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Abstract: Apiculate yeasts of the genus Hanseniaspora/Kloeckera are the main species present on
mature grapes and play a significant role at the beginning of fermentation, producing enzymes and
aroma compounds that expand the diversity of wine color and flavor. Ten species of the genus
Hanseniaspora have been recovered from grapes and are associated in two groups: H. valbyensis,
H. quilliermondii, H. wvarum, H. opuntiae, H. thailandica, H. meyeri, and H. clermontiae; and H. vineae,
H. osmophila, and H. occidentalis. This review focuses on the application of some strains belonging
to this genus in co-fermentation with Saccharomyces cerevisiae that demonstrates their positive
contribution to winemaking. Some consistent results have shown more intense flavors and complex,
full-bodied wines, compared with wines produced by the use of S. cerevisiae alone. Recent genetic and
physiologic studies have improved the knowledge of the Hanseniaspora/Kloeckera species. Significant
increases in acetyl esters, benzenoids, and sesquiterpene flavor compounds, and relative decreases
in alcohols and acids have been reported, due to different fermentation pathways compared to
conventional wine yeasts.

Keywords: non-Saccharomyces; genome; aroma compounds; anthocyanin; mixed cultures fermentation;
flavor complexity

1. Introduction

Non-Saccharomyces (NS) yeasts were considered unattractive in traditional winemaking,
and sulphites addition was the way to prevent the risk of their growth at the beginning of the
vinification process. However, today’s increased knowledge about yeast diversity has demonstrated
that there are many NS yeasts with beneficial properties that contribute to increasing the sensory
complexity of wines [1-3]. The main NS yeasts associated with grapes are the apiculate group with
bipolar budding, more precisely, the genus Hanseniaspora and its asexual anamorph Kloeckera [4,5].
In Figure 1, the plating and microscopy characteristics of two species of the genus are shown.

The Hanseniaspora/Kloeckera (H/K) group is currently composed of 10 recognized species
associated with grapes [6-8]. One of the main characteristics of these species is the weak fermentation
capacity compared to Saccharomyces cerevisine (SC). However, some species, such as “vineae”,
might reach about 10% of the alcohol by volume of fermentative capacity under winemaking conditions.
Furthermore, these species are important in the production of an increased diversity of volatile
compounds in wine, and it was demonstrated the chemical composition of wines made with H/K in
combination with SC differ from reference wines [9-12]. During these early studies about apiculate
yeasts, some authors [13-15] showed that not all H/K strains formed high levels of volatile acidity
and many of them produced similar levels to SC in this regard. These results indicate that although
some strains of H/K can provide higher levels of ethanol than other strains, the main characteristic of
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many of these known strains is the increased formation of some acetate esters. The production of other
secondary metabolites—i.e., glycerol, acetaldehyde, and hydrogen sulphide—also differed between
strains [16]. Thus, differences in chemical analyses of the wines were noted.

Figure 1. On the left-hand side are the typical colony color and morphology for Hanseniaspora/Kloeckera
strains that are readily differentiated from other yeast genera in WL nutrient agar medium.
However, is more difficult to distinguish between species, although some slight differences between
H. uvarum (upper) colonies and H. vineae (lower) colonies can be appreciated in these photos. On the
right-hand side, H. uvarum is visualized by electron microscopy and H. vineae is visualized with blue
methylene stain.

The initial growth of H/K had a retarding effect on the subsequent growth of SC, as also shown
for other NS species in mixed cultures [17]. Therefore, when considering the use of H/K strains at
winemaking, grape must nutrient composition and competition for assimilable nitrogen by mixed
cultures should be understood to prevent sluggish fermentations [18]. Some other cell interactions
between H/K strains and SC that inhibit their growth were reported [19], however, H/K strains are
intense removers of some vitamins, such as thiamine [20] or calcium pantothenate [21]. Medina et
al. [17] found these two vitamins, in combination with ammonium salts, improved the development
of SC strains to complete fermentation. Addition of yeast extract at 2 g/L was demonstrated to be
more effective for H. vineae utilisation than ammonium salts in agave juice for tequila [22]. In white
wine production, a K. apiculata isolate was used with SC at laboratory scale [23]. Inoculation of SC
occurred 1 h after K. apiculata, and a dry wine of 13% by volume of ethanol was produced. A positive
sensory evaluation of the Sauvignon blanc wines was obtained at 5 and 18 months after production.
The production of 3-phenylethyl acetate and ethyl acetate by the apiculate yeast H. guilliermondii has
been investigated in laboratory fermentations [24]. The 3-phenylethyl acetate ester contributes to
‘rose’, "honey’, ‘fruity’, and ‘flowery’ aroma nuances, and is formed to a greater or lesser extent by
yeasts. As part of the ‘fermentation bouquet’, it can contribute to the overall flavor of a young wine.

