2 infection. The aim . The article is an analytical review of the scientific literature from PubMed, Google Scholar, medRxiv, bioRxiv in order to study the clinical features of COVID-19 in patients with COPD. The published studies of the new coronavirus infection showed that patients with COPD account for 2% among those infected with SARS-CoV-2. However, further studies are needed to study the course of COVID-19 in patients with COPD. The conducted studies indicate a high level of ACE2 receptors to SARS-CoV-2 in current smokers and patients with COPD, which may explain the easier penetration of SARS-CoV-2 into the host organism and the severe course of the disease in this population. Conclusion . Although a number of clinical studies strongly suggest that men have more severe COVID-19 than women, the patient’s gender is not always taken into account. It is possible that the more severe course of COVID-19 is associated with the increased prevalence of smoking and COPD in men as compared to women to a lesser extent than with the high production of testosterone and X-linked inheritance of the androgen gene and the ACE2 gene.
... Четыре из них (TLR3, TLR7, TLR8 и TLR9) распознают вирусную РНК и ДНК. TLR играют установленную роль в физиологической регуляции и продукции провоспалительных цитокинов, которые необходимы для иммунного ответа на инфекции, вызываемые не только вирусами, но и бактериями и грибами [34]. ...
... TLR3 взаимодействует с двухцепочечной вирусной РНК и является ключевым компонентом сигнального пути, который обеспечивает активацию антивирусного ответа. TLR8 распознает одноцепочечные РНК, в их числе -РНК SARS-CoV-2 [34]. ...
... Таким образом, существуют 2 клеточные сигнальные системы. Первая активирует антибактериальную защиту, а вторая -противовирусный ответ [34]. ...
Article
Further study of the distribution, pathogenesis of viral infection, the role of respiratory viruses in the formation and exacerbation of chronic lung diseases will allow the development of new methods of protection, the creation of modern pharmaceutical approaches for the treatment and prevention of COVID-19. The aim. The article presents an analytical review of the scientific literature in PubMed , Google Scholar , medRxiv , bioRxiv which was conducted to study and evaluate the mechanisms, pathogenesis, and clinical picture of respiratory viral infections, including Severe Acute Respiratory Syndrome CoronaVirus- 2 (SARS-СoV-2). Conclusion. Understanding the specific mechanisms of the development of the host’s immune response to respiratory viruses allows a better understanding of the course of a new coronavirus infection, including in patients with COPD, since respiratory tract infections are closely associated with the formation and exacerbation of COPD. Respiratory viruses activate immune responses and exacerbate underlying inflammation in COPD. SARS-СoV-2 leads to a dysregulated immune response and, in severe cases, an overactive immune response, causing the development of a cytokine storm and acute respiratory distress syndrome (ARDS). Unlike seasonal respiratory viruses, SARS-СoV-2 circulates throughout the year and can be a source of frequent and severe exacerbations in patients with COPD which require further monitoring and research.
... Since 2009, in order to increase the immunogenicity of vaccines to stimulate the synthesis of antibodies in the early stages after administration of the drug, adjuvanted vaccines have begun being used, which have an activating effect on the cellular component of immunity that is especially important for enhancing the immune response in immunocompromised patients [15][16][17][18][19][20]. In this regard, even studies with a small number of participants with CVID play an important role in generating knowledge for the medical community as a whole and contribute to the study and exchange of experience in matters of patient vaccination through the expansion and creation of international databases and registries. ...
... It is important because a high level of DCs is one of the factors reducing susceptibility to infectious diseases. Activation of additional receptors that are responsible for recognizing bacterial antigens was also noted, and the level of antibodies remained at a protective level longer than after nonadjuvanted vaccines, which also indicates the activation of nonspecific protective factors, including against bacterial agents [18]. Thus, the combination of influenza virus vaccine strains with an adjuvant was found to be a potent activator of B-and T-lymphocytes, a discovery that led to modifications in vaccine production and subsequent clinical use of the adjuvanted vaccines in a heterogeneous group of patients with weakened immune responses. ...