The positive oenological characteristics that this H/K confers to wine have been broadly
reported [18,25,26]. In addition, some studies have shown that several H/K strains have potential as
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biocontrol agents against fungi, such as Botrytis. The competition for nutrients is the action mechanism
of protection used by H. uvarum against fungi in grapes and apples [27,28].

2. Genetics Context of Hanseniaspora Species

2.1. Application of Molecular Techniques for Taxonomy and Whole Genome Analysis

Classical microbiology techniques have been extensively used in oenology to select and inoculate
the best yeast strains for obtaining enhanced positive characteristics in final wines. During the last
decades, the use of molecular techniques for the identification and selection of specific strains has proven
invaluable for the winemaking industry. Polymerase chain reaction-based methods allow the identification
of distinct species and, also, strain genotyping, resulting in a more accurate strain selection [29,30].
Based on this knowledge, culture-independent techniques have been developed to detect microorganisms
present during fermentation that are not cultivable by conventional methods [31-33]. Among these
culture-independent techniques, the development of next-generation sequencing permitted the description
of the whole microbiota present in a specific environment, even in complex communities, such as those
found throughout the wine fermentation process [34,35].

Hanseniaspora species have been widely detected in various wine-related environments, especially
from soil and grapes to the early stages of vinification [36,37]. This genus is part of the apiculate
group of yeast formed by Hanseniaspora, Saccharomycodes, and Nadsonia. The genus Hanseniaspora
presents heterogeneous morphological, serological, and chemotaxonomic features [38]. Ten species
of Hanseniaspora have been recovered from grapes or wines, which are taxonomically associated in
two groups (Figure 2): H. valbyensis, H. guilliermondii, H. woarum, H. opuntiae, H. thailandica, H. meyeri,
and H. clermontiae in one cluster; and H. vineae, H. osmophila and H. occidentalis in the other, as revealed
by partial sequence alignment of the 26S ¥YRNA gene. The favorable oenological characteristics that
this genus confers to wine have been broadly reported [18,25,39]. However, the biotechnological
potential of these species is still under evaluation at the industrial level, as compared to the traditional
SC conventional strains. In this context, the development of molecular techniques and the recent
identification of the whole genome sequences from Hanseniaspora species related to wine have created
the possibility to understand and applied them from a novel, precise oenological perspective.

Hanseniaspora meyeri CBS 87347 (AJ512454)
Hanseniaspora clermontiae CBS 88217 (AJ51245)

Hanseniaspora uvarum CBS 3147 (AF257273)
Hanseniaspora guilliermondii CBS 314T (U84230)

Hanseniaspora opuntiae CBS 87337 (AJ512453)

100
Hanseniaspora thailandica CBS 108417 (DQ404527)

86

Hanseniaspora valbyensis CBS 4797 (U73596)

Hanseniaspora occidentalis CBS 25697 (AJ973100)

87 99 ,— Hanseniaspora vineae CBS 21717 (U84224)
100L— Hanseniaspora osmophila CBS 3137 (U84228)

Saccharomycodes ludwigii CBS 8217 (U73601)
Nadsonia fulvescens var.elongata CBS 25947 (KY108597)
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Figure 2. Phylogenetic relationships between type strains of Hanseniaspora species and other grape or
wine-related apiculate yeasts. The dendrogram was constructed using partial 26S rRNA gene sequences
by the neighbor-joining method. The robustness of the branching is indicated by bootstrap values (%)
calculated for 1000 subsets. The entries of the different genotypes include the accession numbers of the
GenBank database sequences. Schizosaccharomyces pombe type strain was used as an outgroup.
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2.2. Comparative Analysis of Hanseniaspora Genomes

Today, 10 strains belonging to six different Hanseniaspora species have been completely
sequenced [40-43]. The data collected from these sequences (Table 1) evidence the close relation
between H. vineae and H. osmophila that present a similar genome size and G + C percentage compared
with the others. Moreover, the protein count is quite similar throughout the species from the genus,
but the number of contigs and scaffolds reported vary widely among different species. As informed by
karyotyping approaches, H/K species could present between seven and nine chromosomes [29,30].
In a recent study based on field inversion gel electrophoresis and the whole genome sequencing of type
strain H. uvarum DSM2768, seven chromosomes were detected [44]. Notwithstanding, there are wide
differences in genome size and chromosome number in karyotyping results from natural grape samples.
Besides, Hanseniaspora genus belongs to the group of yeast that does not undergo whole-genome
duplication, contrary to Saccharomyces [44]. These discrepancies were previously detected in the
mitochondrial DNA of H. uvarum. It presented a reduced size compared with those from other yeasts
and also a different organization of genes [45].

Table 1. Hanseniaspora genome assembly statistics.

Species Name

Protein Number Scaffold Assembl
(Numl?er of Count  of Contigs G+C Number (Mb) Y Reference
Strains)

H. guillermondii (1) 4070 250 31% 208 9.04 Seixas et al., 2017 [39]
H. opuntiae (1) 4167 67 35% 18 8.53 Sternes et al., 2016 [38]
H. uvarum (4) 3552 44 32% 18 8.81 Sternes et al., 2016 [38]

H. valbyensis (1) 4772 1345 23% 647 11.46 Riley et al., 2016 [37]
H. vineae (2) 4733 277 37% 124 11.40 Giorello et al., 2014 [36]
H. osmophila (1) 4657 899 37% 17 11.37 Sternes et al., 2016 [38]

There are also some differences in the information about genes linked to interesting oenological
traits. The highest number of alcohol dehydrogenases, like ADH1, ADH2, ADH3, ADH4, ADH6,
and ADH7, from SC is found in the H. vineae genome. It presents eight genes for alcohol
dehydrogenases, followed by H. osmophila with six. H. uvarum, H. guilliermondii, and H. opuntiae present
just four. The highest number of copies could be related to the fermentation capacity, given the alcohol
dehydrogenase activity is involved in the last step of the glycolytic pathway [46]. The fermentation
ability is considered a hurdle in NS yeast relative to Saccharomyces strains, and thereby an improvement
in fermentation performance is necessary to select a strain for wine inoculation. Limited information
is available about the functional analysis of protein activities from Hanseniaspora. A key enzyme
associated with the glycolytic pathway is pyruvate kinase. Langenberg et al. [44] recently demonstrated
the correlation between pyruvate kinase activity and the enhanced fermentative ability of SC compared
with H. uvarum. The authors explained this difference was due to a lowered specific activity rather than
the structure of this enzyme. H. vineae and H. osmophila present higher sequence homology (Figure 3)
in the predicted protein corresponding to the CDC19 gene from SC than H. uvarum and other H/K
species. Further biochemical studies will clarify the potential pyruvate kinase activity in H/K species
compared to H. uvarum and SC.
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Figure 3. Relative homology of predicted protein sequences from the CDC19 gene for pyruvate kinase
activity in genome-sequenced Hanseniaspora strains (H. vineae T02/19AF; H. osmophila AWRI3579;
H. guilliermondii UTAD222; H. opuntine AWRI3578; H. valbyensis NRRL Y-1626; H. uvarum AWRI3580;
Saccharomyces cerevisine S288¢c). Data sequences have been collected from the NCBI protein database.
Unrooted trees have been constructed using neighbor-joining analysis to calculate the percentage
divergence. The percentage of identity with SC is expressed in brackets and calculated as the number
of identical amino acids based on the total length.

The lack of nutrients, especially nitrogen, is a leading concern in wine fermentation that can cause
stuck or sluggish fermentations [47,48]. Some genes linked to the regulation of nitrogen consumption
have been identified in SC [49]. The general amino acid permease activity is attributed to GAP1 in SC,
and homologous sequences are present in a high copy number. For instance, 12 GAP1 homologues
were detected in the H. guilliermondii UTAD222 genome. Ammonium permeases are also involved in
the regulation of nitrogen metabolism; MEP2 homologues were found in all H/K species sequenced,
and MEP3 similar sequences were found just in H. uvarum and H. osmophila. The absence of MEP3 in
H. vineae might explain the inability of this species to use ammonium salts, as reported for agave juice
fermentations [22].

Several enzymes that contribute to wine aroma have been extensively described in SC. One of
them, IAH1, codifies for isoamyl acetate hydrolysing esterase, which adds to the production of desired
volatile esters. The genomes of H. osmophila, H. opuntiae, H. uvarum, and H. guilliermondii present
sequences that codify for a predicted protein highly similar to IAH1. Instead, ATF2 and EHT1 are both
alcohol acetyltransferases. The activity of ATF2 is affiliated with the formation of volatile esters during
SC fermentation, and EHT1 is linked to short-chain esterase activity [46]. Putative homologous alcohol
acetyltransferases were predicted from DNA sequences only present in the genomes of H. osmophila
and H. vineae [40].

The increase in sequences from whole genomes of Hanseniaspora strains available in databases
is a good starting point to apply the biotechnological potential that these yeasts represent for
oenology. Indeed, promising results were obtained in an attempt to genetically modify H. guilliermondii
strains [50].

3. Hanseniasporal/Kloeckera Strains and Flavor Compounds

H/K yeasts may affect the wine fermentation directly, by producing flavors, and indirectly,
by modulating the growth and metabolism of SC.

More recently, NS wine yeasts have received special attention by winemakers due to the search
of different and desired oenological characteristics, compared to SC commercial strains. Diverse
secondary metabolic pathways and higher enzymatic activities (esterases, (3-glycosidases, lipases,
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and proteases), result in sensory complexity [1,51,52] that might contribute to an increased diversity of
‘flavor phenotypes’. The ‘flavor phenotype’ is an interesting concept for yeast selection, considering
that now more than 1300 volatile compounds can be determined in wine [2,53].