Article
Full-text available
Background: The problem of identifying vaccine-specific T-cell responses is still a matter of debate. Currently, there are no universal, clearly defined, agreed upon criteria for assessing the effectiveness of vaccinations and their immunogenicity for the cellular component of immunity, even for healthy people. But for patients with inborn errors of immunity (IEI), especially those with antibody deficiencies, evaluating cellular immunity holds significant importance. Aim: To examine the effect of one and two doses of inactivated adjuvanted subunit influenza vaccines on the expression of endosomal Toll-like receptors (TLRs) on the immune cells and the primary lymphocyte subpopulations in patients with common variable immunodeficiency (CVID). Materials and methods: During 2018–2019, six CVID patients received one dose of a quadrivalent adjuvanted influenza vaccine; in 2019–2020, nine patients were vaccinated with two doses of a trivalent inactivated influenza vaccine. The proportion of key lymphocyte subpopulations and expression levels of TLRs were analyzed using flow cytometry with monoclonal antibodies. Results: No statistically significant alterations in the absolute values of the main lymphocyte subpopulations were observed in CVID patients before or after vaccination with the different immunization protocols. However, after vaccination, a higher expression of TLR3 and TLR9 in granulocytes, monocytes, and lymphocytes was found in those patients who received two vaccine doses rather than one single dose. Conclusion: This study marks the first instance of using a simultaneous two-dose vaccination, which is associated with an elevated level of TLR expression in the immune cells. Administration of the adjuvanted vaccines in CVID patients appears promising. Further research into their impact on innate immunity and the development of more effective vaccination regimens is warranted.
... Полученный результат, по всей видимо сти, связан с особенностями действия пре парата на Tлимфоциты: азоксимера бромид повышает способность CD4клеток синтезировать IFNγ. Кроме того, препарат способен усиливать антигенпрезентирующие свойства дендритных клеток, что приводит к более эффективному и бы строму обучению Тлимфоцитов и активации проли ферации CD4 + клеток под влиянием антигена [11]. СD4 + клетки являются важным звеном в развитии гуморального иммунного ответа с последующей продукцией нейтрализующих IgG и sIgA. ...
... Особую роль играет по вышение провоспалительных маркеров, таких как TNFa, продуктов деградации полиненасыщенных жиров активными формами кислорода, внутрикле точный ионный дисбаланс [15,16]. Азоксимера бро мид способен проявлять антиоксидантные свойства, обладая свойством хелатирования Fe2+ и окисле ния Fe2+ в Fe3+, за счет чего происходит торможе ние свободнорадикального окисления, создаются условия для достижения микромолярных концентра ций активных форм кислорода в цитоплазме клеток и активации свободнорадикального механизма син тетических процессов [11]. ...
Article
Full-text available
Relevance. Despite the implementation of measures to reduce morbidity and mortality among medical workers who are in contact with patients hospitalized for a new coronavirus infection caused by SARS-CoV-2 (hereinafter – COVID-19), their level remains high today. Given the difficulty of achieving the required number of vaccinated to form collective immunity, the issue of finding additional drug-based ways to prevent COVID-19, especially in risk groups, becomes urgent. Aims. To evaluate the effect of azoximer bromide on the number of cases of confirmed COVID-19 disease among medical workers, as well as on the level of chronic fatigue in the study groups. Materials and methods: 78 men and women were included in the study. The experimental group consisted of 41 people who took azoximer bromide for 38 days. The comparison group consisted of 37 people who were not prescribed azoximer bromide. The epidemiological efficacy of the drug was evaluated. Statistical evaluation of the significance of the differences was carried out using the Student's t-test, Pearson's criterion χ2. Results. The number of study participants with COVID-19 in the experimental group was significantly lower than in the comparison group. A significantly faster reduction of manifestations of chronic fatigue syndrome was noted in study participants who took azoximer bromide. There were no adverse events during the administration of the studied drug by the study participants. Conclusions. Azoximer bromide has shown epidemiological efficacy when used by medical workers directly providing medical care to patients with COVID-19 (when working in the «red zone»), including contributing to the more rapid normalization of the psychological state of medical workers
... However, a positive trend in antibody response was observed as well as, more importantly, a significant enhancement of IFNγ expression in CD8 for the FB-WH5N1 group. The adjuvant value of the novel combination might be better highlighted by using split influenza antigens rather than WIV antigen, which contains intrinsic immunostimulants such as TLR9 ligands (Kostinov et al., 2018). ...
Article
Full-text available
Due to the inherent risk of a further pandemic influenza outbreak, there is a need and growing interest in investigating combinations of prophylactic vaccines and novel adjuvants, particularly to achieve antigen dose sparing and improved immunogenicity. Influenza is a highly variable virus, where the specific vaccine target is constantly changing, representing a major challenge to influenza vaccine development. Currently, commercial inactivated influenza vaccines have a poor CD8 ⁺ T response, which impacts cross-reactivity and the duration of response. Adjuvanted influenza vaccines can increase immune responses, thereby achieving better protection and cross-reactivity to help contain the spread of the disease. An early exploration of a hybrid cholesterol-PLGA nanoparticle delivery system containing the saponin tomatine and a NOD2 (nucleotide-binding oligomerization domain 2) agonist called SG101 was conducted. This combination was preliminarily evaluated for its ability to induce cellular immunity when combined with whole inactivated virus (WIV) influenza vaccine. After the adjuvants were manufactured using a single emulsion process, two formulations with different drug loadings were selected and physico-chemically characterized, showing sizes between 224 ± 32 and 309 ± 45 nm and different morphologies. After ensuring the lack of in vitro toxicity and hemolytic activity, a pilot in vivo assay evaluated the hybrid nanoparticle formulation for its ability to induce humoral and cellular immunity when combined with whole inactivated virus (WIV) H5N1 influenza vaccine by intramuscular administration in mice. Hemagglutinin inhibition (HAI) titers for adjuvanted groups showed no significant difference compared to the group vaccinated with the antigen alone. It was similar for CD4 ⁺ and CD8 ⁺ T cell responses, although the high drug loading formulation induced higher titers of IFNγ-positive CD8 ⁺ T cells. These proof-of-concept results encourage further investigations to develop the hybrid formulation with increased or different loading ratios, to investigate manufacturing optimization, and to evaluate the role of the individual immunostimulatory compounds in immune responses.
... В то же время нельзя исключить, что преобладание протективных уровней антител к гриппу среди привитых взаи мосвязано и с формированием длительной иммунологической памяти, особенно при введение адъювантной вакцины, среди которых и используемая для иммунизации в данном исследовании [4]. Адъюванты полиоксидоний (азоксимера бромид) и Совидон (поливинилпирролидон), входящие в состав отечественных вакцин против гриппа, способствуют не только формированию гуморального иммунитета, но оказывают и иммуномодулирующее действие, которое проявляется в активации функции клеток врожденного и адаптивного иммунитета, необходимых для распознания вирусов, в том числе и SARS-CoV-2, индукции синтеза про-и противовоспалительных медиаторов [5,10,13,23,24]. ...