In recent years, the genus H/K has been the subject of considerable study and publications, due to
its positive contribution to the sensory characteristics of wines. Specifically, the yeast H. vineae of this
genus has been of great interest because it produces several key aromatic compounds and has a good
fermentation capacity. A strain of H. vineae isolated from Uruguayan vineyards was selected because
of its positive effect on wine fermentation and contribution to the aroma profile of the final wine [18].
H. vineae has been demonstrated to increase fruity aromas and produce a high amount of acetate esters,
such as 2-phenylethyl acetate and ethyl acetate (Figure 4), both in laboratory assays and in wines
elaborated by sequential fermentation with SC [18,54].

SUGARS Diacetyl AMINO ACIDS
H -Acetoin I

AMINO ACIDS
POOL
POOL
KETO ACIDS

BENZENOIDS
Acetaldehyde Acetyl CoA

Acetolactate

ETHANOL Fatty acid-CoA
Acetic — Higher alcohols

acid
ISOPRENOIDS ACETATE
ESTERS

Figure 4. Fermentation flavor compounds produced by Hanseniaspora/Kloeckera yeasts during wine

1-Propanol

production (red and green boxes). Specific metabolic pathways that are highlighted in some species of
this genus are shown in green (arrows and boxes). Pink boxes are the medium nutrients and doted
arrows showed the main glycolysis pathway of primary fermentation.

Various groups of volatile compounds are produced during fermentation with H/K genus.
For example, the use of a selected H. uvarum strain in mixed fermentation with commercial SC F5
increased the medium-chain fatty acid ethyl ester content in both synthetic media and grape must of
Cabernet Gernischt grapes [55]. However, Medina et al. [18] did not find a significant increase in ethyl
ester, using co-fermentation with H. vinese in Chardonnay grape must. In this work, decreases in the
higher alcohols content—including 1,3-propanediol, 3-methyl 1-propanol, and tyrosol—were detected.
Similar results were revealed in treatments with H. uvarum, finding a lower concentration of higher
alcohols than the treatments inoculated with the SC isolates [56]. On the contrary, co-fermentation
with H. opuntiae increased the amount of higher alcohols (phenylethanol and 3-methyl-butanol) and
phenylacetaldehyde, in Cabernet Sauvignon grape must, intensifying the floral and sweet attributes of
wine [57].

All H/K species increase the concentration of almost all the acetate esters. For example, all the
acetate esters determined, except isoamyl acetate, were significantly affected by the inclusion of
H. osmophila in a starter [58]. In this case, ethyl acetate and 3-phenylethyl acetate concentrations in
wine were increased when the proportion of H. osmophila in the culture increased. In wines fermented
with the H/K:SC culture ratio of 90:10, the concentration of 3-phenylethyl acetate was approximately
9-fold greater than that produced by SC pure culture [58]. In cold pre-maceration of Pinot noir grapes,
inoculation with H. uvarum had the highest ethyl acetate level among the treatments evaluated, as well
as high concentrations of the aforementioned branch-chained esters and, also, isoamyl acetate and
isobutyl acetate [56]. In another report, the increased acetate ester levels were increased when H. uvarum
was inoculated 48 h before SC, in different wine varieties, demonstrating that their enhancement could
be induced by high population proportions of H. uvarum to SC. However, excessive H. uvarum yeasts in
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the inoculation slowed down the fermentation rate and produced a nail polish-like odour in Cabernet
Sauvignon wines, by increasing the contents of acetate esters and volatile phenols [59]. Conversely,
the wines produced from Negroamaro grapes by co-fermentation with H. uvarum showed an increment
of acetate esters (ethyl acetate, isoamyl acetate and 3-phenylethyl acetate) and fatty acids esters (ethyl
hexanoate, ethyl octanoate and ethyl decanoate). In particular, an increase of isoamyl alcohol and
-phenyl alcohol was shown when compared to the wines produced by the SC starter [60].

Volatile compounds produced during fermentation of Macabeo grapes inoculated with H. vineae
and separately with SC demonstrated significant differences in the acetates and higher alcohols.
The H. vineae vinification produced low levels of higher alcohols and 5-fold greater concentration of
the acetates [26]. Interesting, in this work, three compounds, 4-ethyl guaiacol, N-acetyltyramine and
1H-indole-3-ethanol acetate ester, were identified in wines with H. vineae but not in the wine fermented
with SC [26].

3.1. De Novo Synthesis of Benzenoids and Isoprenoids

Benzyl alcohol, benzaldehyde, p-hydroxybenzaldehyde and p-hydroxybenzyl alcohol, compounds
typically synthesised by plants, are synthesised de novo in the absence of grape-derived precursors by
H. vineae. Levels of benzyl alcohol produced by 11 different H. vineae strains were 20—200 times higher
than those measured in fermentations with SC strains. The absence of PAL in H. vineae suggests that
benzenoids are necessarily dependent on de novo synthesis from chorismate [61,62]. It is worth noting
that the increased use of diammonium phosphate, mainly applied in winemaking for increasing ester
production or avoiding hydrogen sulphide formation, will decrease the production of phenylpropanoid
compounds (Figure 5), compromising the final flavor complexity of the wine [61,62].