Article
Full-text available
Background.In the absence of a vaccine against SARS-CoV-2, seasonal influenza vaccination during the pandemic contributed to lowered COVID-19 susceptibility and severity. The study was aimed to assess the state of post-influenza vaccination immunity, pneumonia frequency and severity in medical workers after using various flu vaccination regimens, between the 1st and 2nd peaks of COVID-19 epidemic rise.Materials and methods.Comparatively analyzed data on the levels of antibodies against influenza virus strains and pneumonia incidence in 487 medical workers was carried out: 1st group — unvaccinated in 2020–2021 (n = 281), 2nd group — vaccinated against influenza (Sovigripp), (n = 98), 3rd group — received combined vaccination against influenza and pneumococcus (Prevenar 13), (n = 108).Results.6 months after vaccination, the highest rates of influenza virus were detected in the A(H3N2), the level of seroprotection (≥ 1:40) ranged from 49.0% in unvaccinated (1st group) to 53.4–53.2% in those who received combined vaccination (group III), as well as influenza alone (2nd group), p 0.05; for strain A(H1N1) the level of seroprotection in 1st group is 24.5%, lower (p 0.04) than in 2nd group — 32.7%, but does not differ from the levels of 40.4% in group III; for strain B the level of seroprotection is the lowest ranging from 19.4% in the group of unvaccinated subjects up to 22.4% in 2nd group and 23.4% in 3rd group. The pneumonia incidence in 1st group (3.9%), 2nd group (3.1%), 3rd group (4.6%) did not differ, however, among all vaccinated subjects severity of pneumonia clinical course was mild, whereas in unvaccinated employees, except for mild course (45.4%, 5 out of 11 people) pneumonia in 36.4% (4 out of 11 people) cases was assessed as moderate and in 18.2% (2 out of 11 people) cases — severe with fatal outcomes.Conclusion.The study showed that 6 months after seasonal influenza immunization between the 1st and 2nd peaks of COVID-19 epidemic rise, the immunogenicity of the vaccine meets the CPMP criterion for the A(H3N2) strain. In vaccinated patients, the proportion of pneumonia with COVID-19 clinical picture was mild in 100% of cases, and in unvaccinated patients in 36.4% of cases — of moderate severity and in 18.2% — severe with fatal outcome.
... It showed that Grippol family vaccines induced antibody production in both children and adults up to 60 years at levels similar to vaccines with the standard amount of HA. In another study of the influence of adjuvanted vaccines with azoximer bromide on the effectors of inborn immunity it was shown that all evaluated (split, subunit, and adjuvanted) influenza vaccines elicited a statistically significant (p < 0.05) increase in the counts of granulocytes expressing TLR2, TLR6, TLR8, and TLR9 in peripheral blood mononuclear cell (PBMC) cultures when compared to unstimulated cells [56]. But unlike "classic" vaccines, adjuvanted vaccine showed high induction potential on TLR9and TLR8-expressing cells, compared to the subunit vaccine (p = 0.012 and p < 0.001, respectively) and split vaccine (p = 0.003 and p < 0.001, respectively) possibly because of the co-stimulating effect of the adjuvant in the adjuvanted vaccine. ...
Article
Full-text available
Background: for the first time, the effect of one and two doses of adjuvanted influenza vaccines on toll-like receptors (TLRs) in patients with common variable immunodeficiency (CVID) was studied and compared (primary vaccination with one vs. two doses, primary vs. repeated vaccination). Materials and methods: Six patients received one dose of quadrivalent adjuvanted influenza vaccine during the 2018-2019 and 2019-2020 influenza seasons, and nine patients with CVID received two doses of trivalent inactivated influenza vaccine during 2019-2020. Expression of TLRs was measured by flow cytometry. Results: The expression of toll-like receptors in patients with CVID was noted both with repeated (annual) administration of the influenza vaccine and in most cases was accompanied by an increase in the proportion of granulocytes (TLR3 and TLR9), lymphocytes (TLR3 and TLR8), and monocytes (TLR3 and TLR9). When carried out for the first time as a simultaneous vaccination with two doses it was accompanied by an increase in the proportion of granulocytes, lymphocytes expressing TLR9, and on monocytes-TLR3 and TLR9. Conclusion: in CVID patients, the use of adjuvanted vaccines is promising, and research on the influence of the innate immunity and more effective regimens should be continued.