BAL pg/L p- HBAL pg/L
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Figure 5. Formation of benzyl alcohol (BAL), benzaldehyde (BD), p-hydroxybenzyl alcohol (p-HBAL),
and p-hydroxybenzaldehyde (p-HBD) by Hanseniaspora vineae 12/196 in the chemically-defined grape
medium with three yeast assimilable nitrogen levels, where nitrogen levels of 75 and 250 mg/L were
reached via the addition of diammonium phosphate. Fermentations were conducted at 20 °C; data are
expressed in micrograms per liter.

Contrariwise, H. vineae produces high concentrations of the benzenoid and phenylpropanoid
acetates. In the vinification of Macabeo grape must with H. vineae, 50 times more 2-phenylethyl
acetate was generated than in vinifications with SC [26]. A similar trend was seen during de novo
synthesis of monoterpenes by H. uvarum, where significant levels of citronellol were detected compared
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to SC strains. More recently, studies have shown the formation of terpenes and sesquiterpenes in
vinifications with different H. vineae strains (Figure 6) exceeded the threshold values and reached
higher concentrations than sole fermentation by SC [63].
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Figure 6. Production of isoprenoids (monoterpenes and sesquiterpenes) by various strains of
Hanseniaspora vineae and the reference Saccharomyces cerevisine CM522.

3.2. B-Glucosidase

Recently, Hu et al. [59] reported that 3-glucosidase activity of H. uvarum yeast was 6.6-fold higher
than that of the few naturally found SC strains. This characteristic explained why the participation
of H. uvarum yeasts contributed to the increase of free terpene and C13-norisoprenoid contents with
sensory impact [59]. However, high levels of 3-glucosidase activity also increased the volatile phenol
content, which might impart spicy odor traits to wines.

In a previous work, Mendes Ferreira et al. [64] studied the (3-glucosidase activity using the
p-nitrophenyl-3-D-glycoside (pNPG) as substrate in H. uvarum (formerly K. apiculata), Pichia anomala,
and Metschnikowia pulcherrima, detecting the highest activity in H. uvarum. Furthermore, these authors
demonstrated that H. uvarum was able to release some monoterpenols from an extract of Muscat
grape juice, such as linalool, geraniol and in less quantity 3,7-dimethyl-1,7-octadien-3,6-diol and
3,7-dimethyl-1,5-octadien-3,7-diol, nerol, trans o-cimenol, «-terpineol, and citronellol [64].

The investigation of 31 H/K strains, including H. guilliermondii, H. osmophila, H. uvarum,
and H. vineae, showed [3-glucosidase and 3-xylosidase activities (remarkable in one H. uvarum strain
and two H. vineae strains) [65]. However, in this work, Muscat wine (13% v /v, initial alcohol) had only
a moderate overall increase in terpene (1.1- to 1.3-fold) when treated with these strains. Specifically,
these strains increase the levels of ho-trienol, 3-phenylethanol, and 2,6-dimethyl-3,7-octadien-2,6-diol
in the wine [65].

3.3. Effect of Hanseniaspora on the Volatile Compounds Produced during Tannat Red Grape Vinification

The vinification of Tannat grapes was conducted at three production scales: semi-pilot (20 kg),
pilot (500 kg) and industrial (5000 kg) [66]. Figure 7 depicts the main flavor compound groups
produced. The highest formation of acetates was detected in the vinifications with H. vineae, whereas,
the maximum ethyl acetate concentration occurred in the vinification with H. clermontiae. Interestingly,
the greatest concentration of norisoprenoid compounds was achieved by H. vineae vinification at
industrial-scale compared to micro-fermentations.
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Figure 7. Concentration of principal groups of volatile compounds in vinifications at semi-pilot
(M), pilot (C) and industrial (B) scale. Vinifications were inoculated with Hanseniaspora vineae (Hv),
Hanseniaspora clermontiae (Hc) and Saccharomyces cerevisiae (Sc).

4. Hanseniasporal/Kloeckera Strains and Red Wine Color

The yeasts and grape maceration technology utilised during the vinification process affects
pigment contents and the final red wine color [67-69]. Interactions between yeasts and anthocyanins
during fermentation involve a range of mechanisms that might decrease or increase color. Yeast cell
wall anthocyanin adsorption [70-72] and (3-glucosidase activity, which releases the corresponding
glycosylated anthocyanidin, exposing it to ready oxidation or conversion to colorless compounds [73],
are well-known phenomena. Further research in the last decade has proved that some key compounds
released during fermentation, such as pyruvic acid and acetaldehyde, are reactive precursors in the
formation of new stable pigments. Vitisin A, vitisin B and ethyl-linked anthocyanin-flavanol pigments
are examples of anthocyanin-derived compounds produced by SC strains [72,74-80]. Yeast strain
selection strongly affects color intensity (CI) and the final concentrations of the anthocyanins [81,82]
and other phenolic compounds [82].

Recently, studies have proven that some NS species might also be involved in wine color
stabilisation [83,84]. As it was expected, some of these reactions could be attributed to the variable levels
of acetaldehyde or pyruvate synthesis by different yeast species. For example, Pichia species generated
significantly higher levels of acetaldehyde compared with Saccharomyces [85], and acetaldehyde
increased linearly with increasing cell biomass concentration [86]. Except for a few reports on Pichia,
Schizosaccharomyces and, more recently, some species of Hanseniaspora [83,87,88], limited information
has been presented about the effect of NC strains on wine color composition. For the selection of new
yeasts for the application with Vitis vinifera L. cv Tannat, a widely grown cultivar in Uruguay and one
of the richest varieties in polyphenolic compounds [89,90], a program to select native NS yeasts and
thereby increase the yeast diversity for fermentation without affecting wine color, was developed [91].
The Tannat grape juice model medium utilised allowed to screen the strains’ capacity to synthesise
anthocyanin-derived compounds while avoiding the interference of grape solids, such as the skin and
seeds, was demonstrated previously for SC strains [72].

According to Medina [66], who evaluated 22 native H/K species for their effect on total
anthocyanins (TA), CI, hue and total polyphenol index (TPI), the TPI values did not differ significantly
between strains. The parameters with the greatest variation were CI with 32% (Figure 8), followed by
TA with 30%, and then hue with 24%.
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Figure 8. Mean normalised value and standard deviation of color intensity (sum of absorbance at
420, 520 and 620 nm), for 22 strains of five different Hanseniaspora species. The blue line indicates the
average of the four lowest values obtained.

In the same study [26], consideration of the impact of CI and TA as the main color parameters
in wines, the following strains were selected: H. guilliermondii (T06/09G), H. opuntiae (T06/01G),
H. vineae (T02/5F) and H. clermontiae (A10/82F and C10/54F). Anthocyanin content and CI were
evaluated against the best SC (882), previously selected for red grape fermentations [72]. All the
previous selected H/K strains formed vitisin B, vitisin A, malvidin-3-O-glucoside-4-vinylphenol,
malvidin-3-O-glucoside-4-vinylguaiacol (Figure 9, shows with letters A, B, C and D respectively).
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Figure 9. Identification of anthocyanin-derived pigments of Tannat grapes during fermentation by
Hanseniaspora/Kloeckera yeasts that contribute to enhanced color stability.

Vitisin B formation has been reported previously only for SC yeasts [77,78,81,92]. Results of
the anthocyanin-derived compounds formed during fermentation in the mentioned model grape
medium indicated vitisin B could be linked to the increased acetaldehyde levels produced by SC when
compared with NS yeasts [93]. All the NS strains selected showed vitisin B formation, despite some
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relatively low concentrations recorded relative to that formed by Saccharomyces yeast. For vitisin A,
in contrast, there was a greater formation with NS strains than SC, possibly linked to the presence
of pyruvic acid in the medium [78]. In corroboration with these findings, Morata et al. [83] noticed
that in comparison to SC, Schizosaccharomyces pombe produced more pyruvic acid. Differences in the
levels of pyruvic acid production might be explained by the particular “Crabtree effect” of each yeast
species [94], which is defined as a system where respiration is repressed under high concentration
of sugars. SC strains display a positive Crabtree effect and, consequently, this species presents a
greater ethanol fermentation efficacy than many negative-Crabtree effect NS strains [94]. According
to the literature, the production of vitisin A has been reported for SC [71,77,78], Schizosaccharomyces
pombe [83,88] and, more recently, for some species of the H/K genus (H. guilliermondii, H. opuntiae,
H. vineae, and H. clermontiae) [91,93].

Conversely, another anthocyanin-derived compound (malvidin-3-O-glucoside-4-vinylguaiacol)
was detected during alcoholic fermentation with SC 882 [72], other SC strains [79-81,95] and
Pichia guilliermondii [87]. The first report on the formation of this derived compound for the yeast genera
Hanseniaspora and Metschnikowia was relatively more recent [91]. In that work, the authors argued that
the high concentration of malvidin-3-glucoside-4-vinylguaicol found for all yeast treatments might
also be a consequence of the differences in the grape variety and the concentrations of the respective
hydroxycinnamic acids [96,97].

Formation of pigments derived from vinylphenol and vinylguaiacol could be explained
by the hydroxycinnamate decarboxylase (HCDC) activity. The HCDC activity, specifically for
supplying coumaric acid, has been mentioned for strains of the genera Pichia, Torulaspora,
and Zygosaccharomyces [98,99]. A high HCDC activity of 90% for P. guilliermondii was recently noticed,
which significantly influenced the formation of vinyl phenolic pyranoanthocyanins [87]. The work
confirmed that during mixed or sequential fermentations carried out with NS or highly fermentative
SC strains, with high HCDC activity, the content of stable pigments could be increased [87].