... На основании клинических исследований можно выделить 3 его основные роли в иммунопатогенезе воспалительных заболеваний: • повышение эффективности врожденного иммунитета; • в качестве адъюванта в развитии гуморального иммунного ответа; • способность оказывать выраженный патогенетический и клинический эффект у пациентов с тяжелыми воспалительными заболеваниями. По результатам исследований [14][15][16][17] показано, что инкубация клеток при воздействии азоксимера бромида вызывает повышение экспрессии рецепторов врожденного иммунитета, в т. ч. MDA-5. ...
Article
Full-text available
The lack of specific vaccines against SARS-CoV-2, as well as chemotherapy, significantly affected the spread of infection and the number of adverse outcomes of COVID-19. With the discovery of the pathogenesis of coronavirus infection, especially immune mechanisms, the important role of the innate immunity system in interacting with the virus is obvious. The presence of comorbid conditions, as well as the aging of the body, lead to disturbances in the immune response mechanism, low interferon induction, depletion of CD8+ -lymphocytes and natural killers and suppression of the effectiveness of both innate and adaptive immunity. The review discusses various mechanisms of antiviral activity associated with the induction of interferon (IFN) production, the use of direct IFN therapy, the use of antiviral drugs, and immunotropic therapy (synthetic immunomodulators), as promising in the prevention and treatment of COVID-19.
Article
Full-text available
Background. Individuals who were vaccinated against seasonal influenza or had a history of pneumococcal vaccination were found to be less likely to become infected and tolerate COVID-19 more easily. However, it has not been sufficiently studied how vaccination against these infections, carried out during the pandemic period, can affect the incidence of COVID-19. Aims. The purpose of the investigation: to study the effect of vaccination against influenza and pneumococcal infection carried out during the pandemic of a new coronavirus infection on the susceptibility and course of COVID-19 in healthcare workers. Materials and methods. In August- Setempber 2020, after the first rise in the incidence of COVID-19, out of 547 employees (aged 18 to 70 years) of a medical organization (MO), 266 (49%) were vaccinated against influenza (group II, n = 98), pneumococcal infection (group III, n = 60) and combined vaccination (group IV, n = 108), while 281 (51%) remained unvaccinated (group 1). Follow-up period: from September 2020 to March 2021 with the registration of the incidence of acute respiratory infections (ARI) according to primary medical records and the use of PCR methods for SARS-CoV-2, epidemiological and statistical analysis. Results. Two months after the start of the study, the proportion of cases of COVID-19 in the 1st group (unvaccinated) was 5% versus 1% in the 4th group (persons vaccinated with two vaccines), after 4 months – 15% and 5%, respectively, and at the end of observation (166 days) – 16% and 8%, respectively. That is, among unvaccinated individuals, the risk of getting COVID-19 was higher by HR = 2.1 [95% CI: 1.0÷4.7] times. The time between the start of observation and a positive test for COVID-19 in study participants was significantly higher in the 4th group compared to the group I: 106 [60–136] days versus 47 [17–75] days. The distribution of patients with COVID-19 according to the severity of viral pneumonia showed that in unvaccinated patients in most (64%) cases, pneumonia had a moderate to severe course, while in the 4th group of patients with combined vaccination in 100% of cases, mild (p = 0.04 for the entire sample). Conclusions. During the COVID-19 epidemic rises, vaccination against respiratory infections remains relevant, reducing the number of cases, the severity of the coronavirus infection and preventing the occurrence of co-infections.
Chapter
A vaccine works by allowing the immune system to “practice” on a weakened or killed version of the pathogen or components thereof, including surface proteins, polysaccharides, or toxins. While age is one very important driver of vaccine efficacy, other factors should be considered, including demographics, comorbidities, previous vaccinations, and medication use, but also the intestinal microbiome. This chapter describes how the gut microbiome has both local and systemic impacts on the immune response, and how these can be used to improve vaccine efficacy. Animal models are usually used so that direct causality can be inferred between the composition of the microbiota to a given treatment and/or infection. The latest research in the human microbiome field has made evident that the gut microbiome can impact vaccine responses, from vaccine efficacy to its effect on extending immune memory against a specific pathogen.