5. Applications of Hanseniaspora/Kloeckera Strains in Winemaking

Mixed-culture fermentation with Saccharomyces wine yeast is a controlled manner to apply
NS strains, where the positive effects of NS yeasts and a complete dry fermentation is obtained.
Even though SC produces most of the ethanol in wine, the NS yeasts present in the grape must, play a
significant role in producing aroma compounds [16,100], contributing to diverse ‘flavor phenotypes’.

As mentioned above, it is currently widely accepted that the secondary metabolites formed
by properly selected NS yeasts, some of them already commercially available, during alcoholic
fermentation positively affect the quality of wines [1,3,100-103]. The great variety of such yeasts
allows designing different selected starter cultures (in conjunction with SC). Enhanced varietal and
fermentative aromas, glycerol production, or specific enzymatic activities might be obtained, based on
the ability of these yeasts to ferment different wine varieties [3]. As a result, winemakers can adapt
wines to consumers searching for flavor diversity [37].

Yeasts of the genus H/K are frequently isolated during the first stages of the fermentation and are
also found on the surface of the grapes, as well as in the soil, cellar, harvesting machinery, and during
the processing of these fruit [104,105]. Based on current knowledge, H/K is one of the NS yeast genera
with a major contribution to the sensory quality of wines. The H/K tend to be the dominant yeasts in
the early stages of fermentation [26,37,106-108], perhaps attributed to their high population found in
grapes or high tolerance to osmotic pressure (>200 g/L).

As the fermentation process progresses, the presence of H/K decreases, as a result of their low
capacity to adapt to increasing levels of ethanol [109,110], although H. uvarum could be found until the
end of fermentation, in some situations [55]. With the aid of culture-independent molecular techniques,
it was possible to verify that some H. vineae strains are maintained until the end of fermentation,
but their proportion decreases compared to SC [26]. This behavior can be seen in Figure 10, where the



Fermentation 2018, 4, 76 12 of 21

presence of H. vineae and other Hanseniaspora yeast is observed until the end of fermentation, at the
semi-industrial scale of Merlot and Macabeo grapes [26].

A B
1.00E+07 1 1.00E+07 1
o= 1.00E+06 4 = 1.00E+06 A
b=
o o
) g
— 1.00E+05 - = 1.00E+05
£ £
@ °
©  1.00E+04 ©  1.00E+04 4
1.00E+03 1.00E+03
1 6 11 16 1 2 4 14
days days
...5¢.. General primers <ees¢--+  General primers
Hanseniaspora primers Hanseniaspora primers
—@— Saccharomyces primers —=&— Saccharomyces primers
C D
1.00E+07 - . 1-00E+07 1
S 1.00E+06 A o 1.00E+06 A
= -
=3 =
1 o
= =)
-  1.00E+05 A — 1.00E+05 A
E E
— -
@ @
©  1.00E+04 - ©  1.00E+04 -
1.00E+03 1.00E+03 T
1 6 8 1 6 8
days days
....... General primers «eea¢.-. General primers
Hanseniaspora primers Hanseniaspora primers
—®— Saccharomyces primers —&— Saccharomyces primers

Figure 10. Monitoring of the yeast population by quantitative polymerase chain reaction, with general
primers for yeasts (punctate), specific for Hanseniaspora spp. (grey) and specific for Saccharomyces
(black), in Macabeo (A,B) and Merlot fermentations (C,D), in tanks inoculated with H. vineae (A,C) and
tanks inoculated with S. cerevisiae (B,D).

In general, H/K shows a medium/low fermentative capacity (reaching up to 9% ethanol in some
cases) [107]. Although the behavior of Hanseniaspora yeasts stands out from other NS yeasts [91,93]
and, under certain conditions, give a better or no differences in performance against a Saccharomyces
control [59,63], this is not a genus-dependent behavior but rather a strain-dependent characteristic.
However, as seen in Figure 11, H. vineae is one of the main H/K fermenters, a character that corroborates
the already-mentioned high homology of the pyruvate kinase gene with SC compared to the other
H/K species (Figure 2). This result also justifies why is so difficult to isolate “vineae” species from
grapes, yet readily detect them after two days of fermentation [63]. Likewise, the fermentation
efficacy can be influenced by the inoculation procedures for mixed cultures. If the inoculation occurs
sequentially, then the fermentation will be slowed down compared to simultaneous inoculations, due to
cell retention of nutrients, and an additional nutrient addition will be necessary when the second
inoculation is done [17]. Although SC has a higher capacity for fermentation than H/K strains, the lack
of nutrients after 48 h will cause a sluggish fermentation process [8,59,93,111]. This tendency was also
shown with different H. clermontiae strains [91,93]. The fermentative capacity and cell survival under
mixed fermentation conditions can also be affected by the size of the inoculum. Good performances
were obtained when H. uvarum was inoculated simultaneously and at twice the proportion of SC [60].
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Figure 11. Fermentation kinetics of 11 strains of Hanseniaspora vineae at 20 °C, with a daily agitation.
The yeast M522 (Saccharomyces cerevisiae) was used as a control (red). Data for CO, were obtained with
cotton plug flask fermenters that include an average loss of 3 g of water vapor for every treatment.