Article
Full-text available
Aim: Study the effect of Vaxigrip split, Influvac subunit and Grippol plus immune-adjuvanted vaccines on the content of myeloid (mDC) and plasmacytoid (pDC) dendritic cells (DC) in blood of vaccinated healthy women. Materials andmethods. Blood of 30 healthy women aged 18-50 years was studied at days 7 and 30 after the vaccination. pDC (CD14+CD16-/CD85k(ILT3)-PE/ CD123-PC5) and mDC (CD14+CD-16-/CD85k(ILT3)-PE/CD33 -PC5) immune phenotyping was carried out using mAbs (Beckman Coulter, France) and flow cytometer Cytomix FC-500 (Beckman Coulter, USA). Results: Use of unadjuvanted vaccines Vaxigrip and Influvac resulted in an increase of the numbers of mDC and pDC (p<0.05) in blood of the vaccinated only at day 7 of the observation. Grippol resulted in a more significant (2.2 - 3.6 times, p<0.05) increase of DC subpopulations (compared with unadjuvanted vaccines) at both day 7 and a month after the vaccination. Conclusion: Influenza vaccination activated innate effectors - the first component on the way of infection penetration - dendritic cells of both myeloid and lymphoid origin. Wherein, a more pronounced and prolonged effect of such activation is observed when immune-adjuvanted vaccine is used compared with subunit and split vaccines.
Article
Full-text available
This paper introduces the R package WRS2 that implements various robust statistical methods. It elaborates on the basics of robust statistics by introducing robust location, dispersion, and correlation measures. The location and dispersion measures are then used in robust variants of independent and dependent samples t tests and ANOVA, including between-within subject designs and quantile ANOVA. Further, robust ANCOVA as well as robust mediation models are introduced. The paper targets applied researchers; it is therefore kept rather non-technical and written in a tutorial style. Special emphasis is placed on applications in the social and behavioral sciences and illustrations of how to perform corresponding robust analyses in R. The R code for reproducing the results in the paper is given in the Supplementary Materials.
Article
Full-text available
Respiratory syncytial virus (RSV) and influenza are among the most important causes of severe respiratory disease worldwide. Despite the clinical need, barriers to developing reliably effective vaccines against these viruses have remained firmly in place for decades. Overcoming these hurdles requires better understanding of human immunity and the strategies by which these pathogens evade it. Although superficially similar, the virology and host response to RSV and influenza are strikingly distinct. Influenza induces robust strain-specific immunity following natural infection, although protection by current vaccines is short-lived. In contrast, even strain-specific protection is incomplete after RSV and there are currently no licensed RSV vaccines. Although animal models have been critical for developing a fundamental understanding of antiviral immunity, extrapolating to human disease has been problematic. It is only with recent translational advances (such as controlled human infection models and high-dimensional technologies) that the mechanisms responsible for differences in protection against RSV compared to influenza have begun to be elucidated in the human context. Influenza infection elicits high-affinity IgA in the respiratory tract and virus-specific IgG, which correlates with protection. Long-lived influenza-specific T cells have also been shown to ameliorate disease. This robust immunity promotes rapid emergence of antigenic variants leading to immune escape. RSV differs markedly, as reinfection with similar strains occurs despite natural infection inducing high levels of antibody against conserved antigens. The immunomodulatory mechanisms of RSV are thus highly effective in inhibiting long-term protection, with disturbance of type I interferon signaling, antigen presentation and chemokine-induced inflammation possibly all contributing. These lead to widespread effects on adaptive immunity with impaired B cell memory and reduced T cell generation and functionality. Here, we discuss the differences in clinical outcome and immune response following influenza and RSV. Specifically, we focus on differences in their recognition by innate immunity; the strategies used by each virus to evade these early immune responses; and effects across the innate-adaptive interface that may prevent long-lived memory generation. Thus, by comparing these globally important pathogens, we highlight mechanisms by which optimal antiviral immunity may be better induced and discuss the potential for these insights to inform novel vaccines.
Article
Full-text available
We reported previously that intranasal instillation of a synthetic human pulmonary surfactant with a carboxy vinyl polymer as a viscosity improver, named SF-10, shows potent adjuvanticity for humoral immunity in mice and cynomolgus monkeys. SF-10 effectively induces influenza hemagglutinin vaccine (HAv)-specific IgA in nasal and lung washes and IgG in sera with their neutralizing activities. Since CD8⁺ T cell-mediated protection is an important requirement for adaptive immunity, we investigated in this study the effects of SF-10 with antigen on local and systemic cell-mediated immunity. Nasal instillation of ovalbumin, a model antigen, combined with SF-10 efficiently delivered antigen to mucosal dendritic and epithelial cells and promoted cross-presentation in antigen presenting cells, yielding a high percentage of ovalbumin-specific cytotoxic T lymphocytes in the nasal mucosa, compared with ovalbumin alone. Nasal immunization of HAv-SF-10 also induced HAv-specific cytotoxic T lymphocytes and upregulated granzyme B expression in splenic CD8⁺ T cells with their high cytotoxicity against target cells pulsed with HA peptide. Furthermore, nasal vaccination of HAv-SF-10 significantly induced higher cytotoxic T lymphocytes-mediated cytotoxicity in the lungs and cervical lymph nodes in the early phase of influenza virus infection compared with HAv alone. Protective immunity induced by HAv-SF-10 against lethal influenza virus infection was partially and predominantly suppressed after depletion of CD8⁺ and CD4⁺ T cells (induced by intraperitoneal injection of the corresponding antibodies), respectively, suggesting that CD4⁺ T cells predominantly and CD8⁺ T cells partially contribute to the protective immunity in the advanced stage of influenza virus infection. These results suggest that SF-10 promotes effective antigen delivery to antigen presenting cells, activates CD8⁺ T cells via cross-presentation, and induces cell-mediated immune responses against antigen.
Article
Full-text available
Influenza epidemics occur annually, and estimated 5–10% of the adult population and 20–30% of children will become ill from influenza infection. Seasonal vaccines primarily work through the induction of neutralizing antibodies against the principal surface antigen hemagglutinin (HA). This important role of HA-specific antibodies explains why previous pandemics have emerged when new HAs have appeared in circulating human viruses. It has long been recognized that influenza virus-specific CD4(+) T cells are important in protection from infection through direct effector mechanisms or by providing help to B cells and CD8(+) T cells. However, the seasonal influenza vaccine is poor at inducing CD4(+) T-cell responses and needs to be combined with an adjuvant facilitating this response. In this study, we applied the ferret model to investigate the cross-protective efficacy of a heterologous trivalent influenza split-virion (TIV) vaccine adjuvanted with the CAF01 adjuvant, with proven ability to induce CD4(+) T-cell and antibody responses in mice, ferrets, pigs, primates, and humans. Our results indicate that CAF01-adjuvanted vaccine induces HA inhibition (HAI)-independent protection after heterologous challenge, manifested as reduced viral load and fever. On the other hand, we observe increased inflammation in the airways and more neutrophil and mononuclear cell infiltration in these ferrets when compared with optimally protected animals, i.e., ferrets receiving the same vaccine but a homologous challenge. This suggest that HAI-independent immunity induced by TIV + CAF01 can reduce viral shedding and systemic disease symptoms, but does not reduce local inflammation in the nasal cavity.