H/K strains are considered important during vinification since they produce aromatic compounds of
interest and modify the chemical composition of wines [9-11,18,112]. Two species stand out for producing
high amounts of 3-phenylethyl acetate, H. quilliermondii [113], and H. vineae [18,26,54,58,61,62,114]. However,
this compound is not found at such high levels in the other species, as discussed above. This ester is
associated with fruity, floral (rose) and honey sensory notes [100,115-117]. H. uvarum and H. guilliermondii
have been reported as producing high levels of sulphur-containing aromatics [112]. At the same time,
co-fermented wines with H/K strains presented more body and greater aromatic complexity in the mouth
compared to SC solo fermentations [26], positively contributing to the final wine (Figure 12). Wines obtained
at the semi-industrial scale from inoculums with H. vineae and then finished spontaneously with SC were
preferred by a sensory panel than wines inoculated with a commercial SC, as a result of a higher floral
descriptor, increased volume, increased structure and, ultimately, a better overall concept of the wine
obtained. For body and mouth volume, no significant increase of glycerol or polysaccharides were recorded
for H. vineae strains [63]. However, increased cell lysis was evident compared to SC commercial strains.
Furthermore, the increase presence of C1p compounds found in wines fermented with H. vineae, suggest
the existence of a faster autolysis rate compared to SC, as this flavor parameter was related to cell lysis by
some authors for other yeast species [118,119]. The cell walls of H. valbyensis strains are reportedly about
five times more sensitive to hydrolysis than those of SC, which is why they were used for a yeast glucan
enzymatic tests [120]. Interestingly, Chardonnay barrel-fermented wines with mixed cultures of H. vineae/SC
had significantly decreased biogenic amines and volatile acidity and increased glycerol and dry weight
levels compared to pure SC fermentations [18]. The dry weight increase might also be associated with an
increased cell lysis behavior of H. vineae. The authors of that study also showed cooperation between mixed
cultures of H. vineae/SC with malolactic bacteria fermentation, by a significant stimulation compared to SC
pure fermentation, finishing the process earlier by 45 days. More recently, these data were confirmed in red
wine fermentations, also at an industrial scale [63], but further studies are needed to understand how the
lactic bacteria were stimulated by this yeast.
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Figure 12. Results of the triangle (table) and descriptive (graphic) test of Macabeo wine fermented with
Hanseniaspora vineae and Saccharomyces cerevisiae. Significant value * is indicated for flowery.

Most of these positive contributions by H/K yeasts can be explained by the presence of increased
enzymatic activity compared to SC. The presence of active enzymes depends, in part, on the carbon and
nitrogen sources present in the grape must. Small changes in the concentration of these nutrients can
affect the nature, quantity, and diversity of the secreted enzymes [121]. The enzymes most commonly
studied for their role during vinification are proteases, 3-glucosidases, and pectinases since they
intervene in sensory attributes, such as the color, aromas, and stability of wines [122]. Most NS yeasts
have some enzymatic activity [123]. Hanseniaspora spp. are considered to be one of the primary
producers of glycolytic and protease activities [63,105,124]. It was recently reported that within the
NS yeast that contribute to the organoleptic quality of wines, H. uvarum had the highest enzymatic
activity [1,3].

6. Conclusions

An insight into apiculate yeast biology showed that H/K is the principal genus found in mature
grapes and these yeasts have interesting potential applications for wine fermentation. It is evident
that selected strains of H/K yeasts might beneficially enhance the aroma and flavor attributes of
wines and, more recently, this was proved for some H/K species. At the real winemaking scale,
mixed cultures of H. guilliermondii/SC, H. uvarum/SC, and H. vineae/SC increase flavor diversity and
thereby complexity. White and red grape varieties—such as Bobal, Macabeo, Chardonnay, Pinot Noir,
Negroamaro, Tempranillo, Cabernet Sauvignon, Merlot, and Tannat—resulted in wines with improved
sensorial profile.

Concurrently, it was confirmed that various Hanseniaspora species (H. clermontiae, H. opuntiae,
H. guilliermondii, and H. vineae) contribute to the polyphenolic composition and color of the red
wines. Thus, it was possible to demonstrate for the first time that the increased anthocyanin derived
compounds generated from the mixed culture fermentation of these yeasts, enhanced the red wine
color perception.

This set of mentioned characteristics (fermentative capacity, enzymatic activity, production of
aromatic compounds, and ability to enhance the color of wines) makes the genus H/K a suitable stock
for the selection of unconventional yeasts in commercial winemaking. Although H/K strains are still
not easily available for their application, winemakers will have the opportunity to differentiate and
increase regional characteristics to highlight their wines in a hugely competitive market.
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