Article
Full-text available
New therapeutic interventions are essential for improved management of patients with metastatic colorectal cancer (mCRC). This is especially critical for those patients whose tumors harbor a mutation in the KRAS oncogene (40-45% of all patients). This patient cohort is excluded from receiving anti-EGFR monoclonal antibodies that have added a significant therapeutic benefit for KRAS wild type CRC patients. Reovirus, a double stranded (ds) RNA virus is in clinical development for patients with chemotherapy refractory KRAS mutated tumors. Toll Like Receptor (TLR) 3, a member of the toll like receptor family of the host innate immune system is the pattern recognition motif for dsRNA pathogens. Using TLR3 expressing commercial HEK-BlueTM-hTLR3 cells we confirm that TLR3 is the host pattern recognition motif responsible for the detection of reovirus. Further, our investigation with KRAS mutated HCT116 cell line showed that effective expression of host TLR3 dampens the infection potential of reovirus by mounting a robust innate immune response. Down regulation of TLR3 expression with siRNA improves the anticancer activity of reovirus. In vivo experiments using human CRC cells derived xenografts in athymic mice further demonstrate the beneficial effects of TLR3 knock down by improving tumor response rates to reovirus. Strategies to mitigate the TLR3 response pathway can be utilized as a tool towards improved reovirus efficacy to specifically target the dissemination of KRAS mutated CRC.
Article
The Toll-like receptors (TLRs) are critical components of the innate immune system due to their ability to detect conserved pathogen-associated molecular patterns, present in bacteria, viruses and other microorganisms. Ligand detection by TLRs leads to a signalling cascade, mediated by interactions among TIR domains present in the receptors, the bridging adaptors as well as sorting adaptors. The BB loop is a highly conserved region present in the TIR domain and is crucial for mediating interactions among TIR domain-containing proteins. Mutations in the BB loop of the Toll-like receptors, such as the A795P mutation in TLR3 and the P712H mutation (Lpsd mutation) in TLR4, have been reported to disrupt or alter downstream signalling. While the phenotypic effect of these mutations is known, the underlying effect of these mutations on the structure, dynamics and interactions with other TIR domain-containing proteins is not well understood. Here, we have attempted to investigate the effect of the BB loop mutations on the dimer form of TLRs, using TLR2 and TLR3 as case studies. Our results based on molecular dynamics simulations, protein-protein interaction analyses and protein structure network analyses highlight significant differences between the dimer interfaces of the wild-type and mutant forms and provide a logical reasoning for the effect of these mutations on adaptor binding to TLRs. Furthermore, it also leads us to propose a hypothesis for the differential requirement of signalling and bridging adaptors by TLRs. This could aid in further understanding of the mechanisms governing such signalling pathways. This article is protected by copyright. All rights reserved.
Article
Toll-like receptor 8 (TLR8) is an important component of the human innate immune system that recognizes single stranded RNA (ssRNA). Recent X-ray crystal structures of TLR8 bound to ssRNA revealed a previously unrecognized binding site for a 5'-UpG-3' dinucleotide. Here we use an atomic mutagenesis strategy coupled with a cellular TLR8 activation assay to probe the importance of specific functional groups present on the guanine base in RNA-mediated receptor agonism and antagonism. Results from RNA analogs containing 7-deazaguanosine, 2-aminopurine and inosine confirm the importance of guanine N7, O6 and N2, respectively, in TLR8 activation. Nevertheless, these RNAs each retained TLR8 antagonism activity. RNA containing 7-deaza-8-azainosine (7d8aI) was prepared from a novel phosphoramidite and found to be a weaker TLR8 activator than guanosine-containing RNA. However, 7d8aI-containing RNA also retained TLR8 antagonism activity indicating that removal of multiple TLR8 H-bonding sites on guanine is insufficient for blocking TLR8 antagonism by guanine-containing RNA. We also identified an oligoribonucleotide length dependence on both TLR8 activation and antagonism. These studies extend our understanding of the effects of nucleobase modification on immune stimulation and will inform the design of novel RNA-based therapeutics.